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Abstract

Choosing a suitable algorithm from the myriads of different search
heuristics is difficult when faced with a novel optimization problem. In
this work, we argue that the purely academic question of what could
be the best possible algorithm in a certain broad class of black-box
optimizers can give fruitful indications in which direction to search
for good established optimization heuristics. We demonstrate this ap-
proach on the recently proposed DLB benchmark, for which the only
known results are O(n3) runtimes for several classic evolutionary al-
gorithms and an O(n2 log n) runtime for an estimation-of-distribution
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algorithm. Our finding that the unary unbiased black-box complex-
ity is only O(n2) suggests the Metropolis algorithm as an interesting
candidate and we prove that it solves the DLB problem in quadratic
time. Since we also prove that better runtimes cannot be obtained
in the class of unary unbiased algorithms, we shift our attention to
algorithms that use the information of more parents to generate new
solutions. An artificial algorithm of this type having an O(n log n)
runtime leads to the result that the significance-based compact ge-
netic algorithm (sig-cGA) can solve the DLB problem also in time
O(n log n). Our experiments show a remarkably good performance of
the Metropolis algorithm, clearly the best of all algorithms regarded
for reasonable problem sizes.

1 Introduction

Randomized search heuristics such as hillclimbers, evolutionary algorithms,
ant colony optimizers, or estimation-of-distribution algorithms (EDAs) have
been very successful in solving optimization problems for which no estab-
lished problem-specific algorithm exists. As such, they are applied massively
to novel problems for which some understanding of the problem and the
desired solution exists, but little algorithmic expertise.

When faced with a novel optimization problem, one has the choice be-
tween a large number of established heuristics (and an even larger number
of recent metaphor-based heuristics [Sör15]). Which of them to use is a
difficult question. Since implementing a heuristic and adjusting it to the
problem to be solved can be very time-consuming, ideally one does not want
to experiment with too many different heuristics. For that reason, a theory-
guided prior suggestion could be very helpful. This is what we aim at in
this work. We note that the theory of randomized search heuristics has
helped to understand these algorithms, has given suggestions for parameter
settings, and has even proposed new operators and algorithms (see the text-
books [NW10, AD11, Jan13, DN20] or the tutorial [Doe20b]), but we are not
aware of direct attempts to aid the initial choice of the basic algorithm to
be used (as with experimental work, there always is the indirect approach
to study the existing results and try to distill from them some general rule
which algorithms perform well on which problems, but in particular for the
theory domain it is not clear how effective this approach is at the moment).

What we propose in this work is a heuristic approach building on the no-
tion of black-box complexity, first introduced by Droste, Jansen, Tinnefeld,
and Wegener [DJTW02] (journal version [DJW06]). In very simple words,
the (unrestricted) black-box complexity of an optimization problem is the
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performance of the best black-box optimizer for this problem. It is thus a
notion not referring to a particular class of search heuristics such as genetic
algorithms or EDAs. Black-box complexity has been used successfully to ob-
tain universal lower bounds. Knowing that the black-box complexity of the
Needle problem is exponential [DJW06], we immediately know that no ge-
netic algorithm, ant colony optimizer, or EDA can solve the Needle problem
in subexponential time. With specialized notions of black-box complexity,
more specific lower bounds can be obtained. The result that the unary un-
biased black-box complexity of the OneMax benchmark is at least of the
order n log n [LW12] implies that many standard mutation-based evolution-
ary algorithms cannot optimize OneMax faster than this bound.

With a more positive perspective, black-box complexity has been used in-
vent new algorithms. Noting that the unary unbiased black-box complexity
of OneMax is Ω(n log n), but the two-ary (i.e., allowing variation oper-
ators taking two parents as input) unbiased black-box complexity is only
O(n) [DJK+11], a novel crossover-based evolutionary algorithm was devel-
oped in [DDE15]. Building on the result that the λ-parallel black-box com-
plexity of the OneMax problem is only O( nλ

log λ
+ n log n) [BLS14, LS20],

dynamic, self-adjusting, and self-adapting EAs obtaining this runtime have
been constructed [BLS14, DGWY19, DWY21].

In this work, we also aim at profiting from the guidance of black-box
results, however not by designing new algorithms, but by giving an indication
which of the existing algorithms could be useful for a particular problem.
Compared to the approach taken in [DDE15], we can thus profit from the
numerous established and well-understood algorithms and avoid the risky
and time-consuming road of developing a new algorithm.

In simple words, what we propose is trying to find out which classes
of black-box algorithms contain fast algorithms for the problem at hand.
These algorithms may well be artificial as we use them only to determine the
direction in which to search for a good established algorithm for our problem.
Only once we are sufficiently optimistic that a certain property of black-box
algorithms is helpful for our problem, we regard the established heuristics in
this class and see if one of them indeed has a good performance.

To show that this abstract heuristic approach towards selecting a good
algorithm can indeed be successful, we regard the DeceivingLeadingBlocks
(DLB) problem recently proposed by Lehre and Nguyen [LN19]. Lehre and
Nguygen conducted rigorous runtime analyses of several classic evolutionary
algorithms, all leading to runtime guarantees of order O(n3) with optimal
parameter choices. For the EDA univariate marginal distribution algorithm
(UMDA), a runtime guarantee of O(n2 log n) was proven in [DK20b]. No
other proven upper bounds on runtimes of randomized search heuristics on
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the DLB problem existed prior to this work. With only these results from
only two prior works, it is safe to call the DLB problem relatively novel and
thus an interesting object for our investigation.

Finding more efficient randomized search heuristics: We note that the
classic algorithms regarded in [LN19] are all elitist evolutionary algorithms
or non-elitist algorithms with parameter settings that let them imitate an
elitist behavior. This choice was natural given the weaker understanding of
non-elitist algorithms and the fact that not many theoretical works could
show a convincing advantage of non-elitist algorithms (see Section 3.4.2). To
obtain a first indication whether it is worth investigating non-elitist algo-
rithms for this problem, we show two results. (i) We prove that the (1 + 1)
elitist unbiased black-box complexity of the DLB problem is Ω(n3). (ii) We
show that there is a simple, artificial, (1 + 1)-type non-elitist unbiased black-
box algorithm solving the DLB problem in quadratic time. These two find-
ings motivate us to analyze the existing (1 + 1)-type non-elitist heuristics.
Among them, we find that the Metropolis algorithm [MRR+53] with a suit-
able temperature also optimizes DLB in time O(n2). We note that there are
very few runtime analyses on the Metropolis algorithm (see Section 3.4.1),
so it is clear that a synopsis of the existing runtime analysis literature would
not have easily suggested this algorithm.

To direct our search for possible further runtime improvements, we first
show that the unary unbiased black-box complexity of DLB is at least
quadratic. Consequently, if we want to stay in the realm of unbiased al-
gorithms (which we do) and improve beyond quadratic runtimes, then we
necessarily have to regard algorithms that are not unary, that is, that gen-
erate offspring using the information from at least two parents. That this is
possible, at least in principle, follows from our next result, which is an arti-
ficial crossover-based algorithm that solves DLB in time O(n log n). While,
together with the previously shown lower bound, it is clear that this perfor-
mance relies on the fact that offspring are generated from the information of
more than one parent, the working principles of this algorithm also include
a learning aspect. The algorithm optimizes the blocks of the DLB problem
in a left-to-right fashion, but once a block is optimized, it is never touched
again. Such learning mechanisms are rarely found in standard evolutionary
algorithms, but are the heart of EDAs with their main goal of learning a
distribution that allows sampling good solutions. Note that the distribution
in an EDA carries information from many previously generated solutions,
hence EDAs necessarily generate new solutions based on the information of
many parents. For these reasons, we focus on EDAs. We do not find a classic
EDA for which we can prove that it solves the DLB problem in subquadratic
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time, but we succeed for the significance-based EDA [DK20a] and we show
that it optimizes the DLB problem in an expected runtime of O(n log n).

Overall, these results demonstrate that our heuristic theory-guided ap-
proach towards selecting good algorithms for a novel problem can indeed be
helpful. We note in particular that the previous works on the DLB problem
have not detected that the Metropolis algorithm is an interesting candidate
for solving this problem. Our experimental analysis confirms a very good
performance of the Metropolis algorithm, but suggests that the runtimes of
the EDAs suffer from large constants hidden by the asymptotic analysis.

To avoid a possible misunderstanding, let us stress that our target is
to find an established search heuristic for our optimization problem. From
the above discourse one could believe that we should simply stick to the
artificial black-box algorithm that we found. If our only aim was solving the
DLB problem, this would indeed be feasible. Such an algorithm, however,
would most likely lack the known positive properties of established search
heuristics such as robustness to noise and dynamic changes of the problem
data, reusability for similar problems, and adjustability to restricted instance
classes. For that reason, our target in this work is definitely to find an
established heuristic and not an particular algorithm custom-tailored to a
problem.

We note that the results and methods used in this works lie purely in
the theory domain. We therefore followed the traditional approach [DJW02]
of regarding benchmark problems simple enough that they can be rigorously
analyzed with mathematical means. In return, we obtain proven results for
infinite numbers of problem instances (here, the DLB problem for all problem
dimensions n ∈ 2N), which hopefully extend in spirit also to problems which
are too complicated to be analyzed with mathematical means.

We believe that our approach, in principle and in a less rigorous way, can
also be followed by researchers and practitioners outside the theory commu-
nity. Our basic approach of (i) trying to find a very good algorithm, chosen
from all possible black-box optimization algorithms, to solve a given problem
or to overcome a particular difficulty and then (ii) using this artificial and
problem-specific algorithm as indicator for which established search heuris-
tics could be promising, can also be followed by experimental methods and
by non-rigorous intuitive considerations.

The remainder of the paper is organized as follows. Section 2 discusses
black-box optimization, black-box complexity, the DLB problem, and two
probabilistic tools to be used later. Sections 3 and 4 demonstrate our ap-
proach on the DLB problem. We first observe that non-elitist (1+1) type
algorithms in principle can improve the O(n3) runtime of known elitist al-
gorithms to a quadratic runtime and find the Metropolis algorithm as an
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established heuristic showing this performance. By going beyond unary un-
biased algorithms, we then obtain a further improvement to a complexity
of O(n log n), first via an artificial algorithm and then via the significance-
based compact genetic algorithm. Our experimental discussion is shown in
Section 5, and Section 6 concludes this paper.

2 Preliminaries

Following the standard notation, we write [`..m] := {`, ` + 1, . . . ,m} for
all `,m ∈ N such that ` ≤ m. In this paper we consider pseudo-Boolean
optimization problems, that is, problems of maximizing functions f defined
on the search space {0, 1}n, where n is a positive integer. A bit string (also
called a search point) is an element of the set {0, 1}n and is represented as
x = (x1, . . . , xn). In the context of evolutionary algorithms, we sometimes
refer to a bit string as an individual and we use x(t) to denote an individual
at time t, in which case x

(t)
i is used to represent the i-th component of the

individual x(t). To simplify the notation, whenever we write m where an
integer is required, we implicitly mean dme := min{k ∈ N | k ≥ m}.

2.1 Black-Box Optimization and Runtime

In (discrete) black-box optimization, we assume that the optimization algo-
rithms do not have access to an explicit description of the instance of the
problem to be solved. Instead, their only access to the instance is via a
black-box evaluation of search points. Classic black-box optimization algo-
rithms include hill-climbers, the Metropolis algorithm, simulated annealing,
evolutionary algorithms, and other bio-inspired search heuristics.

A general scheme for a black-box algorithm A is given in Algorithm 1. It
starts by generating a random search point according to a given probability
distribution and evaluating it. It then repeats generating (and evaluating)
new search points based on all information collected so far, that is, based
on all previous search points together with their fitnesses. While in practice,
naturally, this iterative procedure is stopped at some time, in theoretical
investigations it is usually assumed that this loop is continued forever. In
this case, the runtime, also called optimization time, T := TA(f) of the
algorithm A on the problem instance f : {0, 1}n → R is the number of
search points evaluated until (and including) for the first time an optimal
solution of f is generated (and evaluated). In the notation of Algorithm 1, we
have TA(f) = 1 + inf{t | x(t) ∈ arg max f}. If the algorithm A is randomized
(which most black-box optimizers are), then the runtime T is a random
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variable and often only its expectation E[T ] is analyzed. For an optimization
problem, that is, a set F of problem instances f , the worst-case expected
optimization time supf∈F E[TA(f)] is an often regarded quality measure of
the algorithm A.

Most black-box algorithms for practical reasons do not exploit this scheme
to its full generality, that is, they do not store all information collected dur-
ing the process or they do not sequentially generate one search point after
the other based on all previous information, but instead generate in parallel
several search points based on the same set of information. For our analyzes,
we nevertheless assume that the search points are generated in some spec-
ified order and that each search point is evaluated immediately after being
generated.

Algorithm 1: Template of a black-box algorithm for optimizing an
unknown function f : {0, 1}n → R. Without explicit mention, we
assume that each search point x(t) is evaluated immediately after be-
ing generated. As runtime of such an (infinitely running) algorithm
we declare the number of search points evaluated until an optimum
of f is evaluated for the first time.

1 Generate a search point x(0) according to a given distribution D(0)

on {0, 1}n;
2 for t = 1, 2, 3, . . . do
3 Depending on f(x(0)), . . . , f(x(t−1)) and x(0), . . . , x(t−1), choose a

probability distribution D(t) on {0, 1}n ;
4 Sample x(t) from D(t);

2.2 Unbiasedness

Unless a specific understanding of the problem at hand suggests a different
approach, it is natural to look for optimization algorithms that are invariant
under the symmetries of the search space. This appears so natural that, in
fact, most algorithms have this property without that this has been discussed
in detail.

The first to explicitly discuss such invariance properties for the search
space {0, 1}n of bit strings (see, e.g., [TGM06] for such a discussion for con-
tinuous search spaces) were Lehre and Witt in their seminal paper [LW12].
They coined the name unbiased for algorithms respecting the symmetries of
the hypercube {0, 1}n. Such algorithms treat the bit positions i ∈ [1..n] in a
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symmetric fashion and, for each bit position, do not treat the value 0 differ-
ently from the value 1. It follows that all decisions of such algorithms may
not depend on the particular bit string representation of the search points
they have generated before. Rather, all decisions can only depend on the
fitnesses of the search points generated. This implies that all search points
the algorithm has access to can only be generated from previous ones via
unbiased variation operators. This observation also allows to rigorously de-
fine the arity of an algorithm as the maximum number of parents used to
generate offspring. Hence mutation-based algorithms have an arity of one
and crossover-based algorithms have an arity of two. We note that sampling
a random search point is an unbiased operator with arity zero.

Since these are important notions that also help to classify different kinds
of black-box algorithms, let us make them precise in the following.

Definition 1. A k-ary variation operator V is a function that assigns to
each k-tuple of bit strings in {0, 1}n a probability distribution on {0, 1}n. It
is called unbiased if

� ∀x1, . . . , xk ∈ {0, 1}n,∀y, z ∈ {0, 1}n,
Pr[y = V (x1, . . . , xk)] = Pr[y ⊕ z = V (x1 ⊕ z, . . . , xk ⊕ z)],

� ∀x1, . . . , xk ∈ {0, 1}n,∀y ∈ {0, 1}n,∀σ ∈ Sn,
Pr[y = V (x1, . . . , xk)] = Pr[σ(y) = V (σ(x1), . . . , σ(xk))],

where Sn represents the symmetric group on n letters and we write σ(x) =
(xσ(1), . . . , xσ(n)) for all σ ∈ Sn and x ∈ {0, 1}n.

By definition, a k-ary operator can simulate `-ary operators if ` ≤ k. It
is also immediate that the only 0-ary operator is the operator that generates
a search point in {0, 1}n uniformly at random. As a special case, 1-ary
unbiased variation operators are more often called unary unbiased variation
operators and sometimes referred to as mutation operators in the context of
evolutionary computation.

Unary unbiased variation operators admit a simple characterization,
namely that sampling from the unary unbiased operator is equivalent to sam-
pling a number k ∈ [0..n] from some distribution and then flipping exactly
k bits chosen uniformly at random. This is made precise in the following
lemma, which was proven in [DDY20, Lemma 1], but which can, in a more
general form, already be found in [DKLW13].

Lemma 2. Let D be a probability distribution on [0..n]. Let VD be the unary
variation operator which for each x ∈ {0, 1}n generates VD(x) by first sam-
pling a number k from D and then flipping k random bits in x. Then VD is
a unary unbiased variation operator.

8



Conversely, let V be a unary unbiased variation operator on {0, 1}n. Then
there is a probability distribution DV on [0..n] such that V = VDV .

Building on the notion of a k-ary unbiased variation operator, we can
now define what is a k-ary unbiased black-box algorithm (Algorithm 2). For
the reasons given at the beginning of this section, in this work we shall only
be interested in unbiased algorithms (possibly with unrestricted arity).

Algorithm 2: Template of a k-ary unbiased black-box algorithm
for optimizing an unknown function f : {0, 1}n → R.

1 Generate x(0) uniformly at random;
2 for t = 1, 2, 3, . . . do
3 Based solely on (f(x(0)), . . . , f(x(t−1))), choose a k-ary unbiased

variation operator V and i1, . . . , ik ∈ [0..t− 1];

4 Sample x(t) from V (x(i1), . . . , x(ik));

2.3 Black-Box Complexity

To understand the difficulty of a problem for black-box optimization algo-
rithms, inspired by classical complexity theory, Droste, Jansen, and We-
gener [DJW06] (preliminary version [DJTW02], see also [Doe20d] for a re-
cent survey) defined the black-box complexity of a problem F as the smallest
worst-case expected runtime a black-box algorithm A can have on F , that
is,

inf
A

sup
f∈F

E[TA(f)],

where A runs over all black-box algorithms in the infimum.
Just by definition, the black-box complexity is a universal lower bound

on the performance of any black-box algorithm. The result that black-box
complexity of the Needle problem is 2n−1 + 0.5 [DJW06, Theorem 1] im-
mediately implies that no hillclimber, evolutionary algorithm, ant colony
optimizer, etc. can solve the Needle problem in subexponential expected
time.

Conversely, the black-box complexity can also serve as a trigger to search
for better black-box algorithms. For example, in [DDE15] the observation
that the black-box complexity of the OneMax problem is only Θ(n/ log n)
[ER63, DJW06, AW09] (albeit witnessed by a highly artificial algorithm)
whereas most classic evolutionary algorithms have a Θ(n log n) runtime or
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worse, was taken as starting point to design a novel evolutionary algo-
rithm solving the OneMax problem in time asymptotically better than
n log n. This algorithm, called (1 + (λ, λ)) GA, has shown a good perfor-
mance both in experiments [GP14, MB17, BD17] and in other mathematical
analyses [BD17, DD18, ADK19, ADK20, ABD20a, ABD20b, AD20, ABD21].

In this work, as discussed in the introduction, we shall also use the black-
box complexity as a trigger towards more efficient solutions to black-box
optimization problems, however, not by suggesting new algorithms, but by
suggesting the general type of algorithm that might be most suited for the
problem and thus helping to choose the right algorithm among the many
existing black-box algorithms. Compared to triggering the design of new
algorithms, this might be the more effective road for people “merely” apply-
ing black-box algorithms. In fact, we shall argue that this road, despite the
theory-based notion of black-box complexity, is in fact not too difficult to
follow also for people without a background in algorithm theory.

2.4 The DLB Function and Known Runtimes

We now define the DLB function, which is the main object of our study and
was first introduced by Lehre and Nguyen in their recent work [LN19].

To define the DLB function, the n-bit string x is divided, in a left-to-
right fashion, into n

2
blocks of size of 2. The function value of x is determined

by the longest prefix of 11 blocks and the following block. The blocks with
two 1s in the prefix contribute each a value of 2 to the fitness. The DLB
function is deceptive in that the next block contributes a value of 1 when it
contains two 0s, but contributes only 0 when it contains one 1 and one 0.
The optimum is the bit string with all 1s.

Since there is an apparent similarity between the DLB function and the
classic LeadingOnes benchmark function, we first recall the definition of
the latter. The LeadingOnes function (which shall be abbreviated as LO
in what follows) is defined for all x ∈ {0, 1}n by LO(x) =

∑
r∈[1..n]

∏
s∈[1..r] xs.

The DLB function is defined on {0, 1}n only for n even. We therefore
assume in the following that n is even whenever this is required.

For all x ∈ {0, 1}n, we formally define the DLB function in the following
way. We consider blocks of the form (x2`+1, x2`+2). If x 6= (1, . . . , 1), then let
(x2m+1, x2m+2) be the first block that is not a 11 block, that is, m = inf{` |
x2`+1 6= 1 or x2`+2 6= 1}. We call such a block a critical block. Then the DLB
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function is defined via

DLB(x) =


2m+ 1 if x2m+1 + x2m+2 = 0,

2m if x2m+1 + x2m+2 = 1,

n if x = (1, . . . , 1).

In other words, the DLB function counts twice the number of consecutive
11 blocks until it reaches a critical block, which counts for 1 if it is of the
form 00 and counts for 0 if it is of the form 01 or 10. Hence the search points
x = (1, . . . , 1, 0, 0, x2`+1, . . . , xn) with ` ∈ [1..n

2
] and x2`+1, . . . , xn ∈ {0, 1} are

the local maxima of the DLB function. The unique global maximum of the
DLB function is x∗ = (1, . . . , 1).

Right from the definitions, we see that the functions DLB and LO are
very similar, indeed, we have |LO(x)−DLB(x)| ≤ 1 for all x ∈ {0, 1}n. The
main difference is that DLB has non-trivial local optima which could render
its optimization harder.

In a similar fashion we define the Honest Leading Blocks (HLB) function,
which will be used as potential function in some proofs using drift analysis.
The DLB function being deceptive and unable to discern a 01 critical block
from a 10 critical block, the HLB function also treats 01 and 10 critical
blocks equally, but is honest with the fact that 01 and 10 critical blocks are
better than a 00 critical block in the sense that such search points are closer
to the global maximum (1, . . . , 1). Formally speaking, the HLB function
with parameter δ ∈ (0, 2) is defined by

HLBδ(x) :=


2m if DLB(x) = 2m+ 1,
2m+ 2− δ if DLB(x) = 2m,
n if DLB(x) = n,

where m is an integer in {0, 1, . . . , n
2
− 1}.

We now review the most relevant known runtime results for this work.
Lehre and Nguyen [LN19] proved that, always assuming that the mutation
rate used by the algorithm is χ/n for a constant χ > 0, the expected runtime
of the (1 + λ) EA on the DLB problem is O(nλ+n3) and that the expected
runtime of the (µ + 1) EA on the DLB problem is O(µn log n + n3). They
also proved that the expected runtime of the (µ, λ) EA on the DLB function
is O(nλ log λ+n3) under the conditions that for an arbitrary constant δ > 0
and a constant c sufficiently large, we have λ > c log n and µ < λe−2χ

1+δ
.

Furthermore, they showed that, with a good choice of the parameters, genetic
algorithms using k-tournament selection, (µ, λ) selection, linear selection, or
exponential ranking selection, also have an O(nλ log λ+n3) expected runtime
on the DLB problem.
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From looking at the proofs in [LN19], it appears natural that all algo-
rithms given above have a runtime of at least Ω(n3) on the DLB problem,
but the only proven such result is that Doerr and Krejca [DK20b] showed
that the (1 + 1) EA with mutation rate 1/n solves the DLB problem in
Θ(n3) expected fitness evaluations. In Theorem 10, we extend this result to
all (1 + 1)-elitist unary unbiased black-box algorithms.

As opposed to these polynomial runtime results, Lehre and Nguyen
pointed out in [LN19] a potential weakness of the Univariate Marginal Distri-
bution Algorithms (UMDA). They proved that the UMDA selecting µ fittest
individuals from λ sampled individuals has an expected runtime of eΩ(µ)

on the DLB problem if µ
λ
≥ 14

1000
and c log n ≤ µ = o(n) for some suffi-

ciently large constant c > 0, and has expected runtime O(nλ log λ + n3)
if λ ≥ (1 + δ)eµ2 for any δ > 0. However, Doerr and Krejca [DK20b] pointed
out that this negative finding can be overcome with a different parameter
choice and that with a population size large enough to prevent genetic drift
[SW19, DZ20], the UMDA solves the DLB problem efficiently. To be precise,
they proved that the UMDA optimizes the DLB problem within probabil-
ity at least 1 − 9

n
within λ

(
n
2

+ 2e lnn
)

fitness evaluations if µ ≥ cµn lnn
and µ/λ ≤ cλ for some cµ, cλ sufficiently large or small, respectively.

Since the DLB function bears some similarity with the LeadingOnes
problem, it will be useful to compare the runtimes on these two prob-
lems. The LeadingOnes problem was proposed in [Rud97] as an exam-
ple of a unimodal problem which simple EAs cannot solve in O(n log n)
time. The correct asymptotic runtime of the (1 + 1) EA of order Θ(n2)
was determined in [DJW02]. The precise runtime of the (1 + 1) EA was
independently determined in [BDN10, Sud13]. Precise runtimes of vari-
ous other variants of the (1 + 1) EA were given in [Doe19a]. The runtime
of the (µ+ λ) EA with µ at most polynomial in n on LeadingOnes is
Θ(µn log n+ n2) [Wit06], the one of the (1 + λ) EA with λ at most polyno-
mial in n is Θ(λn+n2). For the (µ+ λ) EA, only a lower bound of Ω( λn

log(λ/n)
)

is known [BLS14, LS20]. The runtime of the (1 + (λ, λ)) GA with standard
parameterization p = λ/n and c = 1/λ is Θ(n2) regardless of the value of
λ ∈ [1..n/2] and this also with dynamic parameter choices [ADK19]. Conse-
quently, for a large number of elitist algorithms, the runtime is Θ(n2) when
suitble parameters are used. In [DL18], Doerr and Lengler have shown that
all (1 + 1)-elitist algorithms need Ω(n2) fitness evaluations in expectation to
solve the LeadingOnes problem. This result implies the lower bounds in
[DJW02, BDN10, Sud13, Doe19a] when ignoring constant factors.

For non-elitist algorithms, the picture is less clear. Upper bounds have
been shown for various algorithms, also some using crossover, when the se-
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lection pressure is high enough [Leh11, DL16, CDEL18, DK19], but none of
them beats the Ω(n2) barrier. When the selection pressure is small, many
non-elitist algorithm cannot optimize any function with unique optimum in
subexponential time [Leh10, Doe21].

Upper bounds were also shown for the runtime of the estimation-of-
distribution algorithms UMDA and PBIL in [DLN19, LN18] and for the
ant-colony optimizers 1-ANT and MMAS in [DNSW11, NSW09], but again
none could show a runtime better than quadratic in n.

A runtime better than quadratic, and in fact of order O(n log n) was
shown for the three non-classical algorithms CSA [MS17], scGA [FKK16],
and sig-cGA [DK20a]. The first two of these, however, are highly inefficient
on the OneMax benchmark and thus might be overfitted to the Leading-
Ones problem.

The unrestricted black-box complexity of the LeadingOnes class
is Θ(n log log n), as witnessed by a highly problem-specific algorithm
in [AAD+19].

2.5 Probabilistic Tools

We now collect two probabilistic tools used in the remainder of this work.
The additive drift theorem is commonly used to derive upper (resp. lower)
bounds on the expected runtime of an algorithm from lower (resp. upper)
bounds on the expected increase of a suitable potential. It first appeared in
the analysis of evolutionary algorithms in He and Yao’s work [HY01, HY04],
in which they implicitly used the optional stopping theorem for martingales.
The following version can be found in Lengler’s survey [Len20]. It was first
proven in Lengler and Steger’s work [LS18] via an approach different from
the one He and Yao used.

Theorem 3 ([Len20], Theorem 2.3.1). Let (ht)t≥0 be a sequence of non-
negative random variables taking values in a finite set S ⊆ [0, n] such that
n ∈ S. Let T := inf{t ≥ 0 | ht = n} be the first time when (ht)t≥0 takes the
value n. For all s ∈ S, let ∆t(s) := E[ht+1 − ht | ht = s]. Then the following
two assertions hold.

� If for some δ > 0 we have ∆t(s) ≥ δ for all s ∈ S \ {n} and all t, then
E[T ] ≤ E[n− h0]δ−1.

� If for some δ > 0 we have ∆t(s) ≤ δ for all s ∈ S \ {n} and all t, then
E[T ] ≥ E[n− h0]δ−1.

Chernoff-Hoeffding inequalities [Che52, Hoe63], often just called Cher-
noff bounds, are a standard tool in the analysis of random structures and
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algorithms. In this work we will use the following variance-based additive
Chernoff bound (see e.g. [Doe20c, Theorem 1.10.12]).

Theorem 4. (variance-based additive Chernoff inequality) Let X1, . . . , Xn

be independent random variables and suppose that for all i ∈ [1..n], we have
|Xi − E[Xi]| ≤ 1. Let X :=

∑n
i=1Xi and σ2 := Var[X] =

∑n
i=1 Var[Xi].

Then for all λ ∈ (0, σ2),

Pr[X ≥ E[X] + λ] ≤ e−
λ2

3σ2 and Pr[X ≤ E[X]− λ] ≤ e−
λ2

3σ2 .

3 From Elitist to Non-Elitist Algorithms

Previous works have shown that the expected runtime of the (1+1) EA on the
DLB problem is Θ(n3), see [LN19, Theorem 3.1] for the upper and [DK20c,
Theorem 4] for the lower bound (following from the precise computation of
the expected runtime there).

In this section, we extend this lower bound and show that any (1 + 1)-
elitist unary unbiased black-box algorithm has a runtime of at least Ω(n3).
This result will motivate us to study non-elitist (1+1)-type algorithms, which
will lead to the discovery that the Metropolis algorithm can solve the DLB
problem significantly faster.

3.1 Elitist Algorithms Suffer From the Fitness Valleys

3.1.1 (µ+ λ)-Elitist Black-Box Complexity

We start by making precise the elitist black-box complexity model we regard.
Since it might be useful in the future, we first define our model for general
(µ + λ)-elitism, even though our main result in this section only considers
(1 + 1)-elitist algorithms.

A (µ + λ)-elitist algorithm uses a parent population of size µ. In each
iteration, it generates from it λ offspring and determines the next parent pop-
ulation by choosing µ best individual from the µ + λ parents and offspring.
Hence the term “elitist” refers to the restriction that the next parent popu-
lation has to consist of µ best individuals. Ties can be broken arbitrarily, in
particular, in case of ties there is no need to prefer offspring.

We shall further only regard algorithms that are unbiased in the sense
of Lehre and Witt [LW12] (see Section 2.2). This in particular means that
the algorithm has never access to the bit string representation of individuals
(except from using unbiased variation operators and computing the fitness).
Consequently, all choices done by the algorithm such as choosing parents for
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the creation of offspring, choosing variation operators, and selecting the next
parent population can only rely on the fitnesses of the individuals created
so far. Finally, as variation operators we shall only allow unary (mutation)
operators (see Definition 1).

In summary, we obtain the (µ + λ)-elitist unary unbiased black-box al-
gorithm class described in Algorithm 3. It is similar to the (µ + λ)-elitist
model proposed in [DL17], but differs from it in that we do not require that
the algorithm only has access to a ranking of the search points and in that
we do require the algorithm to be unary unbiased. Nevertheless, to ease the
language, we shall in the remainder call our algorithms simply (µ+λ)-elitist
algorithms, that is, we suppress the explicit mention of the unary unbiased-
ness.

Algorithm 3: Template of a (µ + λ)-elitist unary unbiased black-
box algorithm, (µ+ λ)-elitist algorithm for short, for optimizing an
unknown function f : {0, 1}n → R.

1 Generate µ search points x(0,i), i ∈ [1..µ], independently and
uniformly at random;

2 X ← {x(0,i) | i ∈ [1..µ]};
3 for t = 1, 2, 3, . . . do
4 Choose λ individuals p1, . . . , pλ from X;
5 Choose λ unary unbiased operators V1, . . . , Vλ;
6 Sample q1, . . . , qλ from V1(p1), . . . , Vλ(pλ) respectively;
7 X ← a selection of µ best individuals from X ∪ {q1, . . . , qλ};

For a (µ+λ)-elitist algorithm A, we recall that the runtime TA(f) on the
maximization problem f is by definition the number of fitness evaluations
performed until a maximum of f is evaluated for the first time. The (µ+λ)-
elitist black-box complexity of the optimization problem of f is defined to
be

inf
A
E[TA(f)],

where A runs through all (µ+ λ) unary unbiased black-box algorithms (Al-
gorithm 3).

3.1.2 Independence of Irrelevant Bits

We start our analysis with a simple lemma showing that bit positions that
did not have an influence on any fitness evaluation are independently and
uniformly distributed. This lemma is similar to [LW12, Lemma 1].
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Lemma 5. Let f : {0, 1}n → R, c ∈ Im f , and I ⊂ [1..n]. Let Z = {z ∈
{0, 1}n | ∀i /∈ I : zi = 0}. Assume that for all y ∈ {0, 1}n with f(y) ≤ c, we
have f(y ⊕ z) = f(y) for all z ∈ Z.

Then for any (µ+λ)-elitist algorithm and any k ∈ [1..µ], conditioning on
the event

Et,c := { max
j∈[1..µ]

f(x(t,j)) = c},

the bits x
(t,k)
i , i ∈ I, are all independent and uniformly distributed in {0, 1}.1

Proof. We consider the joint distribution of the random variables
(x(s,j))s∈[0..t],j∈[1..µ] under the condition Et,c. By the hypothesis and the
mechanisms of (µ + λ)-elitist algorithms, (x(s,j))s∈[0..t],j∈[1..µ] and (x(s,j) ⊕
z)s∈[0..t],j∈[1..µ] are identically distributed for any z ∈ Z.

In particular, for any k ∈ [1..µ] and any z ∈ Z, x(t,k) and x(t,k) ⊕ z are
identically distributed. From this we deduce that for any x ∈ {0, 1}n,

Pr[x(t,k) = x] = 2−|I| Pr[x
(t,k)
|[1..n]\I = x|[1..n]\I ].

Therefore, under the condition {x(t,k)
i = xi,∀i ∈ [1..n] \ I} where xi, i ∈

[1..n] \ I, are prescribed bit values, the bits x
(t,k)
i , i ∈ I, are all independent

and uniformly distributed in {0, 1}, which implies the claim.

We apply the above lemma to the optimization of the DLB function.

Lemma 6. Let m ∈ [0..n
2
− 1]. For any (µ + λ)-elitist algorithm and any

k ∈ [1..µ], conditioning on the event{
max
j∈[1..µ]

DLB(x(t,j)) = 2m

}
,

or on the event {
max
j∈[1..µ]

DLB(x(t,j)) = 2m+ 1

}
,

the bits x
(t,k)
i , i = [2m + 3..n], are all independent and uniformly distributed

in {0, 1}.

Proof. It suffices to take c = 2m (c = 2m + 1 for the second case) and
I = [2m+ 3..n] in the preceding lemma.

1We use this language here and in the remainder to express that the bits xi, i ∈ i,
are mutually independent, independent of all other bits of x, and uniformly distributed in
{0, 1}.
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3.1.3 Runtime Analysis of (1 + 1) Elitist Unary Unbiased EAs

This section is devoted to proving that the (1+1)-elitist black-box complexity
of the DLB problem is Ω(n3). To this end we use drift analysis and take the
HLB function as potential.

We start with an estimate of the influence of the so-called free-riders, that
is, we estimate that the expected potential of a random string with 2m + 2
leading ones is at most 2m+ 4.

Lemma 7. Let m ∈ [0..n
2
− 1]. Let x be a random bit string such that xi = 1

for all i ∈ [1..2m+2] and such that the bits xi, i ∈ [2m+3..n] are independent
and uniformly distributed in {0, 1}. Then for any δ ∈ [0, 2] we have

E[HLBδ(x)] ≤ 2m+ 4.

Proof. The statement clearly holds for m = n
2
− 1 since in this case x =

(1, . . . , 1) and HLBδ((1, . . . , 1)) = n < n+ 2. Now we proceed by backwards
induction onm. Suppose that the conclusion holds for allm = k+1, . . . , n

2
−1.

For m = k we compute

E[HLBδ(x)]

= 1
4
(2k + 2) + 1

2
(2k + 4− δ) + 1

4
E[HLBδ(x) | x2k+3 = x2k+4 = 1].

The induction hypothesis can be applied to the last term, yielding

E[HLBδ(x)] ≤ 1
4
(2k + 2) + 1

2
(2k + 4− δ) + 1

4
(2k + 6) ≤ 2k + 4.

By induction, this proves the lemma.

We now estimate the expected progress in one iteration, first in the case
that the parent has an even DLB value (Lemma 8), then in the case that it
is a local optimum (Lemma 9).

Lemma 8. Let m ∈ [n
4
..n

2
− 1]. Let x be a random bit string such that

DLB(x) = 2m and that the bits xi, i ∈ [2m + 3..n] are independent and
uniformly distributed in {0, 1}. Let y be a random bit string generated
from x via a unary unbiased variation operator V . Let Y := (HLBδ(y) −
HLBδ(x))1DLB(y)≥DLB(x). Then we have

E[Y ] ≤ 2δ

n
.

Proof. Using Lemma 2, we can decompose the expectation by conditioning
on the value of rV :

E[Y ] =
n∑
r=1

E[Y | rV = r] Pr[rV = r]. (1)
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By symmetry we assume that x2m+1 = 1 and x2m+2 = 0. We use F2m+1

(F2m+2 resp.) to denote the event in which x2m+1 (x2m+2 resp.) is the only
bit that has been flipped among the first 2m+ 2 bits of x. We observe that
{Y < 0} = F2m+1 and {Y > 0} = F2m+2. It follows that

E[Y | rV = r]

= E[Y | rV = r, F2m+1] Pr[F2m+1 | rV = r]

+ E[Y | rV = r, F2m+2] Pr[F2m+2 | rV = r]

= (δ − 2) Pr[F2m+1 | rV = r]

+ E[HLBδ(y)− (2m+ 2− δ) | rV = r, F2m+2] Pr[F2m+2 | rV = r].

Conditioning on the event {rV = r} ∩ F2m+2, the random bit string y has
only 1s in its first 2m+2 bit positions and the other bits of y are independent
and uniformly distributed in {0, 1}. Lemma 7 thus gives that

E[HLBδ(y) | rV = r, F2m+2] ≤ 2m+ 4.

Therefore we have

E[Y | rV = r]

≤ (δ − 2) Pr[F2m+1 | rV = r] + (δ + 2) Pr[F2m+2 | rV = r]. (2)

Now we analyze the two probabilities

Pr[F2m+1 | rV = r] = Pr[F2m+2 | rV = r]

=

(
n− 2m− 2

r − 1

)(
n

r

)−1

=: Dr. (3)

We calculate for r − 1 ≤ n− 2m− 2 that

Dr+1

Dr

=

(
n−2m−2

r

)(
n
r+1

)−1(
n−2m−2
r−1

)(
n
r

)−1 =
(r + 1)(n− 2m− 1− r)

r(n− r)

=
n− 2m− 1− 2(m+ 1)r

r(n− r)
+ 1.

Since r ≥ 1 and m ≥ n
4
, we have

n− 2m− 1− 2(m+ 1)r ≤ n− 4m− 3 < 0.

This implies that Dr+1

Dr
< 1. Noting also that Dr = 0 for r > n− 2m− 2, we

see that Dr is decreasing in r. Consequently, we have

Dr ≤ D1 =
1

n
(4)
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for all r ≥ 1. Combining this with (2) and (3), we obtain

E[Y | rV = r] ≤ 2δDr ≤
2δ

n

for all r ≥ 1. Substituting this into (1), the conclusion follows.

Lemma 9. Let m ∈ [n
3
, n

2
− 1]. Let x be a random bit string such that

DLB(x) = 2m + 1 and that the bits xi, i ∈ [2m + 3..n], are independent
and uniformly distributed in {0, 1}. Let y be a random bit string generated
from x by a unary unbiased variation operator V . Let Y := (HLBδ(y) −
HLBδ(x))1DLB(y)≥DLB(x). Then we have

E[Y ] ≤ 16

n2
.

Proof. Since DLB(x) = 2m + 1, DLB(y) ≥ DLB(x) implies HLBδ(y) ≥
HLBδ(x). Thus Y is always non-negative and we can decompose E[Y ] into
a product of two terms

E[Y ] = E[HLBδ(y)−HLBδ(x) | Y > 0] Pr[Y > 0]. (5)

First we bound the term E[HLBδ(y) − HLBδ(x) | Y > 0]. Under the
condition Y > 0, we know that yi = 1 for i ∈ [1..2m + 2], while the yi,
i ∈ [2m + 3..n], are still independent and uniformly distributed in {0, 1}.
Lemma 7 then implies that E[HLBδ(y) | Y > 0] ≤ 2m+ 4, thus we have

E[HLBδ(y)−HLBδ(x) | Y > 0] ≤ 2m+ 4− 2m = 4. (6)

On the other hand, to bound Pr[Y > 0] = Pr[DLB(y) > DLB(x)] we invoke
Lemma 2 and compute

Pr[DLB(y) > DLB(x)]

=
n−2m∑
r=2

Pr[rV = r] Pr[DLB(y) > DLB(x) | rV = r]

=
n−2m∑
r=2

Pr[rV = r]

(
n− 2m− 2

r − 2

)(
n

r

)−1

≤ max
2≤r≤n−2m

(
n− 2m− 2

r − 2

)(
n

r

)−1

,

where r can be restricted to 2 ≤ r ≤ n−2m since otherwise Y would certainly

be zero. With Er :=
(
n−2m−2
r−2

)(
n
r

)−1
, we have

Er+1

Er
=

2(n−m− (m+ 1)r)

(r − 1)(n− r)
+ 1 < 1
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by our hypothesis n− 3m ≤ 0 and r ≥ 2. As in Lemma 8 we conclude that
Er is decreasing in r and

Pr[Y > 0]

= Pr[DLB(y) > DLB(x)] ≤ max
2≤r≤n−2m

Er = E2 =

(
n

2

)−1

≤ 4

n2
. (7)

Combining (5), (6) and (7), we obtain E[Y ] ≤ 16
n2 .

With the estimates on the change of the potential HLB above, we can now
easily prove the main result of this section. By taking δ = Θ( 1

n
) suitably, we

ensure that the expected gain of the potential in one iteration is only O( 1
n2 ),

at least in a sufficiently large range of the potential space. To have a small
progress in the whole search space, as necessary to apply the additive drift
theorem, we regard the potential ht = HLBδ(x

(t+S)), where S denotes the
first time that x(t) has an HLB value not less than 2n

3
. This potential also

has a drift of only O( 1
n2 ) and thus the additive drift theorem easily gives the

lower bound of Ω(n3).

Theorem 10. The (1 + 1)-elitist black-box complexity of the DLB problem
is Ω(n3).

Proof. Consider any (1+1)-elitist algorithm A. Let x(t) denote the individual
at time t. By a slight abuse of notation we write 2n

3
to denote the even

integer min{` ∈ 2N | ` ≥ 2n
3
}. First we observe that Pr

[
HLB(x(0)) ≥ 2n

3

]
=

Θ(2−
2
3
n). In the following we work under the condition C := {HLB(x(0)) <

2n
3
}. Under this condition, S := min{t ∈ N | HLB(x(t)) ≥ 2n

3
} is strictly

positive. Let T := min{t ∈ N | HLB(x(t)) ≥ n}+ 1 be the runtime of A. We
will use the additive drift theorem (Theorem 3) to prove E[T−S | C] = Ω(n3),
from which the claim follows via

E[T ] ≥ Pr[C]E[T | C] ≥ (1− o(1))E[T − S | C]. (8)

For a δ to be specified later, we regard the potential ht = HLBδ(x
(t+S)).

Note that because of the elitism of our algorithm, we have ht ≥ 2n
3

for all
t ≥ 0. Let m ∈ [n

3
..n

2
− 1].

Lemma 6 implies that when conditioning on the event {ht = 2m+2−δ} =

{DLB(x(t+S)) = 2m}, the bits x
(t+S)
i , i ∈ [2m + 3..n], are independent and

uniformly distributed in {0, 1}. Let y be a bit string obtained by applying a
unary unbiased variation operator to x(t+S). Lemma 8 then applies to y and
x(t+S), yielding

E
[
(HLBδ(y)−HLBδ(x

(t+S)))1DLB(y)≥DLB(x(t+S))

∣∣ C] ≤ 2δ

n
.
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Since the term on the left-hand side is the expected increase in the HLB
function during an iteration, we have in fact proven that ∆t(2m+ 2− δ) :=
E[ht+1 − ht | ht = 2m+ 2− δ, C] ≤ 2δ

n
for any t.

For the case {ht = 2m} we proceed in the same manner (except that we
use Lemma 9 instead of Lemma 8) to obtain ∆t(2m) ≤ 16

n2 for any t. By
setting δ to 8

n
, ∆t(s) ≤ 16

n2 holds for any possible ht value s.
Recall that 2n

3
denotes the smallest even integer not less than it. By

the definition of S and by Lemma 6, x(S) is a random bit string satisfying
x

(S)
i = 1 for i ∈ [1..2n

3
] and such that x

(S)
i , i ∈ [2n

3
+ 1..n], are independent

and uniformly distributed in {0, 1}. Thus we have E[h0] = E[HLBδ(x
(S))] =

2n
3

+ O(1) by virtue of Lemma 7. The additive drift theorem (Theorem 3)
then yields

E[T − S | C] ≥
n− 2n

3
−O(1)

16/n2
= Θ(n3),

which finishes the proof with (8).

3.2 The Unary Unbiased Black-box Complexity of the
DLB Problem is at Most Quadratic

In the preceding section we have seen that elitism does not ease optimizing
the DLB problem. This section, therefore, is devoted to investigating the
best possible expected runtime on the DLB problem without elitism. To be
more precise, we show that the unary unbiased black-box complexity of the
DLB problem is O(n2). This result will be complemented by a matching
lower bound (Theorem 17) in Section 3.5.

We recall the definition of a k-ary unbiased black-box algorithm (Algo-
rithm 2) from Section 2.2. The k-ary unbiased black-box complexity of a
problem is defined as the infimum expected runtime of a k-ary unbiased
black-box algorithm on this problem, that is,

inf
A
E[TA],

where A runs through all k-ary unbiased black-box algorithms.
Let V be the unary unbiased operator such that V (x) is obtained from

flipping one bit of x. Then the additive drift theorem implies that the (1+1)-
elitist black-box algorithm using V as variation operator has an expected
runtime of O(n2) on the LO problem. By a small adjustment of this (1 + 1)-
elitist black-box algorithm, we exhibit a simple unary unbiased black-box
algorithm that solves the DLB problem in expected time Θ(n2). This inspires
our investigation on the expected runtime of the Metropolis algorithm in
Section 3.3.
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Lemma 11. The unary unbiased black-box complexity of the DLB problem
is O(n2).

Proof. We present a simple algorithm and then show that its expected run-
time is indeed O(n2). Throughout the algorithm we only use the unary
unbiased operator V that flips exactly one randomly chosen bit.

The algorithm is initialized by generating a search point x(0) at random in
{0, 1}n. In generation t, we generate a bit string y = V (x(t)). If DLB(x(t))
is even and DLB(x(t)) < DLB(y) we accept y as new search point, i.e.,
x(t+1) := y. If DLB(x(t)) is odd and DLB(x(t)) < 2 + DLB(y), we also
accept y as new search point, i.e., x(t+1) := y. In all other cases, we reject y,
i.e., x(t+1) := x(t).

Now we show that this algorithm finds the optimum of the DLB problem
in time O(n2). We define the potential at time t as kt = HLB 3

2
(x(t)). In the

case where kt = 2m, that is, DLB(x(t)) is odd, we have a 00 critical block
and the probability that we flip one of its two zeros is 2

n
, yielding an expected

gain of at least 2
n
· 1

2
= 1

n
in the potential. In the case where kt = 2m + 1

2
,

that is, DLB(x(t)) is even, the critical block contains exactly one zero and
one one. If the bit with value 0 is flipped, we increase the potential from
2m + 1

2
to at least 2(m + 1). If the bit with value 1 is flipped, we reduce

the potential from 2m + 1
2

to 2m. All other bit-flips are not accepted or do
not change the potential. Consequently, the expected gain in potential is at
least 1

n
(2(m + 1)− (2m + 1

2
)) + 1

n
(2m− (2m + 1

2
)) = 1

n
. Since the potential

needs to be increased by at most n, the additive drift theorem (Theorem
3) establishes n

1/n
= n2 as an upper bound for the expected runtime of this

algorithm on the DLB function.

We remark that the artificial algorithm defined in the proof is a (1 + 1)-
type unbiased algorithm, therefore we have the following stronger result.

Theorem 12. The (1 + 1)-type unbiased black-box complexity of the DLB
problem is O(n2).

3.3 The Metropolis Algorithm Performs Well on the
DLB Problem

Inspired by the analysis in the preceding sections, we expect that certain
non-elitist (1 + 1)-type unbiased search heuristics outperform elitist EAs on
the DLB problem. In fact, we will prove now that the Metropolis algorithm
(simulated annealing with a fixed temperature) can solve the DLB problem
within Θ(n2) fitness evaluations in expectation. This performance coincides
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with the unary unbiased black-box complexity of the DLB function (Theorem
17).

The Metropolis algorithm is a simple single-trajectory optimization
heuristic. In contrast to elitist algorithms like randomized local search or the
(1 + 1) EA, it can accept inferior solutions, however only with a small prob-
ability that depends on the degree of inferiority and an algorithm parameter
α ∈ (1,∞).

More precisely, the maximization version of the Metropolis algorithm
works as follows. It starts with a random initial solution x(0). In each it-
eration t = 1, 2, . . . , it generates a random neighbor y of the current search
point x(t−1). When working with a bit string representation (as in this work),
such a neighbor is obtained from flipping in x(t−1) a single bit chosen uni-
formly at random. If f(y) ≥ f(x(t−1)), then the algorithm surely accepts y
as new search point x(t) := y. If y is inferior to x(t−1), it accepts y (x(t) := y)

only with probability αf(y)−f(x(t−1)) and otherwise rejects it (x(t) := x(t−1)).

We note that the probability αf(y)−f(x(t−1)) for accepting an inferior solution
is often written as exp((f(y)−f(x(t−1)))/kT ) for a “temperature parameter”
kT , but clearly the two formulations are equivalent. The pseudocode for this
algorithm is given in Algorithm 4.

Algorithm 4: Metropolis algorithm for maximizing a function f :
{0, 1}n → R
1 Generate a search point x(0) uniformly in {0, 1}n;
2 for t = 1, 2, 3, . . . do
3 Choose i ∈ [1..n] uniformly at random and obtain y from flipping

the i-th bit in x(t−1);
4 if f(y) ≥ f(x(t−1)) then
5 x(t) ← y;
6 else

7 Choose b ∈ {0, 1} randomly with Pr[b = 1] = αf(y)−f(x(t−1));
8 if b = 1 then
9 x(t) ← y;

10 else
11 x(t) ← x(t−1);

Now we show that the Metropolis algorithm with sufficiently large
parameter α can solve the DLB problem in time quadratic in n. To this
end, we show the following elementary lemma.
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Lemma 13. For all α >
√

2 + 1,

C(α) :=
2

α

(
1

2
− 2

∞∑
k=1

kα−2k

)

is strictly positive.

Proof. We observe that

α−2

∞∑
k=1

kα−2k =
∞∑
k=1

kα−2(k+1) =
∞∑
k=2

(k − 1)α−2k.

Subtracting
∑∞

k=1 kα
−2k from both sides of the equation yields

(α−2 − 1)
∞∑
k=1

kα−2k =
∞∑
k=2

−α−2k − α−2 = −
∞∑
k=1

α−2k = − α−2

1− α−2
,

which implies
∞∑
k=1

kα−2k =
α−2

(1− α−2)2
=

α2

(α2 − 1)2
.

Hence we have

C(α) =
2

α

(
1

2
− 2

α2

(α2 − 1)2

)
=
α4 − 6α2 + 1

α(α2 − 1)2
.

For all α >
√

2+1, we have α4−6α2 +1 > 0, which implies C(α) > 0.

We now show the main result of this section that the Metropolis algorithm
can optimize the DLB function in quadratic time if the selection pressure is
sufficiently high, that is, α is a large enough constant.

Theorem 14. The expected runtime of the Metropolis algorithm on the DLB
problem is at most n2

C(α)
, provided that the parameter α satisfies α >

√
2 + 1.

To prove this result, we need to argue that the negative effect of accept-
ing solutions further away from the optimum is outweighed by the positive
effect that a critical 00-block can be changed into a critical block 01 or 10
despite the fact that this decreases the DLB value. To achieve this, we de-
sign a suitable potential function, namely the HLB function introduced in
Section 2.4 with parameter δ = 3

2
and show that each iteration (starting with

a non-optimal search point) in expectation increases this potential by Ω( 1
n
).

With this insight, the additive drift theorem immediately gives the claim.
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Proof of Theorem 14. We denote by x(t) the search point obtained at the end
of iteration t. To apply drift analysis we take HLB 3

2
as potential and abbre-

viate HLB 3
2
(x(t)) by ht. Recalling that the Metropolis algorithm generates

each Hamming neighbor y of x(t−1) with equal probability 1
n
, but accepts this

only with probability αmin{0,f(y)−f(x(t−1))}, we compute for each m ∈ [0..n
2
−1]

that

E
[
ht − ht−1

∣∣∣ht−1 = 2m+
1

2

]
≥ 1

n

(
2m+ 2−

(
2m+

1

2

))
+

1

n

(
2m−

(
2m+

1

2

))
+

m−1∑
k=0

2

n
α2k−2m

(
2k +

1

2
−
(

2m+
1

2

))

=
1

n
+

2

n

m∑
k=1

α−2k(−2k) =
2

n

(
1

2
− 2

m∑
k=1

kα−2k

)

and

E[ht − ht−1 | ht−1 = 2m]

≥ 2

n

1

α

(
2m+

1

2
− 2m

)
+

m−1∑
k=0

2

n
α2k−2m−1

(
2k +

1

2
− 2m

)

=
2

nα

1

2
+

m∑
k=1

2

nα
α−2k

(
1

2
− 2k

)
>

2

nα

(
1

2
− 2

m∑
k=1

kα−2k

)
.

We have shown in Lemma 13 that 1
2
− 2

∑∞
k=1 kα

−2k > 0 for all α >
√

2 + 1.
Thus for any s 6= n,

E[ht − ht−1 | ht−1 = s]

≥ 2

nα

(
1

2
− 2

m∑
k=1

kα−2k

)
≥ 2

nα

(
1

2
− 2

∞∑
k=1

kα−2k

)
=
C(α)

n
.

The additive drift theorem (Theorem 3) now implies that the expected run-
time of Metropolis algorithm on the DLB problem is bounded by

n

C(α)/n
=

n2

C(α)
,

which concludes the proof.
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3.4 Literature Review on the Metropolis Algorithm
and Non-Elitist Evolutionary Algorithms

To put our results on the Metropolis algorithm into context, we now briefly
survey the known runtime results on this algorithm and non-elitist evolution-
ary algorithms, which are surprisingly few compared to the state of the art
for elitist search heuristics.

3.4.1 Metropolis Algorithm

We first note that the Metropolis algorithm is a special case of simulated
annealing, which can be described as the Metropolis algorithm using a tem-
perature that is decreasing over time, that is, the parameter α increases over
time in the language of Algorithm 4. We refer to [DT12] for a survey of the
main applied results and restrict ourselves to the known theory results. Here
the survey of Jansen [Jan11], even though from 2011, still is a good source
of information.

Already in 1988, Sasaki and Hajek [SH88] showed that the Metropolis
algorithm (and also its generalization simulated annealing) has an at least
exponential worst-case runtime on the maximum matching problem. On the
positive side, the Metropolis algorithm with constant temperature (constant
α) can compute good approximate solutions. Analogous results, however,
have also been shown for the (1 + 1) EA by Giel and Wegener [GW03]. Jer-
rum and Sorkin [JS98] showed that the Metropolis algorithm can solve the
minimum bisection problem in quadratic time in random instances in the
planted bisection model. Wegener [Weg05] provided a simple instance of
the minimum spanning tree problem, which can be solved very efficiently
by simulated annealing with a natural cooling schedule, but for which the
Metropolis algorithm with any temperature needs an exponential time to
find the optimum. A similar result for the traveling salesman problem was
given by Meer [Mee07].

Jansen and Wegener [JW07] proved that the Metropolis algorithm with
α ≥ εn, that is, with a very small temperature in the classic language, opti-
mizes the OneMax benchmark in time O(n log n), a runtime also known for
many simple evolutionary algorithms [Müh92, JJW05, Wit06, AD21]. They
further show that this runtime is polynomial if and only if α = Ω(n/ log n).
Consequently, in the classic language, only for very small temperatures (that
is, with very low probabilities of accepting an inferior solution) the Metropo-
lis algorithm is efficient on the OneMax benchmark. An extension of this
characterization to arbitrary symmetric functions (that is, functions f that
can be written as f(x) = g(OneMax(x)) for some g : R → R) was given
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in [KWW09]. While it is interesting that such a characterization could be
obtained, the characerization itself remains hard to interpret. Jansen and
Wegener [JW07] further designed several example problems showing different
or similar runtimes of the Metropolis algorithm and the (1 + 1) EA, among
them one that can be solved by the Metropolis algorithm with α = n, that
is, again a very small temperature, in polynomial expected time, whereas
the (1 + 1) EA needs time nΩ(log logn), and one for which the Metropolis al-
gorithm with any parameter setting has an expected runtime of Ω(20.275n),
whereas the (1 + 1) EA has an expected runtime of only Θ(n2).

In their work on the Metropolis algorithm and the Strong Selection
Weak Mutation (SSWM) algorithm, Oliveto, Paixão, Heredia, Sudholt, and
Trubenová [OPH+18] proposed the Valley problem, which contains a fit-
ness valley with descending slope of length `1 and depth d1 and ascending
slope of length `2 and height d2. This valley is constructed onto a long
path function, making this essentially a one-dimensional optimization prob-
lem (despite being defined on {0, 1}n). They proved rigorously that the
Metropolis algorithm takes an expected number of nαΘ(d1) + Θ(n`2) func-
tion evaluations to cross this valley of low fitness when α (in the notation
of Algorithm 4, note that the α used in [OPH+18] has a different meaning)
is at least α ≥ exp(cmax{`1/d1, `2/d2}) for a sufficiently large constant c.
A similar result holds for the SSWM algorithm. Since the (1 + 1) EA needs
time Ω(n`1) to cross the valley, here the Metropolis and SSWM algorithm
are clearly superior.

In their time complexity analysis of the move acceptance hyper-heuristic
(MAHH), Lissovoi, Oliveto, and Warwicker [LOW19] also consider the
Metropolis algorithm. For the multimodal Cliff benchmark with constant
cliff length d, they show that the Metropolis algorithm needs at least an
expected number of Ω̃(nd−0.5) iterations to find the optimum, which is at
most a little faster than the Θ(nd) runtime of simple mutation-based algo-
rithms, but is much worse than the O(n log n) performance of a self-adjusting
(1, λ) EA [FS21], the O(n3) runtime of the MAHH [LOW19], the O(n3 log n)
runtime of two self-adjusting fast artificial immune systems [COY21], and
the O(n3.9767) runtime of the (1, λ) EA with the best static choice of λ [FS21]
(improving the well-known O(n25) runtime guarantee [JS07]). For the multi-
modal Jump benchmark, the Metropolis algorithm is said [LOW19] to have
a runtime exponential in n with high probability regardless of the jump size
m when the temperature is sufficiently small that the local optimum of the
jump function is reached efficiently. This compares unfavorably with the
known runtimes of many algorithms, which are all Θ(nm) or better, see,
e.g., [DJW02, DFK+16, DFK+18, DLMN17, HS18, Doe19b, Doe20a, RW20,
ABD21].
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In summary, we would not say that these results give a strong recommen-
dation for using the Metropolis algorithm to optimize pseudo-Boolean func-
tions. It excels on the Valley problem proposed in [OPH+18], however, this
problem is essentially a one-dimensional problem and thus of a very different
structure than most pseudo-Boolean problems. The possible Õ(n0.5) runtime
advantage over simple EAs on the Cliff problem is interesting (if it exists,
only a lower bound was shown in [LOW19]), but appears still small when
recalling that the runtime of the simple EAs is Θ(nd). Hence maybe most
convincing result favoring the Metropolis algorithm is the quadratic runtime
shown [JS98] for the random bipartition instances. Here, however, one also
has to recall that random instances of NP -complete problems can by surpris-
ingly easy. For example, the (1 + 1) EA can solve random 3-SAT instances
in the planted solution model in time O(n log n) when the clause density is at
least logarithmic [DNS17]. These mildly positive results on the Metropolis
algorithm have to be contrasted with several negative results, e.g., the expo-
nential runtimes shown in [SH88, Weg05, Mee07]. Also, the parameter choice
seems to be non-trivial. Whereas the best results in [OPH+18] are obtained
by small values of α, recall that the runtime shown there is at least nαΩ(d1)

and the simple OneMax benchmark can only be optimized in polynomial
time when α is as large as Ω(n log n).

3.4.2 Non-Elitist Evolutionary Algorithms

The strategy to not stick with the best-so-far solution to enable the algorithm
to leave a local optimum is also well-known in evolutionary computation.
However, also there the rigorous support for such non-elitist algorithms is
rather weak.

There is a fairly elaborate methodology to prove upper bounds on the
runtime of non-elitist algorithms [Leh11, DL16, CDEL18, DK19], however,
these tools so far could mostly be applied to settings where the evolutionary
algorithm loses the best-so-far solution so rarely that it roughly imitates
an elitist algorithm. A few analyses of particular algorithms point into a
similar direction [JS07, RS14]. The existing general lower bound methods
for non-elitist algorithms [Leh10, Doe21] in many cases allowed to prove that
with just a little more non-elitism, the algorithm has no chance to optimize
efficiently any pseudo-Boolean function with unique optimum.

As a concrete example, the standard (µ, λ) EA using mutation rate 1
n

cannot optimize any pseudo-Boolean function with unique optimum in sub-
exponential time if λ ≤ (1 − ε)eµ, ε > 0 any constant. However, when
λ ≥ (1 + ε)eµ and λ = ω(log n), then the (µ, λ) EA optimizes OneMax
and Jump functions with constant jump size in essentially the same run-
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time as the (µ+ λ) EA. This suggests that there is at most a very small
regime in which non-elitism can be successfully exploited. Such a small
middle regime was shown to exist when optimizing Cliff functions via the
(1, λ) EA. More specifically, Jägersküpper and Storch [JS07] showed that the
(1, λ) EA with λ ≥ 5 lnn optimizes the Cliff function with cliff length n/3
in time exp(5λ) ≥ n25, whereas elitist mutation-based algorithms easily get
stuck in the local optimum and then need at least nn/3 expected time to op-
timize this Cliff function. This result was very recently improved and run-
time of O(n3.9767) was shown for the asymptotically best choice of λ [FS21].
For the (µ, λ) EA optimizing jump functions, however, the existence of a
profitable middle regime was disproven in [Doe20a]. Some more results exist
that show situations where only an inefficient regime exists, e.g., when us-
ing (1+1)-type hillclimbers with fitness-proportionate selection to optimize
linear pseudo-Boolean functions [HJKN08] or when using a mutation-only
variant of the simple genetic algorithm to optimize OneMax [NOW09]. For
the true simple genetic algorithm, such a result exists only when the pop-
ulation size is at most µ ≤ n1/4−ε, but there is no proof that the situation
improves with larger population size.

The few results showing that non-elitism can help to leave local optima
include, besides the examples for the Metropolis algorithm discussed in Sec-
tion 3.4.1 (see the last paragraph of that section for a summary) and the
two “small middle regime” results discussed in the previous paragraph, the
following. Dang, Eremeev, and Lehre [DEL21a] showed that a non-elitist
EA with 3-tournament selection, population size λ ≥ c log n for c a posi-
tive constant, and bitwise mutation with rate χ/n, χ = 1.09812, can reach
the optimum of the multi-modal Funnel problem with parameter ω ≤ 3

4
n

in expected time O(nλ log λ + n2 log n), whereas the (µ+ λ) EA and the
(µ, λ) EA cannot reach the optimum in time 2c

′n, c′ > 0 a suitable con-
stant, with overwhelming probability. In [DEL21b], the same authors de-
fined a class of functions having an exponential elitist (µ + λ) black-box
complexity which can be solved in polynomial time by several non-elitist al-
gorithms. Fajardo and Sudholt [FS21] showed that a self-adjusting variant
of the (1, λ) EA can optimize Cliff functions in time O(n log n). Zheng,
Zhang, Chen, and Yao [ZZCY21] proved that the (1, λ) EA with offspring
population size λ = c log e

e−1
n for the constant c ≥ 1 can reach the global op-

timum of the time-linkage OneMax function in expected time O(n3+c log n),

while the (1 + λ) EA with λ ∈ [ee, en
1/3

] (as well as the (1 + 1) EA analyzed
in [ZCY21]) with 1 − o(1) probability cannot reach the global optimum in
arbitrary long time.
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More results exist for non-classical algorithms. In [PHST17], the strong-
selection weak-mutation process from biology is regarded under an algorith-
mic perspective. It is shown that when setting the two parameters of this
algorithm right, then it optimizes the Cliffd function, d = ω(log n), in time
(n/Ω(1))d, which is faster than the (1 + 1) EA by a factor of exp(Ω(d)).
It also optimizes the slightly artificial Balance function with high prob-
ability in time O(n2.5), whereas the (1 + 1) EA takes weakly exponential
time. In [LOW19], a runtime analysis of the move-acceptance hyper-heuristic
(MAHH) is performed. This can be seen as a variant of the Metropolis algo-
rithm, where the probability of accepting an inferior solution is an algorithm
parameter independent of the degree of inferiority. If this probability is
chosen sufficiently small, then the MAHH optimizes all Cliff functions in
time O(n3), significantly beating all other results on this function class. For
the Jumpk function, however, only a runtime guarantee of O(n2k−1/k) was
proven. We note that aging as used in artificial immune systems can also
lead to non-elitism and has been shown to speed-up leaving local optima,
see, e.g., [OS14, COY20, COY21]. Since the concept of aging has not found
many applications in heuristic search outside the small area of artificial im-
mune systems used as optimizers, we omit a detailed discussion. Finally, we
note that restarts obviously lead to algorithms that can be called non-elitist.
We also discuss these not further since we view them, similar as parallel run
or racing techniques, rather as mechanisms to be added to basic optimiza-
tion heuristics. Overall, these examples prove that non-elitism can be helpful,
but from their sparsity in the large amount of research on randomized search
heuristics, their specificity, and their sometimes still high runtimes, we would
not interpret them as strong indication for trying non-elitist approaches early.

3.5 A Lower Bound for the Unary Unbiased Black-Box
Complexity

In this section we will show that the expected runtime of any unary unbiased
black-box algorithm on the DLB problem is Ω(n2), which together with
the upper bound of Section 3.2 proves that the unary unbiased black-box
complexity of the DLB problem is Θ(n2). This result is very natural given
that Lehre and Witt [LW12] have proven the same lower bound for the unary
unbiased black-box complexity of the LO problem, which appears rather
easier than the DLB problem.

To this end, we first prove the following lemma, which affirms that for a
search point in a certain range of LO values, the probability of obtaining a
search point with better fitness after one step is O( 1

n
).
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Lemma 15. Suppose that n is an even integer and that m is an integer such
that n

4
< m < n

3
. Let x be a bit string and let ` := |{j ∈ [1..2m+ 2] | xj = 1|

designate the number of ones in the leading 2m + 2 bit positions of x. We
suppose that 1 ≤ ` ≤ 2m + 1. Then for any unary unbiased operator V , we
have Pr[LO(V (x)) ≥ 2m+ 2] ≤ 2

n
.

Proof. We assume that for some r ∈ [0..n], V is the unary unbiased operator
that flips r bit positions chosen uniformly at random from the bit string.
The conclusion for the general case then follows by applying the law of total
probability and Lemma 2.

We furthermore assume that 2 + 2m − ` ≤ r ≤ n − ` since otherwise
the claim is trivial. Indeed, r < 2 + 2m − ` implies r + ` < 2m + 2. Since
r + ` is an upper bound on the number of ones V (x) has in the first 2m+ 2
positions, we obtain LO(V (x)) < 2m + 2 with probability 1. If r > n − `,
then at least one of the bits xj = 1, j ∈ [1..2m+ 2], is flipped, also resulting
in LO(V (x)) < 2m+ 2.

The event {LO(V (x)) ≥ 2m + 2} happens if and only if all bits xj such
that xj = 1 and j ∈ [1..2m + 2], are not flipped, and all bits xj = 0,
j ∈ [1..2m + 2], are flipped. Among all

(
n
r

)
ways of flipping r bit positions

in x, exactly
(

n−2m−2
r−(2m+2−`)

)
of them flip all the 0s in the leading 2m + 2 bit

positions and leave all the 1s in the leading 2m+ 2 bit positions unchanged.
Hence the probability D`(r) of the event {LO(V (x)) ≥ 2m+ 2} is given by

D`(r) =

(
n−2m−2

r−(2m+2−`)

)(
n
r

) =
(n− r) · · · (n− r − `+ 1) · r · · · (r − 2m+ `− 1)

n · · · (n− 2m− 1)
.

From our assumptions, with the variables n, m and r fixed, we have

` ∈ [max{1, 2m+ 2− r}..min{2m+ 1, n− r}]. (9)

For ` ∈ [max{1, 2m+ 2− r}..min{2m,n− r − 1}], we compute

D`+1(r)

D`(r)
=

2(n
2

+m− `− r) + 1

r − 2m+ `− 1
+ 1. (10)

We conclude that D`+1(r) > D`(r) (D`+1(r) < D`(r) resp.) is equivalent to
n
2

+m ≥ `+ r (n
2

+m < `+ r resp.). To proceed we distinguish three cases
regarding the value of r.

Case r ∈ [1..n
2
−m− 1].

Since ` ≤ 2m+ 1 (equation (9)), we have `+ r ≤ 2m+ 1 + n
2
−m− 1 =

n
2

+ m, which implies D`+1(r)

D`(r)
> 1 for all ` ∈ [1..2m + 1]. It follows that

D`(r) ≤ D2m+1(r) for all ` ≤ 2m+ 1.
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Case r ∈ [n
2
−m..n

2
+m].

In this case D`+1(r)

D`(r)
> 1 for ` ≤ n

2
+m−r and D`+1(r)

D`(r)
< 1 for ` > n

2
+m−r,

from which we conclude D`(r) ≤ Dn
2

+m−r+1(r).
Case r ∈ [n

2
+m+ 1..n− 1].

In this case ` + r > r > n
2

+ m, therefore D`+1(r) < D`(r). Since ` is at
least 1, we have D`(r) ≤ D1(r).

In short, we have established that

D`(r) ≤


D2m+1(r), r ∈ [1..n

2
−m− 1],

Dn
2

+m−r+1(r), r ∈ [n
2
−m..n

2
+m],

D1(r), r ∈ [n
2

+m+ 1..n− 1].

By the definition of D`(r), we have

D2m+1(r) =

(
n− 2m− 2

r − 1

)(
n

r

)−1

,

Dn
2

+m−r+1(r) =
(n− r) · · · (n

2
−m) · r · · · (n

2
−m)

n · · · (n− 2m− 1)
,

D1(r) =
(n− r) · r(r − 1) · · · (r − 2m)

n · · · (n− 2m− 1)
.

We observe that D2m+1(r) is in fact the Dr that appeared in (3) of Lemma 8.
Since we have proven Dr ≤ 1

n
for r ≥ 1 in (4) of Lemma 8, the same estimate

holds for D2m+1(r), i.e., D2m+1(r) ≤ 1
n

for r ≥ 1.
For D1(r), r ∈ [n

2
+m..n− 1], a straightforward calculation shows

D1(r + 1)

D1(r)
=

2mn+ n− 1− (2m+ 2)r

(r − 2m)(n− r)
+ 1.

Thus D1(r) < D1(r + 1) when r < r∗ := 2mn+n−1
2m+2

and D1(r) > D1(r + 1)
when r > r∗. This implies

D1(r) ≤ D1(dr∗e) =
n− dr∗e

n

dr∗e
n− 1

· · · dr
∗e − 2m

n− 2m− 1

<
n− r∗

n
=

1

2m+ 2

(
1 +

1

n

)
≤ 1

n
2

+ 2

(
1 +

1

n

)
≤ 2

n
,

where in the second last inequality we used the hypothesis m > n
4
.

For Dn
2

+m−r+1(r), r ∈ [n
2
−m..n

2
+m], we have

Dn
2

+m−r(r + 1)

Dn
2

+m−r+1(r)
=

2r − n+ 1

n− r
+ 1.
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Hence Dn
2

+m−r+1(r) decreases with respect to r when n
2
−m ≤ r ≤ n

2
−1 and

increases when n
2
≤ r ≤ n

2
+m. Therefore we have for r ∈ [n

2
−m..n

2
+m]

Dn
2

+m−r+1(r) ≤ max
{
D2m+1

(
n
2
−m

)
, D1

(
n
2

+m
)}
.

Since it has already been shown that both D2m+1(r), r ≥ 1, and D1(r),
r ∈ [n

2
+m..n−1], are bounded by 2

n
, the same bound holds for Dn

2
+m−r+1(r),

r ∈ [n
2
−m..n

2
+m]. We thus conclude

Pr[LO(V (x)) ≥ 2m+ 2] = D`(r) ≤ 2
n
.

Let 1 denote (1, . . . , 1) ∈ {0, 1}n. Following the standard notation, we
write die2 := {k ∈ 2Z | k ≥ i} for all i ∈ R. In the next lemma we will give
a lower bound of Ω(n2) on the unary unbiased black-box complexity of the
DLB problem by considering the potential

ht = min

{
2
⌈n

3

⌉
, max
s∈[0..t]

{⌈
n+ 1

2

⌉
2

,HLB2(x(s)),HLB2(1− x(s))

}}
, (11)

that is, the maximum of the HLB2 value of x(s), s ∈ [0..t], and the HLB2

value of 1 − x(s), s ∈ [0..t], capped into the interval
[⌈

n+1
2

⌉
2
, 2
⌈
n
3

⌉]
. The

preceding lemma enables us to show that for any unary unbiased black-box
algorithm, the expected gain in potential (11) at each iteration is O( 1

n
). The

additive drift theorem will then imply the Ω(n2) lower bound.

Lemma 16. The unary unbiased black-box complexity of the DLB problem
is Ω(n2).

Proof. Consider any unary unbiased black-box algorithm, let x(t) be the
search point at time t. Let T := min{t ∈ N | max{HLB2(x(t)),HLB2(1 −
x(t))} ≥ 2

⌈
n
3

⌉
} be the first time the HLB2 value of a search point or its com-

plement is at least 2
⌈
n
3

⌉
. We will use the additive drift theorem (Theorem

3) to prove E[T ] = Ω(n2), from which the claim follows since T is a trivial
lower bound for the runtime.

Let t < T and let Cm be the event {ht = 2m} for m ∈ [1
2

⌈
n+1

2

⌉
2
..
⌈
n
3

⌉
− 1].

By definition of ht and T , one of the events Cm holds. We now estimate
E[ht+1−ht | Cm]. Let x(s), s ∈ [0..t], be the individual chosen in iteration t+1
to generate x(t+1) (see line 4 of Algorithm 2, note that here we have k = 1).

Let ` := |{i ∈ [1..2m+2] | x(s)
i = 1}| be the number of the ones in the leading

2m+2 bit positions of x(s). Then 1 ≤ ` ≤ 2m+1 because otherwise ht would
be not less than 2m+ 2.
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If ht+1 > ht, then either x(t+1) has no less than 2m+ 2 leading ones or it
has no less than 2m+ 2 leading zeros, i.e.

{ht+1 > ht} ∩ Cm
=
(
{HLB2(x(t+1)) > 2m} ∩ Cm

)
∪̇
(
{HLB2(1− x(t+1)) > 2m} ∩ Cm

)
.

Lemma 15 shows that the first scenario happens with probability at most 2
n
,

that is,
Pr[HLB2(x(t+1)) > 2m | Cm] ≤ 2

n
.

We recall that x(t+1) is obtained from some x(s), s ∈ [0..t], via a unary

unbiased operator. By Lemma 5, x
(s)
i , i ∈ [2m + 3..n], are all independent

and uniformly distributed in {0, 1} because of the condition Cm = {ht = 2m}.
If we condition further on the event {HLB2(x(t+1)) > 2m} ∩ Cm, then x

(t+1)
i ,

i ∈ [2m + 3..n], are all independent and uniformly distributed in {0, 1} and

x
(t+1)
i = 1 for i ∈ [1..2m + 2]. Hence Lemma 7 can be applied to x(t+1),

yielding

E[ht+1 − ht | HLB2(x(t+1)) > 2m, Cm]

≤ E[HLB2(x(t+1))− 2m | HLB2(x(t+1)) > 2m, Cm]

≤ 2m+ 4− 2m = 4.

For the second scenario, we consider 1 − x(s) and 1 − x(t+1) instead of x(s)

and x(t+1) to obtain

Pr[HLB2(1− x(t+1)) > 2m | Cm] ≤ 2
n

and
E[ht+1 − ht | HLB2(1− x(t+1)) > 2m, Cm] ≤ 4.

Combining the two scenarios, we have

E[ht+1 − ht | Cm] = Pr[ht+1 > ht | Cm]E[ht+1 − ht | ht+1 > ht, Cm]

≤ 2 · 2
n
· 4 = 16

n
.

Now we examine the expected initial value of the potential. First we ob-
serve that Pr

[
max{HLB2(x(0)),HLB2(1− x(0))} ≥ n

2

]
= O(2−

n
2 ) since x(0)

is generated uniformly at random in {0, 1}n. Thus

E[h0] ≤
⌈
n+ 1

2

⌉
2

+O(n2−
n
2 ) =

n

2
+O(1).

The additive drift theorem (Theorem 3) thus implies

E[T ] ≥ 2n/3− n/2−O(1)

16/n
= Θ(n2).
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Combining Lemma 11 with Lemma 16, we have proven the following
theorem.

Theorem 17. The unary unbiased black-box complexity of the DLB problem
is Θ(n2).

4 Beyond Unary Unbiased Algorithms

We recall that in this work we are generally looking for unbiased algorithms
as this is most natural when trying to solve a novel problem without much
problem-specific understanding. In Sections 3 and 3.2, we have discussed
unary unbiased algorithms. Our theory-guided approach has suggested the
Metropolis algorithm, which with a Θ(n2) runtime improved over the O(n3)
runtime guarantee previously shown for various classic unbiased evolution-
ary algorithms. Our Ω(n2) lower bound for all unary unbiased algorithms,
however, also shows that further improvements are not possible with unary
unbiased algorithms, and raises the question if algorithms of higher arity are
more powerful for the DLB problem.

Following our theory-guided approach, we first exhibit in Section 4.1 that
the binary unbiased black-box complexity of the DLB problem is O(n log n).
We did not find a natural binary unbiased black-box algorithm for which
we could show an o(n2) runtime, but by resorting to unrestricted arities,
which allows for estimation-of-distribution algorithms, we detected that the
significance-based compact genetic algorithm (sig-cGA) [DK20a] has a run-
time of O(n log n) with high probability (Section 4.2).

4.1 Unbiased Black-Box Algorithms of Higher Arity

In this section we will exhibit a binary unbiased black-box algorithm (Algo-
rithm 5) whose runtime on the DLB problem is O(n log n). Our algorithm
builds on two ideas used in [DJK+11, Section 5] to design an O(n log n) bi-
nary unbiased black-box algorithm for the LO function: (i) We use a pair
(x, y) of search points such that the bits i with xi = yi are exactly the ones
for which we know that the optimum also has this bit value in this bit posi-
tion. (ii) We conduct a random binary search in {i ∈ [1..n] | xi 6= yi} to find
in logarithmic time a bit position such that flipping this bit in either x or y
(which one will be visible from the fitness) sets it to the value the optimum
has in this position. This operation increases the number of correctly de-
tected bits by one. Different from the situation in [DJK+11], in our setting
such a good bit value cannot always be detected from a fitness gain (due to
the deceptive nature of the DLB problem). We overcome this by regarding
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the HLB1 function instead. Note that there is a (non-monotonic) one-to-one
relation between the fitness values of DLB and HLB1. Hence a black-box
algorithm for DLB has access also to the HLB1 value of any bit string.

We first recall from [DJK+11] the two binary unbiased variation opera-
tors randomWhereDifferent(·, ·) and switchIfDistanceOne(·, ·). The operator
randomWhereDifferent(·, ·) takes two bit strings y and y′ as input and out-
puts a bit string z of which the components zi, i ∈ [1..n], are determined by
the following rule: we have zi = yi if yi = y′i, and zi is chosen uniformly at
random from {0, 1} if yi 6= y′i. This operator is also (and better) known as
uniform crossover, but to ease the comparison with [DJK+11] we keep the
notation used there. The operator switchIfDistanceOne(·, ·) takes two bit
strings y and y′ as input and outputs y′ if the Hamming distance between y
and y′ is one, otherwise it outputs y.

We now state our black-box algorithm (Algorithm 5). Since, as discussed,
any black-box algorithm for the DLB problem also has access to the HLB1

values, we use this function as well in the algorithm description. Algorithm
5 is initialized by generating a random search point x and its complement
y (we note that taking the complement is the unary unbiased operator of
flipping n bits).

In each iteration of the for loop, we ensure HLB1(y) ≤ HLB1(x) by
exchanging x and y when necessary and run the subroutine in the lines 6-10,
which flips one bit in y in a way that increases the HLB1 value of y. To
be more precise, the subroutine does a random binary search for such a bit
position. At the beginning of the subroutine, y′ is set to be x. In each iter-
ation of the repeat loop, y′′ is sampled from randomWhereDifferent(y, y′).
If HLB1(y′′) > HLB1(y), then we accept y′′ and attribute its value to y′,
otherwise we refuse y′′ and proceed to the next iteration of the subroutine.

This subroutine terminates when y′ and y differ only in one bit position.
At this moment y is set to be equal to y′. Now x and y have exactly one
more bit in common, which means the number of correctly detected bits is
increased by one. By induction, after i iterations of the for loop, x and y
agree on i bit positions. After n iterations, x and y are both equal to the
optimum.

To analyze the time complexity of Algorithm 5, we first consider the
runtime of the repeat subroutine.

Lemma 18. The subroutine in lines 6-10 of Algorithm 5 finishes in an ex-
pected runtime of O(log n).

Proof. For sake of simplicity we suppose LO(y) = 2m+ 1 for some m at the
beginning of the subroutine, the cases DLB(y) = 2m + 1 and DLB(y) =
LO(y) = 2m can be treated similarly.
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Algorithm 5: A binary unbiased black-box algorithm for maximiz-
ing the DLB function.

1 initialization: generate a search point x uniformly at random in
{0, 1}n and let y be the complement of x;

2 for i ∈ [1..n] do
3 if HLB1(y) > HLB1(x) then (x, y)← (y, x);
4 y′ ← x;
5 H ← HLB1(y);
6 repeat
7 y′′ ← randomWhereDifferent(y, y′);
8 if HLB1(y) < HLB1(y′′) then y′ ← y′′;
9 y ← switchIfDistanceOne(y, y′);

10 until HLB(y) > H;

Since HLB1(y′′) > 2m + 1 = HLB1(y) if and only if y′′2m+2 = 1 and this
second event happens with probability 1

2
(line 7), the value of y′′ is assigned

to y′ with probability 1
2
.

Now we consider the bit positions, other than the bit position 2m+ 2, on
which y and y′ are different. Since the bit values of y′′ on these positions are
chosen at random, the probability that at least half of them coincide with
corresponding bit values in y is at least 1

2
by virtue of symmetry. Therefore,

at the end of an iteration of the subroutine, with probability 1
4

the number
of bit positions other than the bit position 2m + 2, on which y and y′ are
different, is at most half as before. From this we conclude that in expected
runtime O(log n), y and y′ are only different in bit position 2m+ 2.

As discussed above, x and y are set to the optimum after having run the
for loop for n times. Lemma 18 thus implies the following theorem on the
binary unbiased black-box complexity of the DLB problem.

Theorem 19. The binary unbiased black-box complexity of the DLB problem
is O(n log n).

Algorithm 5 reveals that the ability to learn how good solutions look
like plays an important role in solving the DLB problem. This inspires the
study of EDAs, and more specifically, the significance-based EDA proposed
by Doerr and Krejca [DK20a] in the following.
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4.2 Significance-Based Compact Genetic Algorithm
(sig-cGA)

Estimation-of-distribution algorithms (EDAs) optimize a function f :
{0, 1}n → R by evolving a probabilistic model of the solution space {0, 1}n in
such a direction that this probabilistic model becomes more likely to sample
the optimum.

We now present the sig-cGA (Algorithm 6) proposed by Doerr and Krejca
[DK20a]. To this end, we first define of the notion of frequency vectors. A
frequency vector τ = (τi)i∈[1..n] is a vector whose components represent a
probability, i.e., τi ∈ [0, 1], i ∈ [1..n]. A probability distribution on {0, 1}n
is associated to a frequency vector τ in the following way: an individual
x ∈ {0, 1}n follows this probability distribution if and only if each component
xi of x independently follows the Bernoulli distribution of parameter τi.

The sig-cGA utilizes frequency vectors whose components take value in
{ 1
n
, 1

2
, 1 − 1

n
} to represent a probability distribution on {0, 1}n in the above

way. For each bit position i ∈ [1..n], the sig-cGA keeps a history Hi ∈ {0, 1}∗
for significance inferring that will be explained in detail in the following. In
iteration t, two individuals, x and y, are independently sampled from the
probability distribution associated with τ (t). They are then evaluated under
f , the one with better fitness is called the winner and is denoted by z. In
the case of a tie the winner is chosen at random. Now for each i ∈ [1..n],
the value of zi is added to the history Hi. If a statistical significance of 1 (0

resp.) is detected in Hi, then τ
(t+1)
i is set to 1− 1

n
( 1
n

resp.) and the history
Hi is emptied. To be more precise, we define in the following the function
sigε taking values in {up,down, stay} and we say that a significance of 1

(0 resp.) is detected when sigε

(
τ

(t)
i , Hi

)
= up (down resp.).

For all ε, µ ∈ R+, let s(ε, µ) = εmax{
√
µ log n, log n}. For all H ∈

{0, 1}∗, let H[k] be the string of its last k bits and let ‖H[k]‖0 (‖H[k]‖1 resp.)
denote the number of zeros (resp. ones) in H. Then for all p ∈ { 1

n
, 1

2
, 1− 1

n
}

and H ∈ {0, 1}∗, sigε(p,H) is defined by

sigε(p,H) =



up if p ∈
{

1
n
, 1

2

}
∧ ∃m ∈ N :

‖H[2m]‖1 ≥ 2mp+ s(ε, 2mp),

down if p ∈
{

1
2
, 1− 1

n

}
∧ ∃m ∈ N :

‖H[2m]‖0 ≥ 2m(1− p) + s(ε, 2m(1− p)),
stay else.

The following lemma (Lemma 2 in [DK20a]) shows that the sig-cGA,
with probability at least 1− n−ε/3 log2 k, does not detect a significance at a
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Algorithm 6: The sig-cGA with parameter ε and significance func-
tion sigε optimizing f : {0, 1}n → R
1 t← 0;

2 for i ∈ [1..n] do τ
(0)
i ← 1

2
and Hi ← ∅;

3 repeat
4 x, y ← offspring sampled with respect to τ (t);
5 z ← winner of x and y with respect to f , chosen at random in

case of a tie;
6 for i ∈ [1..n] do
7 Hi ← Hi ◦ zi;
8 if sigε

(
τ

(t)
i , Hi

)
= up then τ

(t+1)
i ← 1− 1

n
;

9 else if sigε

(
τ

(t)
i , Hi

)
= down then τ

(t+1)
i ← 1

n
;

10 else τ
(t+1)
i ← τ

(t)
i ;

11 if τ
(t+1)
i 6= τ

(t)
i then Hi ← ∅;

12 t← t+ 1;

13 until termination criterion met ;

position with no bias in selection, that is, with a high probability it does not
detect a false significance.

Lemma 20 (Lemma 2 in [DK20a]). Consider the sig-cGA with ε ≥ 1.
Let i ∈ [1..n] be a bit position and suppose that the distribution of 1s in
Hi follows a binomial law with k tries and success probability τi. Then

Pr
[
sigε

(
τ

(t)
i , Hi

)
6= stay

]
≤ n−ε/3 log2 k, that is, τi changes with a proba-

bility of at most n−ε/3 log2 k.

The preceding lemma readily implies the following corollary.

Corollary 21. Consider the sig-cGA with ε ≥ 1. Let i ∈ [1..n] be a bit
position and suppose that the distribution of 1s in Hi follows a binomial law
with k tries and a success probability of at least τi. Then τi decreases in an
iteration with a probability of at most n−ε/3 log2 k.

4.2.1 The Sig-cGA Solves the DLB Problem in O(n log n) Time

Now we show that with probability at least 1 − O
(
n2−ε/3 log2 n

)
, the sig-

cGA samples the optimum of the DLB function within O(n log n) fitness
evaluations (Theorem 25). First we show that when no τi is set to 1

n
, the
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probability of adding a 1 to the history Hi in an iteration is at least τi, which
will allow us to use Corollary 21.

Lemma 22. Let m ∈ [1..n
2
−1]. Let (τi)i∈[1..n] ∈ { 1

n
, 1

2
, 1− 1

n
}n be a frequency

vector. Consider one iteration of the sig-cGA optimizing the DLB function.
Let x and y be the two individuals sampled according to (τi)i∈[1..n]. Then,
conditioning on {min{DLB(x),DLB(y)} ≥ 2m}, a 1 is saved in H2m+1

with probability

p(τ2m+1,τ2m+2)

:= τ2m+1

(
−τ 2

2m+2 + 3τ2m+2 + (τ 2
2m+2 − 3τ2m+2 + 1)τ2m+1

)
.

(12)

If τ2m+1, τ2m+2 ∈ {1
2
, 1 − 1

n
}, then the above term is bounded from below by

τ2m+1. If further τ2m+1 = 1
2

and τ2m+2 ∈ {1
2
, 1 − 1

n
}, then the above term is

bounded from below by 9
16

.

Proof. Under the condition {min{DLB(x),DLB(y)} ≥ 2m}, the bit value
saved in H2m+1 is completely determined by the bits x2m+1, x2m+2, y2m+1,
and y2m+2. In the following we assume m = 0 for the ease of presentation,
but the general result can be obtained in exactly the same way. We calculate

Pr[1 is saved in H1]

= Pr[x1 = x2 = 1]

+ Pr[x1 = 1, x2 = 0]
(
Pr[y1 = 1] + 1

2
Pr[y1 = 0, y2 = 1]

)
+ Pr[x1 = 0, x2 = 1]

(
Pr[y1 = y2 = 1] + 1

2
Pr[y1 = 1, y2 = 0]

)
+ Pr[x1 = 0, x2 = 0] Pr[y1 = y2 = 1]

= τ1τ2 + τ1(1− τ2)
(
τ1 + 1

2
(1− τ1)τ2

)
+ (1− τ1)τ2

(
τ1τ2 + 1

2
τ1(1− τ2)

)
+ (1− τ1)(1− τ2)τ1τ2

= τ1

(
−τ 2

2 + 3τ2 +
(
τ 2

2 − 3τ2 + 1
)
τ1

)
.

Now if τ1, τ2 ∈ {1
2
, 1− 1

n
}, then

−τ 2
2 + 3τ2 = −(τ2 − 3

2
)2 + 9

4
≥ −(1

2
− 3

2
)2 + 9

4
= 5

4
.

Thus we have τ 2
2 − 3τ2 + 1 ≤ −1

4
< 0 and

p(τ1, τ2)

τ1

= −τ 2
2 + 3τ2 + (τ 2

2 − 3τ2 + 1)τ1

≥ −τ 2
2 + 3τ2 + (τ 2

2 − 3τ2 + 1)
(
1− 1

n

)
= − 1

n
(τ 2

2 − 3τ2) + 1− 1
n

≥ − 5
4n

+ 1− 1
n

= 1 + 1
4n
> 1.
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Supposing further that τ1 = 1
2
, we have

p(τ1, τ2)

τ1

= 1
2
(−τ 2

2 + 3τ2 + 1) ≥ 1
2
(5

4
+ 1) = 9

8
.

Corollary 23. If in an iteration of the sig-cGA, the frequency vector is in
{1

2
, 1− 1

n
}n, then for any i ∈ [1..n], a 1 is saved in Hi with probability at least

τi.

Proof. Let x and y be the two individuals sampled in this iteration. Let
i = 2m + 1 for some m ∈ [1..n

2
− 1]. Then the preceding lemma shows that

conditioning on {min{DLB(x),DLB(y)} ≥ 2m}, a 1 is saved in H2m+1 with
probability at least τ2m+1. Under the condition {min{DLB(x),DLB(y)} <
2m}, the probability that a 1 is saved in H2m+1 is equal to the probability
τ2m+1 that a 1 is sampled in this position, because bit 2m+ 1 is not relevant
for the selection. Combining the two cases, the claim follows for i = 2m+ 1.
The symmetry between i = 2m+ 1 and i = 2m+ 2 concludes the proof.

Lemma 24. Consider the sig-cGA with ε > 3. The probability that during
the first k iterations at least one frequency decreases is at most kn1−ε/3 log2 k.

Proof. Consider the event that in the first t iterations, no frequency has ever
been decreased. Denote its probability by p(t).

Conditioning on this event, Corollary 23 can be applied to verify the
hypothesis of Corollary 21, which implies that the conditional probabil-
ity that no frequency decreases in the (t + 1)-th iteration is at least
1 − n1−ε/3 log2 k. Therefore p(t+1) ≥ p(t)(1 − n1−ε/3 log2 k). By induction,
p(k) ≥ (1− n1−ε/3 log2 k)k ≥ 1− kn1−ε/3 log2 k.

Theorem 25. The runtime of the sig-cGA with ε > 6 on DLB is O(n log n)
with probability at least 1−O

(
n2−ε/3 log2 n

)
.

Proof. By taking k = O(n log n) in Lemma 24, we obtain that with probabil-
ity at least 1−O

(
n2−ε/3 log2 n

)
, no frequency decreases in the first O(n log n)

iterations. We condition on this event in what follows.
During the runtime of the sig-cGA, a block (x2m+1, x2m+2) is called critical

ifm is such that τi = 1− 1
n

for all i ∈ [1..2m], and that τ2m+1 = 1
2

or τ2m+2 = 1
2
.

Suppose that such a critical block is created with τ2m+1 = 1
2
. We prove that

the history of position 2m + 1 saves 1s significantly more often than 0s and
hence the frequency τ2m+1 is set to 1− 1

n
after O(log n) iterations.

Let O denote the event that we save a 1 in H2m+1 in one iteration. We
now calculate a lower bound of O under the condition that no frequency is
decreased within first O(n log n) iterations.
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Let A denote the event that at least one of the two individuals sampled
in an iteration has a DLB value smaller than 2m. When A happens, a 1 is
saved in H2m+1 with probability τ2m+1 = 1

2
. If A does not happen, then the

probability of saving a 1 to H2m+1 is equal to p(τ2m+1, τ2m+2) defined in (12).
Hence we can decompose Pr[O] as

Pr[O] = Pr[A]τ2m+1 + Pr[Ā]p(τ2m+1, τ2m+2).

Since Ā is equivalent to both individuals have 1s in the first 2m bit positions,

we have Pr[Ā] =
((

1− 1
n

)2m
)2

≥
((

1− 1
n

)n−2
)2

≥ (e−1)
2

= e−2. With

Lemma 22, this implies

Pr[O] ≥(1− Pr[Ā])τ2m+1 + Pr[Ā]9
8
τ2m+1

≥
(
1 + 1

8
Pr[Ā]

)
τ2m+1 = (1 + 1

8
e−2)τ2m+1,

since we assumed that τ2m+1 = 1
2
.

With this lower bound on Pr[O] we bound the probability that a signifi-
cance of 1s in H2m+1 is detected within k = O(log n) iterations. To this end,
we consider the process X ∼ Bin(k, (1 + e−2/8)τ2m+1), which is stochasti-
cally dominated by the actual process of saving 1s at position H2m+1. It
follows from the definition that

Pr[X ≤ kτ2m+1 +s(ε, kτ2m+1)]

= Pr
[
X ≤ E[X]−

(
k
8
e−2τ2m+1 − s(ε, kτ2m+1)

)]
.

For k > 64e4ε2τ−1
2m+1 log n = Θ(log n) we have s(ε, kτ2m+1) = ε

√
kτ2m+1 log n

and thus k
8
e−2τ2m+1 − s(ε, kτ2m+1) > 0. Let c := 64e4ε2τ−1

2m+1 and consider
k > 4c log n iterations. We have

s(ε, kτ2m+1) = ε
√
kτ2m+1 log n < εk

√
τ2m+1

4c
=
τ2m+1k

16e2
,

which implies

k

8
e−2τ2m+1 − s(ε, kτ2m+1) >

τ2m+1k

16e2
=: λ,

and hence

Pr
[
X ≤ E[X]−

(
k
8
e−2τ2m+1 − s(ε, kτ2m+1)

)]
≤ Pr[X ≤ E[X]− λ].

We use a Chernoff inequality to calculate an upper bound for this probability.
By definition Var[X] = k(1 + e−2/8)τ2m+1(1− (1 + e−2/8)τ2m+1) ≥ λ. It is
straightforward that

λ2

Var[X]
>

λ2

kτ2m+1

=
kτ2m+1

256e4
>
cτ2m+1 log n

64e4
= ε2 log n.
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Now the Chernoff inequality (Theorem 4) implies

Pr[X ≤ E[X]− λ] ≤ exp

(
−λ2

3Var[X]

)
< exp

(
−ε

2

3
log n

)
= n−

ε2

3 .

We have thus proven that with probability at most n−
ε2

3 , τ2m+1 is not set to
1 − 1

n
after O(k) = O(4c log n) = O(log n) iterations. Due to the symmetry

between positions 2m + 1 and 2m + 2, the same holds true for bit positions

2m + 2, m ∈ [1..n
2
− 1]. Hence with probability at most n1− ε

2

3 , for some
i ∈ [1..n], τi is not set to 1− 1

n
within the first O(n log n) iterations, that is,

with probability at least 1− n1− ε
2

3 , every τi, i ∈ [1..n], is set to 1− 1
n

within
the first O(nk) = O(n log n) iterations.

Once this is achieved, the probability to sample the optimum 1 =
(1, . . . , 1) from (τi)i∈[1..n] is equal to

(
1− 1

n

)n
> 1

2e
. Let ε′ > ε

3
− 2 be a

constant. Since we condition on no frequency dropping, the sig-cGA samples

1 at least once within ε′ 1
2

(
log
(

2e
2e−1

))−1
log n = O(log n) iterations with a

probability of at least 1−
(
1− 1

2e

)ε′(log( 2e
2e−1))

−1
logn

= 1− n−ε′ .
Recall that no frequency decreases within the first O(n log n) iterations

with probability at least 1 − O
(
n2−ε/3 log2 n

)
. Combining the preceding re-

sults, we have proven that the optimum is sampled within O(n log n) itera-
tions with probability at least(

1−O
(
n2−ε/3 log2 n

))(
1− n1− ε

2

3

)
(1− n−ε′) = 1−O

(
n2−ε/3 log2 n

)
because of the definition of ε′ and the inequality 2− ε

3
> 1− ε2

3
.

5 Experiments

To see how the algorithms compare on concrete problem sizes, we ran the
(1 + 1) EA, UMDA, Metropolis algorithm, and sig-cGA on the DLB function
for n = 40, 80, . . . , 200. We used the standard mutation rate p = 1/n for the
(1 + 1) EA, the population sizes µ = 3n lnn and λ = 12µ for the UMDA (as
in [DK20b]), and the temperature parameter α = 3 (greater than

√
2 + 1 as

suggested from Theorem 14) for the Metropolis algorithm. For the sig-cGA,
we took ε = 2.5 since we observed that this was enough to prevent frequencies
from moving to an unwanted value, which only happened one time for n = 40.
Being still very slow, for this algorithm we could only perform 10 runs for
problem sizes 40, 80, and 120, and 7 runs for problem size 160.

Our experiments clearly show an excellent performance of the Metropolis
algorithm, which was suggested as interesting algorithm by our theoretical
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analysis. The two EDAs, however, perform worse than what the asymp-
totic results suggest. Such a discrepancy between theoretical predictions and
experimental results, stemming from the details hidden in the asymptotic
notation, has been observed before and is what triggered the research area
of algorithm engineering [MHS01].
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Figure 1: The median number of fitness evaluations (with the first and third
quartiles) of (1 + 1) EA, UMDA, Metropolis algorithm, and the sig-cGA on
DLB with n ∈ {40, 80, 120, 160, 200} in 20 independent runs (10 runs for
n ∈ {40, 80, 120} and 7 runs for n = 160 for the sig-cGA).

6 Conclusion and Outlook

To help choosing an efficient randomized search heuristic when faced with
a novel problem, we proposed a theory-guided approach based on black-box
complexity arguments and applied it to the recently proposed DLB function.
Our approach suggested the Metropolis algorithm, for which little theoreti-
cal support before existed. Both a mathematical runtime analysis and our
experiments proved it to be significantly superior to all previously analyzed
algorithms for the DLB problem.

We believe that our approach, in principle and in a less rigorous way, can
also be followed by researchers and practitioners outside the theory commu-
nity. Our basic approach of (i) trying to understand how the theoretically
best-possible algorithm for a given problem could look like and then (ii) us-
ing this artificial and problem-specific algorithm as indicator for promising
established search heuristics, can also be followed by experimental methods
and by non-rigorous intuitive considerations.
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Kok, editors, Handbook of Natural Computing, pages 1623–1655.
Springer, Berlin, Heidelberg, 2012.

[DWY21] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis
for self-adaptive mutation rates. Algorithmica, 83:1012–1053,
2021.

[DZ20] Benjamin Doerr and Weijie Zheng. Sharp bounds for genetic
drift in estimation-of-distribution algorithms. IEEE Transac-
tions on Evolutionary Computation, 24:1140–1149, 2020.
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[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dy-
namics of the compact genetic algorithm on jump functions.
In Genetic and Evolutionary Computation Conference, GECCO
2018, pages 967–974. ACM, 2018.

[HY01] Jun He and Xin Yao. Drift analysis and average time complex-
ity of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating
computation time of evolutionary algorithms. Natural Comput-
ing, 3:21–35, 2004.

[Jan11] Thomas Jansen. Simulated annealing. In Anne Auger and Ben-
jamin Doerr, editors, Theory of Randomized Search Heuristics,
pages 171–195. World Scientific Publishing, 2011.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The Com-
puter Science Perspective. Springer, 2013.

51



[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the
choice of the offspring population size in evolutionary algorithms.
Evolutionary Computation, 13:413–440, 2005.

[JS98] Mark Jerrum and Gregory B. Sorkin. The metropolis algorithm
for graph bisection. Discrete Applied Mathematics, 82:155–175,
1998.
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