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Abstract
Choosing a suitable algorithm from the myriads of
different search heuristics is difficult when faced
with a novel optimization problem. In this work,
we argue that the purely academic question of
what could be the best possible algorithm in a cer-
tain broad class of black-box optimizers can give
fruitful indications in which direction to search
for good established optimization heuristics. We
demonstrate this approach on the recently proposed
DLB benchmark, for which the only known results
are O(n3) runtimes for several classic evolution-
ary algorithms and an O(n2 log n) runtime for an
estimation-of-distribution algorithm. Our finding
that the unary unbiased black-box complexity is
only O(n2) suggests the Metropolis algorithm as
an interesting candidate and we prove that it solves
the DLB problem in quadratic time. Since we also
prove that better runtimes cannot be obtained in the
class of unary unbiased algorithms, we shift our at-
tention to algorithms that use the information of
more parents to generate new solutions. An arti-
ficial algorithm of this type having an O(n log n)
runtime leads to the result that the significance-
based compact genetic algorithm (sig-cGA) can
solve the DLB problem also in time O(n log n).
Our experiments show a remarkably good perfor-
mance of the Metropolis algorithm, clearly the best
of all algorithms regarded for reasonable problem
sizes.

1 Introduction
Randomized search heuristics such as hill-climbers, evolu-
tionary algorithms, or estimation-of-distribution algorithms
(EDAs) have been very successful in solving optimization
problems for which no established problem-specific algo-
rithm exists. However, when faced with a novel optimiza-
tion problem, a suitable choice among such large number of
established heuristics is difficult. Since implementing and
then adjusting a heuristic to the problem can be very time-
consuming, ideally one does not want to experiment with too
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many different heuristics. For that reason, a theory-guided
prior suggestion could be very helpful. This is what we aim
at in this work. We note that the theory of randomized heuris-
tics has helped improve the understanding of these algorithms
(see the textbook [Doerr and Neumann, 2020] or the tuto-
rial [Doerr, 2020b]), has given suggestions for their param-
eter settings, and has even proposed new operators and al-
gorithms, but we are not aware of direct attempts to aid the
initial choice of the basic algorithm to be used.

What we propose in this work is a heuristic approach build-
ing on the notion of black-box complexity [Droste et al.,
2006]. In very simple words, the (unrestricted) black-box
complexity of an optimization problem is the performance
of the best black-box optimizer for this problem. It is thus a
notion not referring to a particular class of search heuristics
such as genetic algorithms or EDAs. Black-box complexity
has been successfully used to obtain universal lower bounds.
Knowing that the black-box complexity of the Needle prob-
lem is exponential [Droste et al., 2006], we immediately ob-
tain that no genetic algorithm or EDA can solve the Needle in
subexponential time. With specialized notions of black-box
complexity, more specific lower bounds can be obtained. The
result that the unary unbiased black-box complexity of the
ONEMAX benchmark is at least of the order n log n [Lehre
and Witt, 2012] implies that many standard mutation-based
evolutionary algorithms cannot optimize it faster.

With a positive perspective, black-box complexity has been
used to invent new algorithms. Noting that the unary unbiased
black-box complexity of ONEMAX is Ω(n log n), but the
two-ary (i.e., allowing variation operators taking two parents
as input) unbiased black-box complexity is only O(n) [Doerr
et al., 2011], a novel crossover-based evolutionary algorithm
was developed in [Doerr et al., 2015]. Observing that the
λ-parallel black-box complexity of the ONEMAX problem is
only O( nλ

log λ + n log n), a dynamic parameter choice giving
superior runtimes was developed in [Badkobeh et al., 2014].

In this work, we also aim at profiting from the guidance of
black-box results, however not to design new algorithms, but
to obtain an indication which of the existing algorithms could
be useful for a particular problem. We can thus profit from the
numerous established and well-understood algorithms and
avoid the risky and time-consuming road of developing a new
algorithm. In simple words, what we propose is trying to find
out which classes of black-box algorithms contain fast algo-
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rithms for the problem at hand. These algorithms may well
be artificial as we use them only to determine the direction
in which to search for a good established algorithm for our
problem. Only once we are sufficiently optimistic that a cer-
tain property of black-box algorithms is helpful, we regard
the established heuristics in this class and see if one of them
indeed has a good performance.

To show that this abstract heuristic approach towards se-
lecting a good algorithm can indeed be successful, we re-
gard the recently proposed DeceivingLeadingBlocks (DLB)
problem [Lehre and Nguyen, 2019], for which only O(n3)
runtime guarantees for several classic evolutionary algo-
rithms [Lehre and Nguyen, 2019] and an O(n2 log n) guar-
antee for the EDA univariate marginal distribution algorithm
(UMDA) [Doerr and Krejca, 2020b] are known.

Finding efficient search heuristics for the DLB problem:
The classic algorithms regarded in [Lehre and Nguyen, 2019]
are all elitist or non-elitist but with parameter settings that
let them imitate an elitist behavior. To obtain a first indica-
tion whether it is worth investigating non-elitist algorithms,
we prove in Sect. 3 (i) that the (1 + 1) elitist unbiased black-
box complexity of the DLB problems is Ω(n3) and (ii) that
a simple, artificial, (1 + 1)-type non-elitist unbiased black-
box algorithm can solve it in O(n2) time. These two findings
motivate us to analyze the existing (1 + 1)-type non-elitist
heuristics. Among them, we find that the Metropolis algo-
rithm [Metropolis et al., 1953] with a suitable temperature
also optimizes DLB in time O(n2). We note that there are
very few runtime analyses on the Metropolis algorithm (see
Sect. 3.4), so it is clear that a synopsis of the existing run-
time analysis literature would not have easily suggested this
algorithm.

To direct our search for possible further runtime improve-
ments, we show in Sect. 3.5 that the unary unbiased black-box
complexity of DLB is at least quadratic. Consequently, if we
want to stay in the realm of unbiased algorithms (which we
do) and improve beyond quadratic runtimes, then we neces-
sarily have to regard algorithms that generate offspring using
the information from at least two parents. That such algo-
rithms can be superior, at least in principle, follows from our
result in Sect. 4.1, which is an artificial crossover-based algo-
rithm that solves DLB in time O(n log n). The working prin-
ciples of this algorithm also include a learning aspect. Such
learning mechanisms are rarely found in standard evolution-
ary algorithms, but are the heart of EDAs with their main goal
of learning a distribution that allows to sample good solu-
tions, based on the information of many previously generated
solutions. Hence, we focus on EDAs. We do not find a classic
EDA for which we can prove a subquadratic runtime, but we
succeed for the significance-based EDA [Doerr and Krejca,
2020a] and show in Sect. 4.2 that it optimizes DLB in time
O(n log n) with high probability.

Overall, these results demonstrate that our heuristic theory-
guided approach towards selecting good algorithms for a
novel problem can indeed be fruitful. In particular, it sug-
gests the Metropolis algorithm, for which very little rigorous
support for preferring it over other algorithms existed previ-
ously. Our experimental analysis in Sect. 5 confirms a very
good performance of the Metropolis algorithm, but suggests

that the runtimes of the EDAs suffer from large constants hid-
den by the asymptotic analysis. Sect. 6 concludes this paper.

For reasons of space, many details and all mathematical
proofs had to be omitted. They can be found in a preprint
soon to be submitted to the arXiv preprint server.

2 Preliminaries
In this paper, we consider pseudo-Boolean optimization prob-
lems, i.e. the maximization of functions f : {0, 1}n → R
where n is a positive integer. Inspired by evolutionary com-
putation, we call f(x) the fitness of the search point x.

2.1 Black-Box Optimization and Runtime
In (discrete) black-box optimization, we assume that the opti-
mization algorithms can access only the fitness evaluation of
search points for the problem to be solved. Classic black-box
optimization algorithms include hill-climbers, the Metropolis
algorithm, simulated annealing, evolutionary algorithms, and
other bio-inspired search heuristics.

Unless a specific understanding of the problem at hand sug-
gests to do otherwise, it is natural to look for algorithms that
are invariant under the symmetries of the search space, as
most algorithms have this property. The first to explicitly dis-
cuss such invariance properties for the search space {0, 1}n
of bit strings was the seminal paper [Lehre and Witt, 2012].
They coined the name unbiased for algorithms respecting the
symmetries of the hypercube {0, 1}n. Such algorithms treat
the bit positions i ∈ [1..n] in a symmetric fashion and, for
each bit position, do not treat the value 0 differently from the
value 1. It follows that all decisions of such algorithms may
not depend on the particular bit string representation of the
search points they have generated before, but can only on the
fitnesses of the search points generated. This also implies that
all search points the algorithm has access to can only be gen-
erated from previous ones via unbiased variation operators.
This observation allows to rigorously define the arity of an al-
gorithm as the maximum number of parents used to generate
offspring. Hence mutation-based algorithms have an arity of
one (also called unary) and crossover-based algorithms have
an arity of two. We note that sampling a random search point
is an unbiased operator with arity zero.

Definition 1. A k-ary variation operator V is a function that
assigns to each k-tuple of bit strings in {0, 1}n a probability
distribution on {0, 1}n. It is called unbiased if

• ∀x1, . . . , xk, y, z ∈ {0, 1}n,Pr[y = V (x1, . . . , xk)] =
Pr[y ⊕ z = V (x1 ⊕ z, . . . , xk ⊕ z)],
• ∀x1, . . . , xk, y ∈ {0, 1}n, ∀σ ∈ Sn,Pr[y =
V (x1, . . . , xk)] = Pr[σ(y) = V (σ(x1), . . . , σ(xk))],
where Sn represents the symmetric group on n letters.

Algorithm 1 shows the k-ary unbiased black-box algo-
rithm, and this work only considers unbiased algorithms.

While in practice, naturally, this iterative procedure is
stopped at some time, in theoretical investigations it is usu-
ally assumed that this loop is continued forever. The run-
time T := TA(f) of the algorithm A on the problem instance
f : {0, 1}n → R is the number of search points evaluated un-
til (and including) for the first time an optimal solution of f
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Algorithm 1: Template of a k-ary unbiased black-box
algorithm for optimizing f . Without explicit mention,
we assume that each search point x(t) is evaluated im-
mediately after being generated.

1 Generate x(0) uniformly at random;
2 for t = 1, 2, 3, . . . do
3 Based solely on (f(x(0)), . . . , f(x(t−1))), choose

a k-ary unbiased variation operator V and
i1, . . . , ik ∈ [0..t− 1];

4 Sample x(t) from V (x(i1), . . . , x(ik));

is generated (and evaluated). In the notation of Algorithm 1,
we have TA(f) = 1 + inf{t | x(t) ∈ arg max f}.

2.2 Black-Box Complexity
To understand the difficulty of a problem for black-box opti-
mization algorithms, inspired by classical complexity theory,
[Droste et al., 2006] defined the black-box complexity as the
smallest (expected) number of function evaluations needed to
solve a problem. More precisely, for a problem F , that is, a
set of functions f : {0, 1}n → R, the (unrestricted) black-box
complexity is defined as bbc(F) := infA supf∈F E[TA(f)],
where A runs over all black-box algorithms in the infimum.

More meaningful complexities can be obtained by admit-
ting only certain types of black-box algorithms. For exam-
ple, by letting A run over all unary unbiased black-box algo-
rithms, one obtains the unary unbiased black-box complexity,
which answers the question of what is the best unary unbiased
way to solve a given problem. In this work, we shall compare
different restricted black-box notions to obtain a first indica-
tion of what types of established search heuristics might be
efficient for a given problem.

2.3 The DLB Function and Known Runtimes
We now define the DLB function, which is the main object
of our study and was first introduced in [Lehre and Nguyen,
2019] recently. To define the DLB function, the n-bit string
x is divided, in a left-to-right fashion, into n

2 blocks of size of
2. The function value of x is determined by the longest prefix
of 11 blocks and the following block. The blocks with two 1s
in the prefix contribute each a value of 2 to the fitness. The
DLB function is deceptive in that the next block contributes
a value of 1 when it contains two 0s, but contributes only 0
when it contains one 1 and one 0. The optimum is the bit
string with all 1s. Since the DLB function is defined only for
n even, let n in the remainder be an even integer.

For an x ∈ {0, 1}n, we call a pair of entries (x2`+1, x2`+2),
` ∈ [0..n−2

2 ], a block. If x 6= 1n then let (x2m+1, x2m+2) be
the first block that is not 11, that is, m = inf{` | x2`+1 6=
1 or x2`+2 6= 1}. We call this block the critical block of x. If
the critical block of x is 00, then DLB(x) := 2m+ 1, other-
wise (that is, if the critical block is 01 or 10), DLB(x) := 2m.
For x = 1n, we define DLB(x) = n. Hence DLB counts 2
for each 11 block on the left of the critical block and adds 1
if the critical block is 00. This makes all search points with
critical block equal to 00 a local optimum.

We now review the most relevant known runtime results
for this work. [Lehre and Nguyen, 2019] analyzed the classic
mutation-based evolutionary algorithms (1 + λ) EA, (µ+ 1)
EA, and (µ, λ) EA and proved O(n3) for each with the op-
timal parameter settings. They also proved that genetic al-
gorithms using k-tournament selection, (µ, λ) selection, lin-
ear selection, or exponential ranking selection, also take an
O(nλ log λ+ n3) expected runtime on the DLB problem.

From looking at the proofs in [Lehre and Nguyen, 2019], it
appears natural that all algorithms given above have a runtime
of at least Ω(n3) on the DLB problem, but the only proven
such result is that [Doerr and Krejca, 2020b] showed a Θ(n3)
runtime for (1 + 1) EA. In Theorem 2, we extend this result
to all (1 + 1)-elitist unary unbiased black-box algorithms.

As opposed to these polynomial runtime results, [Lehre
and Nguyen, 2019] pointed out a potential weakness of the
UMDA. They proved that the UMDA selecting µ fittest indi-
viduals from λ sampled individuals has an expected runtime
of eΩ(µ) if µ

λ ≥
14

1000 and c log n ≤ µ = o(n) for some
sufficiently large constant c > 0, and has expected runtime
O(nλ log λ+n3) if λ ≥ (1 + δ)eµ2 for any δ > 0. However,
[Doerr and Krejca, 2020b] pointed out that the negative find-
ing is caused by the unfortunate parameter choice and that
with a population size large enough to prevent genetic drift
[Sudholt and Witt, 2019] the UMDA solves the DLB effi-
ciently: with probability at least 1− 9

n within λ
(
n
2 + 2e lnn

)
fitness evaluations if µ ≥ cµn lnn and µ/λ ≤ cλ for some
cµ, cλ sufficiently large or small, respectively.

3 From Elitist to Non-Elitist Algorithms
It is natural to start the search for a good heuristic with sim-
ple algorithms. As reviewed in Sect. 2.3, the (1 + 1) EA with
mutation rate 1/n can solve the DLB problem in expected
time O(n3) [Lehre and Nguyen, 2019], but not faster [Doerr
and Krejca, 2020b]. To see whether other (1 + 1)-elitist al-
gorithms can do better, we first determine the (1 + 1) elitist
unbiased black-box complexity of the DLB problem. Not-
ing that this is still Ω(n3), we turn to non-elitist algorithms.
We find an artificial non-elitist (1 + 1)-type algorithm and
use it as inspiration to look for suitable established non-elitist
heuristics. Unexpectedly, in the light of the previous literature
(discussed in Sect. 3.4), we find that the Metropolis algorithm
with constant temperature solves DLB in time O(n2).

3.1 Elitist (1 + 1) Unbiased Black-Box Complexity
The elitist (1+1) unbiased black-box complexity notion cap-
tures all algorithms which start with a random search point
and then repeat (i) generating an offspring from the current
search point via an unbiased (mutation) operator (possibly
a different one in each iteration) and (ii) keeping as new
search point the better of parent and offspring (with some tie-
breaking in case of equal fitness) [Doerr and Lengler, 2017].
Unfortunately, we observe that this black-box complexity is
Ω(n3), which shows that to break the O(n3) barrier we have
to work with larger population sizes or allow non-elitism.

Theorem 2. The (1 + 1)-elitist black-box complexity of the
DLB problem is Ω(n3).
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The main argument of the proof of this result is a potential
argument. We define the potential of a search point to be the
number of leading 11-blocks plus 1− 4

n for the critical block if
it contains exactly one 1. For this potential, we show that any
iteration of a (1 + 1) elitist unbiased algorithm started with a
search point of potential at least n3 can increase the potential
by at most O( 1

n2 ). Since a potential of n2 is necessary to have
the optimum, this gives the desired Ω(n3) lower bound.

3.2 The Unary Unbiased Black-box Complexity of
the DLB Problem is at Most Quadratic

In Sect. 3.1, we conclude that to obtain a performance better
than cubic, we need to ignore one of the restrictions: elitism,
(1 + 1)-type, and unbiasedness. Omitting elitism appears the
most natural since the previous lower bound proof heavily ex-
ploited the elitism of the algorithms regarded. To obtain a first
indication of whether the class of (1+1)-type unbiased black-
box algorithms contains interesting search heuristics for our
DLB problem, we now determine an upper bound on the cor-
responding black-box complexity.

We easily observe that from a search point with critical
block equal to 01 or 10, visible from an even DLB value,
it suffices to flip a single bit to improve the fitness and at the
same time reduce the Hamming distance to the optimum (and
any one-bit flip that improves the fitness by at least two does
reduce the Hamming distance). If the critical block is 00, then
a one-bit flip reduces the Hamming distance if and only if the
fitness worsens by only one (and there is no way to increase
the fitness by flipping one bit).

These observations immediately suggest a simple unary
unbiased black-box algorithm: Start with a random search
point x ∈ {0, 1}n and repeat (i) generating a new solution y
by flipping a randomly chosen bit in x and (ii) accepting it
(that is, setting x := y) if, with the above considerations, the
fitness indicates to us that it is closer to the optimum than x.
Repeat this until we have found the optimum.

Since each iteration has a chance of at least 1
n of reducing

the distance to the optimum and the initial distance is at most
n, the expected runtime of this artificial algorithm is O(n2).

Theorem 3. The (1+1)-type unbiased black-box complexity
of the DLB problem is O(n2).

3.3 The Metropolis Algorithm Performs Well
Sect. 3.2 showed that there are, in principle, (1+1)-type unbi-
ased algorithms which can optimize the DLB problem much
faster than the cubic time which is best possible for elitist
algorithms. The algorithm discussed in Sect. 3.2, of course,
was highly artificial and overfitted to the DLB problem, but it
suggests that there might also be established search heuristics
solving the DLB problem faster than in cubic time. Given
that the good performance above was made possible by the
fact that the artificial algorithm was able to accept inferior
solutions, the first natural choice for such a heuristic is the
Metropolis algorithm. This simple (1 + 1)-type hill-climber
can also accept inferior solutions, however only with a small
probability that depends on the degree of inferiority and an
algorithm parameter α ∈ (1,∞). See Algorithm 2 for the
precise pseudocode of the Metropolis algorithm.

Algorithm 2: Metropolis algorithm for maximizing f

1 Generate a search point x(0) uniformly in {0, 1}n;
2 for t = 1, 2, 3, . . . do
3 Choose i ∈ [1..n] uniformly at random and obtain

y from flipping the i-th bit in x(t−1);
4 if f(y) ≥ f(x(t−1)) then x(t) ← y;
5 else x(t) ← y with probability αf(y)−f(x(t−1)) and

x(t) ← x(t−1) otherwise;

The main result of this section is that the Metropolis al-
gorithm can optimize DLB in quadratic time if the selection
pressure is sufficiently high, that is, α is large enough.
Theorem 4. The expected runtime of the Metropolis al-
gorithm on the DLB problem is at most n2/C(α), where
C(α) := 2

α

(
1
2 − 2

∑∞
k=1 kα

−2k
)

is a constant (depending
only on α) which is positive when α >

√
2 + 1.

To prove this result, we need to argue that the negative ef-
fect of accepting inferior solutions, namely that solutions in
higher distance from the optimum can be accepted, is out-
weighed by the positive effect that a critical 00-block can be
changed into a critical block 01 or 10 despite the fact that this
decreases the DLB value. To achieve this, we define the po-
tential of a search point as the number of leading 11 blocks,
and this plus 0.25 when the critical block contains exactly one
1. We show that in each iteration (starting with a non-optimal
search point) this potential in expectation increases by Ω( 1

n ).
Hence by additive drift theorem, it takes O(n2) time to reach
a potential of n/2, which means that the optimum is found.

3.4 Literature Review on Metropolis Algorithm
and Non-Elitist Evolutionary Algorithms

To put our results on the Metropolis algorithm into context,
we now briefly survey the known runtime results on it and
non-elitist evolutionary algorithms. While it is generally be-
lieved that non-elitism can be helpful to leave local optima,
there is surprisingly little evidence for this in terms of rigor-
ous runtime analysis (at least in discrete search spaces).

The majority of the runtime analyses of the Metropolis al-
gorithm on discrete problems does not suggest that this al-
gorithm easily copes with local optima, at least not better
than classic evolutionary algorithms. The Metropolis algo-
rithm was proven to be able to compute approximate solu-
tions for the maximum matching problem [Sasaki and Ha-
jek, 1988] and to find the (unique) minimum bisection of
random instance in the planted solution model [Jerrum and
Sorkin, 1998]. [Wegener, 2005] provided a simple instance
of the minimum spanning tree problem, which can be solved
very efficiently by simulated annealing with a natural cooling
schedule (or simple evolutionary algorithms), but for which
the Metropolis algorithm with any temperature needs an ex-
ponential runtime. [Jansen and Wegener, 2007] analyzed the
performance on the ONEMAX benchmark, but observed that
the Metropolis algorithm is efficient only with very small
temperatures (and also then does not beat simple hill-climbers
or evolutionary algorithms). [Lissovoi et al., 2019] showed
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that the Metropolis algorithm needs at least an expected num-
ber of Ω̃(nd−0.5) iterations to optimize the multimodal CLIFF
benchmark with constant cliff length d (much worse than the
O(n3) runtime of the move-acceptance hyper-heuristic) and
at least exp(Ω(n)) time on the multimodal JUMP benchmark
with jump sizem (much slower than theO(nm) time of many
evolutionary algorithms, e.g., [Droste et al., 2002]). In the
only result demonstrating that the Metropolis algorithm can
have an advantage in coping with local optima, [Oliveto et
al., 2018] proposed the VALLEY problem, which contains a
fitness valley with descending slope of length `1 and depth d1

and ascending slope of length `2 and height d2, and proved
that the Metropolis algorithm can optimize this problem in
time nαΘ(d1) + Θ(n`2), whereas the (1 + 1) EA needs time
Ω(n`1). What limits the generality of this result is that this
valley is constructed onto a long path function, making this
essentially a one-dimensional optimization problem.

In terms of the runtime analysis for non-elitist classic evo-
lutionary algorithms, most of them either showed that if the
selection pressure is high, then the non-elitist algorithm be-
haves very similar to its elitist counterpart [Lehre, 2011] or
showed that if the selection pressure is low, then the algo-
rithm cannot efficiently optimize any problem with unique
optimum [Lehre, 2010]. For the (µ, λ) EA optimizing jump
functions, the existence of a profitable middle regime was dis-
proven in [Doerr, 2020a]. The strongest supports for non-
elitism are [Jägersküpper and Storch, 2007], which showed
that (1, λ) EA with λ ≥ 5 lnn optimizes CLIFF with length
n/3 in time exp(5λ) ≥ n25, [Dang et al., 2021], which
showed that the non-elitist EA with 3-tournament selection,
λ ≥ c log n for c a positive constant, and proper mutation
parameter optimizes certain instances of the FUNNEL in ex-
pected runtime O(nλ log λ + n2 log n), and [Zheng et al.,
2021], which proved that the (1, λ) EA with offspring popu-
lation size λ = c log e

e−1
n for the constant c ≥ 1 can reach

the global optimum of the time-linkage ONEMAX function in
expected time O(n3+c log n).

3.5 A Lower Bound for the Unary Unbiased
Black-Box Complexity

We now prove that no unary unbiased black-box algorithm
can solve DLB faster than in quadratic time. This result is not
strictly necessary for our heuristic approach of finding good
established search heuristics, but adds a lot to the motivation
to regard algorithms other than the ones with only mutation.
Theorem 5. The unary unbiased black-box complexity of the
DLB problem is Θ(n2).

4 Beyond Unary Unbiased Algorithms
We recall that in this work we are generally looking for un-
biased algorithms as this is most natural when trying to solve
a novel problem without much problem-specific understand-
ing. Our Ω(n2) lower bound for all unary unbiased algo-
rithms in Sect. 3.5 tells us that a better performance can only
be found among algorithms that generate new solutions based
on the information of more than one previous solution such as
crossover-based genetic algorithms, binary differential evolu-
tion, or estimation-of-distribution algorithms (EDAs).

4.1 Higher-Arity Unbiased Black-Box Algorithms
To see how realistic it is to find a search heuristic solving
DLB in time better than quadratic and to ideally also obtain
an indication of how such algorithms could look like, we now
ask what is the unbiased black-box complexity of DLB. From
its structure, it is clear that a fast algorithm for this problem,
once it has a solution x with the first m blocks set correctly
(that is, with DLB(x) = 2m), has to relatively quickly op-
timize the next block. Since no information can be gained
about later blocks, an ideal algorithm focuses only on this
block without wasting time on higher blocks (where nothing
is to be gained at the moment) or lower blocks (where every-
thing is done already). From this analysis, it is clear that such
an algorithm has to learn which blocks are already set cor-
rectly (to avoid useless operations here) and it has to have a
mechanism to quickly detect the next block. If the optimized
blocks are learned correctly, the next relevant block can be
identified by imitating a binary search. This can be done also
in an unbiased fashion – all that is necessary is flipping half
of the undetermined bits and seeing if this has a positive in-
fluence on the fitness. We spare the technical details and just
note that binary operators are enough.

Theorem 6. The binary unbiased black-box complexity of the
DLB problem is O(n log n).

4.2 Sig-cGA
Sect. 4.1 showed that higher-arity unbiased algorithms can
optimize DLB more efficiently than unary ones. We have
not found a classic crossover-based genetic algorithm with
such an improved performance. The observation that learn-
ing what are the right bit values was an important aspect in
Sect. 4.1 led us to focus on EDAs, the randomized search
heuristics which try to evolve a probabilistic model of the
search space in a way that finally good solutions are sampled
with high probability. For classic EDAs, the learning (that
is, the update of the probabilistic model) necessarily has to
be relatively slow to prevent a genetic drift effect, see [Doerr
and Zheng, 2020] and the references therein. To overcome
this, the significance-based compact genetic algorithm (sig-
cGA) has been proposed [Doerr and Krejca, 2020a], which
uses a longer history to update the probabilistic model.

As other EDAs for the pseudo-Boolean problems, the sig-
cGA uses frequency vectors τ ∈ [0, 1]n to describe the proba-
bilistic model. A sample x ∈ {0, 1}n from the corresponding
model is a random search point such that Pr[xi = 1] = τi in-
dependently for all i ∈ [1..n]. Different from other EDAs, the
sig-cGA only utilizes the frequencies 1

n , 1
2 , and 1 − 1

n . Here
the values 1

n and 1− 1
n indicate that the algorithm is relatively

sure that the corresponding bit values should be sampled as 0
or 1, whereas the value 1

2 indicates that such a decision can-
not be made yet with sufficient certainty. The sig-cGA does
not need other frequency values because it also uses, for each
bit position i ∈ [1..n], a history Hi ∈ {0, 1}∗ of successful
bit values. Only when this history gives a statistically signifi-
cant indication that one of the bit values 0 or 1 leads to better
solutions, is the corresponding frequency set to 1

n or 1− 1
n .

More precisely, in each iteration two points are indepen-
dently sampled from the current model. For each i ∈ [1..n],
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Algorithm 3: Sig-cGA for maximizing f

1 t← 0; for i ∈ [n] do τ (0)
i ← 1

2 and Hi ← ∅;
2 repeat
3 Sample x and y w.r.t. τ (t). Let z be the winner

w.r.t. f , chosen at random in case of a tie;
4 for i ∈ [n] do
5 Hi ← Hi ◦ zi;
6 if sigε(τ

(t)
i , Hi) = UP then τ (t+1)

i ← 1− 1/n;
7 else if sigε(τ

(t)
i , Hi) = DOWN then

τ
(t+1)
i ← 1/n;

8 else τ (t+1)
i ← τ

(t)
i ;

9 if τ (t+1)
i 6= τ

(t)
i then Hi ← ∅;

10 t← t+ 1;

11 until termination criterion met;

the bit values of the better one is stored in history Hi. If a
statistical significance is detected in Hi, then i-th frequency
is updated accordingly and Hi is emptied. We say that a sig-
nificance of 1 (0 resp.) is detected when sigε(τ

(t)
i , Hi) = UP

(DOWN resp.), where function sigε is defined as follows. For
all ε, µ ∈ R+, let s(ε, µ) := εmax{

√
µ log n, log n}. For

all H ∈ {0, 1}∗, let H[k] be the string of its last k bits
and let ‖H[k]‖1 (‖H[k]‖0 resp.) denote the number of ones
(resp. zeros) in H . Then for all p ∈ { 1

n ,
1
2 , 1 −

1
n} and

H ∈ {0, 1}∗, sigε(p,H) is defined by sigε(p,H) = (i) UP, if
p ∈

{
1
n ,

1
2

}
∧ ∃m ∈ N : ‖H [2m]‖1 ≥ 2mp + s (ε, 2mp) ;

(ii) DOWN, if p ∈
{

1
2 , 1−

1
n

}
∧ ∃m ∈ N : ‖H [2m]‖0 ≥

2m(1 − p) + s (ε, 2m(1− p)) ; (iii) STAY, else. See Algo-
rithm 3 for the pseudocode.

The runtime of the sig-cGA was proven to be O(n log n)
for both ONEMAX and LEADINGONES [Doerr and Krejca,
2020a], a performance not seen before with any unbiased
search heuristic. Our main result in this section is that the
sig-cGA also performs well on DLB and optimizes it in time
O(n log n) with high probability as well. This is the first run-
time analysis for the sig-cGA on a multimodal benchmark
problem and the first indication that this algorithm can per-
form well also on such problems. The proof of this result (to
be found in the extended version of this work) shows that in a
typical run the frequencies of a block stay at 1

2 until the ones
of all block to the left have reached 1 − 1

n . From that mo-
ment on, these histories of the two bits in this block collect
more ones than zeros, which leads to an update of the cor-
responding frequencies to 1 − 1

n in logarithmic time. Then
these frequencies stay at the high value with high probability.

Theorem 7. The runtime of the sig-cGA with ε > 6 on DLB
isO(n log n) with probability at least 1−O

(
n2−ε/3 log2 n

)
.

5 Experiments
To compare the algorithms we ran the (1 + 1) EA, UMDA,
Metropolis algorithm, and sig-cGA on the DLB function for
n = 40, 80, . . . , 200. We used the standard mutation rate p =
1/n for the (1 + 1) EA, population sizes µ = 3n lnn and
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Figure 1: The median number of fitness evaluations (with the first
and third quartiles) of (1 + 1) EA, UMDA, Metropolis algorithm,
and the sig-cGA on DLB with n ∈ {40, 80, 120, 160, 200} in 20
independent runs (10 runs and n ∈ {40, 80} for the sig-cGA).

λ = 12µ for the UMDA (as in [Doerr and Krejca, 2020b]),
and temperature parameter α = 3 (greater than

√
2 + 1 as

suggested in Theorem 4) for the Metropolis algorithm. For
the sig-cGA, we took ε = 2.5 since we observed that this was
enough to prevent frequencies from moving to an unwanted
value, which only happened one time for n = 40. Being still
very slow, for this algorithm we could only perform 10 runs
for problem sizes 40 and 80.

Our experiments clearly show an excellent performance of
the Metropolis algorithm, whereas the two EDAs perform
much worse than what the asymptotic results suggest.

6 Conclusion and Outlook
To help choosing an efficient randomized search heuristic
when faced with a novel problem, we proposed a theory-
guided approach based on black-box complexity arguments
and applied it to the recently proposed DLB function. Our
approach suggested the Metropolis algorithm, for which lit-
tle theoretical support existed before. Both a mathematical
runtime analysis and experiments proved it to be significantly
superior to all previously analyzed algorithms for DLB.

We believe that our approach, in principle and in a less
rigorous way, can also be followed by researchers and prac-
titioners outside the theory community. Our basic approach
of (i) trying to understand how the theoretically best-possible
algorithm for a given problem could look like and then (ii) us-
ing this artificial and problem-specific algorithm as indicator
for promising established search heuristics, can also be fol-
lowed by experimental methods and by non-rigorous intuitive
considerations.
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[Jägersküpper and Storch, 2007] Jens Jägersküpper and To-
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