
HAL Id: hal-03344194
https://hal.science/hal-03344194

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the variability of interconnected product
families with relational concept analysis

Jessie Carbonnel, Marianne Huchard, Clémentine Nebut

To cite this version:
Jessie Carbonnel, Marianne Huchard, Clémentine Nebut. Exploring the variability of interconnected
product families with relational concept analysis. SPLC 2019 - 23rd International Systems and Soft-
ware Product Line Conference, Sep 2019, Paris, France. pp.199-206, �10.1145/3307630.3342407�. �hal-
03344194�

https://hal.science/hal-03344194
https://hal.archives-ouvertes.fr

Exploring the Variability of Interconnected

Product Families with Relational Concept

Analysis

Jessie Carbonnel, Marianne Huchard and Clémentine Nebut
LIRMM, Université de Montpellier, CNRS, Montpellier, France

October 21, 2021

Abstract

Among the various directions that SPLE promotes, extractive adop-
tion of complex product lines is especially valuable, provided that appro-
priate approaches are made available. Complex variability can be encoded
in different ways, including the feature model (FM) formalism extended
with multivalued attributes, UML-like cardinalities, and references con-
necting separate FMs. In this paper, we address the extraction of vari-
ability relationships depicting connections between systems from separate
families. Because Formal Concept Analysis provides suitable knowledge
structures to represent the variability of a given system family, we ex-
plore the relevance of Relational Concept Analysis, an FCA extension to
take into account relationships between different families, to tackle this
issue. We investigate a method to extract variability information from de-
scriptions representing several inter-connected product families. It aims
to be used to assist the design of inter-connected FMs, and to provide
recommendations during product selection.

1 Introduction

As families of similar software systems grow in size and complexity, managing
them by adopting an approach based on software product line (SPL) engineer-
ing becomes more and more relevant. When various software systems of a same
family have been individually developed in an undisciplined way, migrating to an
SPL may be done through an extractive approach, by analyzing their common-
alities and differences, and by identifying the reusable assets and a reference ar-
chitecture. Complex variability extraction may result in Feature Models (FMs)
[KCH+90, CW07] extended with multivalued attributes, UML-like cardinalities,
or references connecting separate FMs [CBUE02].

Previous research work has studied variability extraction in the boolean
case [LP07, HLE11, RPK11, ACP+12, AMHS+14, MZB+17, SSS17], and in

1

presence of multi-valued attributes and cardinalities [BBGA15, CHN19b]. More
specifically, in [CHN19b], we show how Formal Concept Analysis (FCA) and its
extension to Pattern Structures help in extracting variability relationships from
a product family described by multi-valued attributes and cardinalities. It leads
to binary implications, groups and mutex involving boolean features as well as
attribute values and cardinalities.

In this paper, we address the problem of cross-family variability relationship
extraction from descriptions representing several inter-connected product fami-
lies (see Figure 1). These families may correspond to various concerns or prod-
uct pieces, and may be connected by different relationships, e.g., use, part-of,
compatible-with, provide. We introduce a method based on Relational Concept
Analysis (RCA), an FCA extension to take into account these relationships be-
tween the product families. This method produces concept lattice families from
which are extracted cross-family features and cross-family relationships that can
be binary implications, mutex, co-occurrences or groups involving both boolean
features and cross-family features. This is part of a general approach we envis-
age, thus we also discuss how in the future this method can assist the design of
FMs with new kinds of references, and the exploration of existing configurations
for the sake of recommendation.

Figure 1: Schema of the envisaged approach.

In Section 2, we introduce the foundations of variability extraction with
FCA. Addressing cross-family variability extraction with Relational Concept
Analysis is developed in Section 3. Then, we discuss how the extracted cross-
family variability can help in inter-connected FMs design and in configuration
exploration (Section 4). We develop related work in Section 5, before concluding
and drawing perspectives of this work in Section 6.

2 Background: Assisted variability extraction
with FCA

Variability modeling. Variability modeling appears in the earliest steps for
extractive adoption of a software product line from a family of product vari-
ants. To elaborate a variability model in the context of a feature-oriented mod-

2

eling approach [KCH+90], the main existing approaches need to identify (a)
representative and discriminating features and (b) relationships between these
features (e.g. implications, mutually exclusive features or groups). Then the
extracted information is represented through feature models [KCH+90, CW07,
SHTB07], propositional logics [Bat05], description logics [BEGB11], or con-
straints [SDM+11]. Relationships between features are usually extracted from
the product variant descriptions depicting variants along with their features.
For example, these descriptions may take the form of tabular descriptions,
such as Product Comparison Matrices that can be found in Wikipedia1 and
extracted thanks to API such as OpenCompare2, produced by random or man-
ual sampling from generators, such as using the web application generator
JHipster3[HNA+17], or by analysing software developed by communities, such
as Robocode4. These tabular descriptions generally expose characteristics (as
columns) and their values (in cells) for the different product variants (as rows).
They need to be cleaned, manually, or automatically [BSA+14] before auto-
mated exploitation. From the cleaned tabular descriptions, several methods ex-
tract relationships for boolean features, leading to FM synthesis or more simply
logical relationships extraction [LP07, HLE11, RPK11, ACP+12, AMHS+14,
MZB+17, SSS17, CHN19a]. A few approaches [BBGA15, CHN19b] address
the problem of extracting more complex variability information to take into
account multi-valued attributes and cardinalities. Several of these approaches
[LP07, RPK11, AMHS+14, SSS17, CHN19b, CHN19a] are based on Formal
Concept Analysis, which can be seen as a structuring framework for variabil-
ity analysis and representation, in which some of the other approaches can be
embedded, as shown in [AMdSH+14, CHN19a].

Formal Concept Analysis (FCA) Formal Concept Analysis (FCA) [GW99]
can be summarized by the equation: “objects + attributes = concept hierar-
chy”. In other words, based on a set of objects (entities, individuals) described
by a set of attributes (properties, characteristics), FCA helps to: (1) group a
maximal set of objects sharing a maximal set of attributes into a concept, and
(2) hierarchically organize the set of concepts.

In the simplest form, FCA considers as input a formal context K = (O,A, J),
where O is a set of objects, A is a set of attributes and J ⊆ O × A is a binary
relationship, where (o, a) ∈ J when “o possesses a”. Table 1 represents in a
tabular form a formal context KET describing (in a simplified way) Knowledge
Engineering (KE) tools (left-hand-side), and a formal context KEC describing
basic Knowledge Engineering (KE) components (right-hand-side). The first col-
umn of a formal context presents the objects (here in the form of an identifier
representing KE tools or components), and the first row gathers the attributes
(here the boolean features). KE tools are described by their import/export

1E.g. comparisons on software systems: https://en.wikipedia.org/wiki/Category: Soft-
ware comparisons, last accessed in March 2019

2https://github.com/OpenCompare
3https://www.jhipster.tech/
4https://github.com/but4reuse/RobocodeSPL teaching

3

formats, their distribution mode (commercial or open source) and if they are
delivered in SaaS mode (Software as a Service). Basic KE components are dedi-
cated to resource creation (ontology, rules or raw file) or to implement a machine
learning algorithm from the categories: rule extraction, decision tree or neural
network. The strategy can be supervised or unsupervised. The components can
be classified as a symbolic method or as a statistical method.

Table 1: Product descriptions of Knowledge Engineering Tools KET (lhs), and
Knowledge Engineering Components KEC (rhs).

KET k
n

o
w

le
d

g
e

e
n

g
in

e
e
ri

n
g

to
o
l

(k
e
t)

im
p

o
rt

e
x
p

o
rt

(i
e
)

rd
f

js
o
n

p
ro

p
ri

e
ta

y
fo

rm
a
t

(p
f)

d
is

tr
ib

u
ti

o
n

(d
i)

c
o
m

m
e
rc

ia
l

(c
o
)

o
p

e
n

so
u

rc
e

(o
s)

sa
a
s

(s
a
)

ket0 × × × × × ×
ket1 × × × × × ×
ket2 × × × × × ×
ket3 × × × × × ×
ket4 × × × × × ×
ket5 × × × × × ×
ket6 × × × × × ×
ket7 × × × × × ×
ket8 × × × × × ×

KEC k
n

o
w

le
d

g
e

e
n

g
in

e
e
ri

n
g

c
o
m

p
o
n

e
n
t

(k
e
c
)

re
so

u
rc

e
c
re

a
ti

o
n

(r
c
)

o
n
to

lo
g
y

d
e
fi

n
it

io
n

(o
d

)

ru
le

d
e
fi

n
it

io
n

(r
d

)

ra
w

fi
le

(r
f)

le
a
rn

in
g

(l
e
)

a
lg

o
ri

th
m

(a
l)

ru
le

e
x
tr

a
c
ti

o
n

(r
e
)

d
e
c
is

io
n

tr
e
e

(d
t)

n
e
u

ra
l

n
e
tw

o
rk

(n
n

)

st
ra

te
g
y

(s
tr

)

su
p

e
rv

is
e
d

(s
u

)

u
n

su
p

e
rv

is
e
d

(u
n

)

sy
m

b
o
li

c
(s

y
)

st
a
ti

st
ic

a
l

(s
ta

)

od1 × × × ×
od2 × × × ×
rd1 × × × ×
f1 × × × ×
re1 × × × × × × ×
re2 × × × × × × ×
dt1 × × × × × × ×
nn1 × × × × × × ×

FCA extracts a set of formal concepts. Each concept C = (E, I) is a maximal
group of objects E associated with a maximal group of attributes I these objects
share. E = {o ∈ O | ∀a ∈ I, (o, a) ∈ J} is the concept extent and I = {a ∈
A | ∀o ∈ E, (o, a) ∈ J} is the concept intent. For example (using short names),
objects Esy = {od1, od2, rd1, f1, re1, re2} share attributes Isy = {sy, kec}. As
these sets cannot be extended, (Esy, Isy) is a concept.

Extent inclusion (and intent containment) induces a specialization order
≤CL between concepts: for two concepts C1 = (E1, I1) and C2 = (E2, I2),
C1 ≤CL C2 if and only if E1 ⊆ E2 (and equivalently I1 ⊇ I2). For example,
if we consider the concept (Erc, Irc) with Erc = {od1, od2, rd1, f1} and Irc =
{rc, sy, kec}, (Erc, Irc) ≤CL (Esy, Isy). The concept lattice is the set of all
concepts CK of the formal context K, provided with the order ≤CL. Attribute-
concepts (resp. Object-concepts) are particular concepts that contain at least an
attribute (resp. an object) which is not present in a super-concept (resp. sub-
concept). An AOC-poset (for Attribute-Object-Concept partially ordered set)
is the restriction of the concept lattice to these specific concepts. The AOC-
poset which classifies the KE tools (resp. components) of the left-hand-side
(resp. right-hand-side) of Table 1 is shown in Figure 2 (resp. Figure 3). A
concept is shown as a 3-part box containing: (1) the concept identifier, (2) its
intent deprived from the attributes inherited from the super-concepts, and (3)
its extent deprived from the objects that appear in the sub-concepts.

4

 KET_10
knowledge engineering tool (ket)

import export (ie)
distribution (di)

 KET_5
rdf

 KET_7
open source (os)

 KET_2

ket2
ket3

 KET_8
json

 KET_3

ket4
ket5

 KET_6
proprietay format (pf)

commercial (co)

 KET_0

ket6

 KET_9
saas (sa)

 KET_1

ket0
ket1

 KET_4

ket7
ket8

Figure 2: AOC-poset of Knowledge Eng. Tools KET .

Variability information extraction with FCA Variability information
can be extracted from the AOC-poset and used to guide the FM synthesis
[CHN19a]. Table 2 explains how variability information can be extracted from
AOC-posets and translated into FM constructs. The first row considers the sit-
uation in which a concept introducing a feature f2 is a sub-concept of a concept
introducing f1 (denoted by Cf2 <CL Cf1). In this case, all configurations having
f2 also have f1, that leads to the propositional formula. Such an implication
can be translated into 3 different FM constructs: a refinement relationship ¬,
an optional relationship or a requires constraint ®.

The second row shows how logical equivalences can be read in AOC-posets.
When f1 and f2 are introduced in the same concept, this means that features f1
and f2 are always present together (f1 ↔ f2). In a feature diagram, this can be
represented: with a mandatory relationship ¯ or with two requires constraints
°.

The third row shows how mutual exclusions can be read in an AOC-poset.
Two features f1 and f2 (respectively introduced in Cf1 and Cf2) are mutually
exclusive if the common sub-concepts of Cf1 and Cf2 (denoted Cf1 u Cf2) do
not introduce any object.

The fourth row presents the mapping of or-groups ² into AOC-posets. We
consider {f1, ..fk} the features involved in an or-group, and f0 the parent-feature
of this group. All configurations having one of the features in {f1, ..fk} should
also have f0, and conversely, configurations having the parent-feature f0 have
at least one feature of the or-group. Thus, the union of the extents of concepts
introducing features of {f1, ..fk} is equal to the extent of the concept introducing
f0. Moreover, the concept introducing the parent-feature of an or-group is not

5

Figure 3: AOC-poset of Knowledge Eng. Components KEC.

an object-concept, as at least one feature of {f1, ..fk} has to be selected. It is
denoted by Cf0 6∈ OC, Cf0 being the concept introducing the parent-feature,
and OC the set of object-concepts of the AOC-poset. Besides, we consider that
there always exists a root feature, which appears in the top concept containing
all configurations.

The last row presents the mapping of xor-groups ³ into AOC-posets. Xor-
groups are like or-groups, but concepts introducing the features of {f1, ..fk}
do not have a common sub-concept introducing an object. Indeed, features
involved in a xor-group and features involved in an exclude cross-tree constraint
have a similar behaviour, as they are mutually exclusive in both situations.

3 Cross-product family variability extraction with
RCA

Product line engineering faces inescapable issues related to the growth in size
and complexity of software systems and to their evolution [HGR12]. Decompos-
ing systems and considering separated concerns or gradual construction are so-
lutions that have been investigated, e.g. in multi-product lines [HGR12, Bot13,
RSKuR08]. Extending the variability extraction from a product family to a
set of interconnected product families means that we need to consider both
intra-family and inter-family (cross-family) variability information.

Relational Concept Analysis Cross-family variability extraction can be as-
sisted by Relational Concept Analysis (RCA) [RHHNV13] which considers sev-

6

Table 2: Mapping between AOC-posets and FMs [CHN19a]. The extent of a
context C is denoted by EXT (C)

FMs Prop. form. AOC-posets

¬
f1

f2

f2 → f1 Cf2 ≤CL Cf1
Cf2
f2

Cf1
f1

f1

f2

® f2 → f1

¯

f1

f2
or

f1

f2

f1 ↔ f2 Cf1 =CL Cf2

Cf1,2
f1,f2

°
f1 → f2
f2 → f1

± f1 → ¬f2
f1 → ¬f2

or
f2 → ¬f1

Ext(Cf1 u Cf2)
= ∅

Cf2Cf1

 C

f2f1

²

f0

f1 ... fk

f0 ↔
(f1∨ . . .∨fk)

∀fi ∈ {f1, ..fk}, Cfi ≤CL Cf0 .
{Cf1 , ...Cfk} is the greatest antichain [JRJ94]

verifying:
Ext(Cf1) ∪ ... ∪ Ext(Cfk) = Ext(Cf0).

Cf0 6∈ OC

Cf0
f0

Cfj

...

Cfi
f i f j

Cm

³

f0

f1 ... fk

f0 ↔
(f1⊕. . .⊕fk)

∀fi ∈ {f1, ..fk}, Cfi ≤CL Cf0 .
∀fi, fj ∈ {f1, ..fk} | fi 6= fj ,

Ext(Cfi u Cfj) = ∅.
{Ext(Cf1), ..., Ext(Cfk)} is a partition of

Ext(Cf0).
Cf0 6∈ OC

Cf0
f0

Cfj

...

Cfi
f i f j

Cm

eral object categories (one per product family). While FCA groups objects
sharing commonalities in their intrinsic attributes, RCA additionally groups
objects sharing commonalities in their similar relations to other objects having
themselves commonalities. To that aim, RCA iteratively applies FCA to prop-
agate similarities from objects in one category to objects in (possibly) another
category through relations. To follow up our illustrative example, identifying
the group of statistical KE components can be propagated to KE tools through
a provides relation, leading to identify the group of KE tools dedicated to sta-
tistical analyses.

The considered dataset in RCA is a Relational Context Family (RCF), which
is a set of object-attribute contexts (objects described by intrinsic attributes)
and a set of object-object contexts (relations between objects of the different
categories). For our example, the RCF is composed of the object-attribute
contexts KEC and KET (Table 1), and the object-object relation provides ⊆
KET×KEC (Table 4). In the general case, an RCF contains n object-attribute
contexts Ki = (Oi, Ai, Ji) , i ∈ {1, ..., n} and m object-object contexts Rj =
(Ok, Ol, rj), j ∈ {1, ...,m}, with rj ⊆ Ok × Ol is a binary relation such that
k, l ∈ {1, ..., n}, Ok is the domain of the relation, and Ol is the range of the
relation.

To consider the provides relation, information is added to the description
of objects of its domain (KET). A straightforward integration scheme could

7

be to simply add to the object-attribute context KET attributes of the form
(provides, kec), and to add a cross when an object of KET provides the corre-
sponding object of KEC. For example, (provides, od1) could be added to the
description of ket0 in a new column of KET . This would allow to group KETs
that own the same KECs, but we would loose the valuable knowledge given by
the KEC concepts. Remember that these concepts indicate what are the shared
characteristics of KECs, e.g. dt1 and nn1 are grouped in KEC 8 because both
are statistical-based KECs (see Fig. 3). Now if we consider the way provides
describes ket7 and ket8 (resp. by (provides, dt1) and (provides, nn1)), these
two KETs do not share any KEC, whereas they share the fact that they al-
low statistical-based learning. To acquire such information, we propagate the
knowledge highlighted in the KEC AOC-poset to the KET AOC-poset through
relational attributes. These relational attributes are formed using scaling quan-
tifiers inspired by constructors used in descriptions logics [BCM+03], such as ∃
and ∃∀5, as illustrated in Table 3. For example, ket7 and ket8 descriptions will
be enhanced by a relational attribute ∃provides(KEC 8) to indicate that both
ket7 and ket8 have a link to at least one object of the KEC 8 extent.

In the RCA process, a scaling quantifier q is associated with each relation
r, and systematically applied to form all the relational attributes of the form
qr(C) with C a concept formed on the objects of the range of r. These relational
attributes are added to the context of the domain of r and a new extended AOC-
poset can be built. For example, Fig. 4 shows the AOC-poset built for KET
extended with the relational attributes formed with the quantifier ∃∀ applied to
provides. In this AOC-poset, KET 4 now highlights new shared information
about ket7 and ket8 which is the fact that both provide only (∃∀) statistical-
based learning components (the components they provide are all in KEC 8
extent).

RCA can consider complex and possibly cyclic entity-relationship models.
A non-trivial modeling phase is central in this perspective, to determine which
are the object-attribute contexts (separate product families) and which are the
object-object contexts (interconnections between the families), and the adequate
scaling quantifiers.

Cross-family features Table 3 shows two examples of the new features that
this framework makes available to describe cross-family variability. These fea-
tures are abstractions of links between an object o (a product configuration of
the domain of r in our context) and a concept C (a group of product configura-
tions of the range of r). Existential features (∃r(C)) indicate if a configuration
o is linked by r to at least one configuration in the extent of Concept C. In our
example, ∃provides(C) is the feature “provides a KEC with the features of C”.
Feature ∃provides(KEC 8) can be read “provides a statistical learning compo-
nent”. Universal features (∃∀r(C)) indicate if all r links of a configuration o
are towards configurations in the extent of Concept C ; for our example, it can

5∃∀ is used instead of ∀ to avoid assigning to an object o a relational attribute formed on
r when r(o) is empty (and would be included in any concept extent).

8

be summarized as “provides only KEC with the features of C”. As presented
previously, ∃∀provides(KEC 8) can be read “provides only statistical learning
components”.

Table 3: Examples of cross-family features

Relational attribute
Object links vs. concept extent Schema Cross-family Feature

r(o) ∩ Extent(C) 6= ∅ existential ∃r(C)

r(o) ⊆ Extent(C) r(o) 6= ∅ universal ∃∀r(C)

Cross-family variability relationships Variability information can be ex-
tracted from the AOC-poset resulting from RCA, using the same mappings as
introduced in Table 2. The found relationships also involve cross-family features.
Three examples are given below using the AOC-poset of Figure 4.

Example of co-occurrence. By the second row of Table 2, rdf and
∃∀provides(KEC 12) are co-occurrent, since both are introduced in the same
KET 5. In other words, since KEC 12 corresponds to symbolic components,
that means that tools exporting in rdf only use symbolic methods.

Example of implication. By the first row of Table 2, KET 1 is below
KET 9, thus ∃∀provides(KEC 6) → Saas: the knowledge engineering tools
providing components that only deal with ontology definition (KEC 6) are
delivered in SaaS mode. This can be translated through several ways in a
feature model (see cases ¬, and ® in Table 2).

Example of exclusion. KET 5 and KET 6 do not have a common sub-
concept introducing a configuration. By the third row of Table 2,
∃∀provides(KEC 6)→ ¬pf . We can deduce that none of the KETs providing

9

provides o
d
1

o
d
2

r
d
1

f1 r
e
1

r
e
2

d
t1

n
n
1

ket0 ×
ket1 × ×
ket2 × × ×
ket3 × × ×
ket4 × × × ×
ket5 × × × × ×
ket6 × ×
ket7 ×
ket8 ×

Table 4: Relation provides between Knowledge Engineering Tools KET (rows)
and Knowledge Engineering Components KEC (columns).

 KET_10
knowledge engineering tool (ket)

import export (ie)
distribution (di)

∃∀ provides(KEC_13)

 KET_5
rdf

∃∀ provides(KEC_12)

 KET_7
open source (os)

 KET_2

ket2
ket3

 KET_8
json

 KET_3

ket4
ket5

 KET_6
proprietary format (pf)

commercial (co)

 KET_0

ket6

 KET_9
saas (sa)

 KET_1
∃∀ provides(KEC_6)
∃∀ provides(KEC_10)

ket0
ket1

 KET_4
∃∀ provides(KEC_8)
∃∀ provides(KEC_9)
∃∀ provides(KEC_11)

 KET_13
∃∀ provides(KEC_5)

ket8

 KET_12
∃∀ provides(KEC_4)

ket7

Figure 4: AOC-poset of Knowledge Engineering Tools KET after integration
of information about provides, using ∃∀ quantifier.

components based only on symbolic methods (KEC 12) is based on a propri-
etary format.

4 Exploiting cross-family variability

In this section, we draw tracks of future research to exploit cross-family vari-
ability information.

Extended (semi-automated) FM synthesis Intra-family information has
been used to assist FM synthesis [CW07, SLB+11, HLE11, RPK11, ACP+12,
HLE13, AMdSH+14, SRA+14, CHN19b]. The methods that use FCA to assist
FM synthesis [RPK11, AMdSH+14, CHN19b] exploit a concept structure to de-
rive automatically an FM or to provide user guidance by reducing their choices
during FM construction. For example, the FM of KETs in Fig. 5 (resp. of KECs

10

in Fig. 6) can be extracted from the AOC-poset of Fig. 2 (resp. Fig. 3) by an
FM designer, assisted by the rules presented in Sect. 2. Cross-family variability
information can in turn be used to assist the synthesis of interconnected FMs,
either by writing constraints between two different FMs (as shown in Sect. 3), or
to enhance an FM from one family by features coming from knowledge about re-
lations in real configurations. We illustrate this by using information extracted
from the AOC-poset of KET (Fig. 4). First, we introduce a reference kec be-
low the FM root, with cardinality 1-many (*). Then the AOC-poset states that
in observed real configurations (as shown in KET 4), some KETs propose only
supervised learning algorithms (∃∀provides(KEC 9)), thus if a user chooses
that option when he designs a KET, he should be guided afterwards to config-
ure only components implementing supervised learning algorithms. The AOC-
poset also shows (in KET 5) that a group of KETs is dedicated to symbolic
approaches only (∃∀provides(KEC 12)) and a subgroup of them is dedicated to
ontology definitions only (∃∀provides(KEC 6)). From these observations, the
FM designer could decide to introduce a feature supervised ket (sup), a fea-
ture symbolic ket (sy) with a sub-feature ontology dedicated (o). These
choices are represented as an extension of the FM KET , as shown in Fig. 7 in
the grey rectangular box. The introduced features in the KET FM should be
used in configuration tools to reduce the choices in the KEC FM when they are
selected. It can be tricky for an FM designer to choose to add features to the
KET FM depending on the relations that are observed between KET configura-
tions and KEC configurations. This indeed propagates structuring information
from the target of provides (KEC) to the source (KET), and in many cases, this
could break the separation of concerns. In this case, it should be preferred to
use cross-family constraints. Using cross-family constraints to write cross-tree
constraints nevertheless requires that the concept carrying the constraint corre-
sponds to a feature. If this is not the case the constraint should be redistributed
on the existing children if any exists.

Figure 5: an FM extracted from the AOC-poset of Figure 2.

Introducing in a feature model FM1 cross-family features that are derived
from another feature model FM2 can be seen as a way to achieve feature model
composition, and especially the union operation. Traditional methods merge

11

knowledge engineering component (kec)

resource
creation (rc)

learning (le)

statistical (sta)

ontology
definition
(od)

Raw
file
(rf)rule

definition
(rd)

rule extraction
(re) decision tree

(dt)

<1-1>

<1-3>

 Cross-tree constraints: un → re ; dt → sta ; nn → sta ; sta → su

symbolic (sy)

<1-1><1-1>

algorithm
(al)

strategy (str)

supervised (su) unsupervised (un)
<1-1>

neural network
(nn)

Figure 6: an FM extracted from the AOC-poset of Figure 3.

the common features of two models and keep the specific features of both initial
FMs. It produces a single output FM gathering features from two different con-
cerns into one model [ACLF10, CHMN17]. Cross-family features group features
of interest from FM2 into more “abstract features” that will enrich FM1 with
external concerns.

Recommendation Information embodied in AOC-posets can be used to guide
the users in their choices when selecting a valid configuration. Concepts repre-
sent maximal groups of valid configurations sharing a maximal set of features,
that may be intrinsic or cross-family. If we consider that the conjunction of a
concept’s features forms a query, then the concept’s set of configurations can be
seen as the result of this query. The concepts kept in an AOC-poset represent
the maximal queries that can be formulated by a user, i.e., the maximal fea-
ture conjunctions representing each configuration subset. For instance, if a user
wants to retrieve all KETs supporting the RDF format, the corresponding max-
imal query in Figure 4 corresponds to the concept introducing the feature rdf
(KET 5), and the result is ket0-3. This can be applied for cross-family features
too: it enables to query the KET configurations depending on their relation-
ships to KECs. For instance, if a user wants to retrieve KETs providing only
neural network KECs (KEC 5), this query corresponds to the concept KET 13
of Figure 4 introducing ∃∀provides(KEC 5) and it results to the unique con-
figuration ket8. The querying can benefit from the variety of quantifiers and
their different semantics [BDHB18]. If, this time, a user wants to retrieve KETs
providing at least one neural network KEC, we should consider the AOC-poset
built with the existential quantifier.

The different quantifiers are ordered by generalization [BDHB18] thus a con-

12

knowledge engineering tool (ket)

import export (ie) distribution (di)
saas (sa)

json rdf

proprietary format (pf)

commercial (co)
open source (os)

<1-1>
<1-3>

Cross-tree constraints:
pf → co ; co → pf ; sy → rdf ; rdf → sy ; o → saas ; sup → co

<1-*> knowledge
engineering
Component

(kec)
symbolic ket (sy)

ontology dedicated (o)

supervised
ket (sup)

Figure 7: FM that can be extracted from the AOC-poset of Figure 4, and
cross-family information.

cept formed in an AOC-poset with a quantifier qs can be projected in the AOC-
poset formed with qg, if qg is more general than qs. For instance, ∃ is more
general than ∃∀. Choosing the right quantifier can be useful to tune the degree
of observed variability and the precision of the recommendation systems.

Concepts’ position in the AOC-poset and to each other reveals other useful
information about the structured family. Concepts on top of the AOC-poset usu-
ally possess less features and more configurations and therefore represent groups
of features shared by most of the considered configurations. Dually, concepts at
the bottom generally possess more features and less configurations, and repre-
sent more specialised features, i.e., the ones shared by few configurations. For
instance Figure 3 reveals that there are more symbolic KECs (KEC 12) than
statistical ones (KEC 8): this information may be used in recommendation sys-
tems to propose, for instance, popular features to a user. It is also noteworthy
that the closer two concepts are in the structure, the more similar are their sets
of features and configurations. Therefore, navigating from one concept to one of
its neighbours represents modifications that can be applied on the corresponding
query. This navigation has different properties depending the used conceptual
structure (e.g. AOC-poset, concept lattice). Retrieving a concept based on a set
of features can be seen as querying information from the relation concept family.
Navigating from a concept to another in the structure enables a user to explore
the set of available configurations by progressively refining the query. Let us
imagine that a user wants to retrieve all the available open source KETs: this
query corresponds to KET 7 of Figure 4. If the user wants to refine this query to
find a more specific KET, the AOC-poset can be used to recommend the smallest
modifications that may be applied: here, it proposes to either explore KETs hav-
ing features json and saas (i.e., moving to KET 0) or explore KETs supporting
rdf format and providing only symbolic KECs (i.e., moving to KET 5). Cross-
family features allow to switch between AOC-posets: here, the user can “jump”
to the concept referenced by ∃∀provides(KEC 12) in the KECs’ AOC-poset of

13

Figure 3 and then refine the corresponding query. For instance, they can choose
to focus on symbolic KECs specialised on ressource creation (KEC 10) and
then jump back to the previous KETs’ AOC-poset, but this time in the concept
introducing ∃∀provides(KEC 10) (i.e., KET 1) with ket0 and ket1.

5 Related Work

Interconnected variability models Several tracks have been followed to
represent modularity, and FMs extensions have been proposed, among which
we can notice Feature Models with References (FMR) [CBUE02, CHE04] and
Modular Feature Models (MFM) [BEGB11]. These two extensions enable the
separation of a single FM into several FMs dedicated to sub-product lines or
to separate concerns. In FMRs, a reference is a feature of an FM represent-
ing the root of another FM. Cross-FM constraints may be established between
features of the two FMs. In MFMs, the authors encourage the definition of
FMs modules, and the features in different FM modules are connected through
cross-FM implications in module bridges. The approach is developped using
the description logic ALCH for describing the FMs and the cross-tree and
cross-FM constraints.

Friess et al. [FSSP07] work on modelling composition rules between different
feature models representing independent product lines that can be combined.
The authors define what they call a feature configuration, which represents a
subset of an FM valid configurations satisfying some constraints. Then, they
define composition rules (e.g., uses, parts-of) between feature configurations of
different FMs. Feature configurations permit to finely tune the set of configura-
tions involved in a composition rule. Similarly, Rosenmuller et al. [RSKuR08]
work on reinforcing constraint expressiveness between different yet connected
FMs by relying on product line specialisation [CHE04]. The latter was intro-
duced by Czarnecki et al. [CHE04] as a way to prune the set of valid config-
urations of an FM by partially configuring this FM. Rosenmuller et al. argue
that, when modelling complex product line, relying on domain constraints at
the domain level is not sufficient, and that modelling constraints involving prod-
uct line instances (i.e., valid configurations) is necessary. They use UML class
diagrams to model these constraints on configurations, where a class represents
an FM, a sub-class represents an FM specialisation and relations are used to
define constraints at the configuration level. These “instance models” are used
in association with classic domain models such as FMs. Urli et al. [UBC14]
propose a domain model regrouping several FMs and relations between these
FMs. In this approach, the domain model defines the different abstract concepts
of the modelled complex product line, and each FM characterises the variability
of one of these concepts. Contrarily to approaches presented before, constraints
between FMs involved features and not subsets of configurations. Dhungana et
al. [DSB+11] propose an approach to ease the integration of different kinds of
variability models into a unique infrastructure. They present Invar, a frame-
work allowing to manage a repository of different variability models. When

14

a new model is loaded , constraints between the new model and the existing
ones need to be specified. These constraints take the form of ”if condition then
action”. Conditions involve the selection or deselection of a feature. Actions
may be to include another variability model (similar to model modularisation
of [CHE04]), or to select or deselect a feature in another variability model.

Extraction of interconnected variability models Most of the existing
methods for FM reverse engineering exclusively focus on boolean FMs [CW07,
RPK11, ACP+12, DDH+13, HLE13, LLE14]. Becan et al [BBGA15] were the
first to propose a reverse engineering method for more complex FMs taking the
form of FMs with attributes. During previous work [CHN19b], we introduced
the usage of Pattern Structures [GK01] to extract complex variability informa-
tion in the form of logical relationships corresponding to the logical semantics
of FMs extended with both multivalued attributes and UML-like cardinalities.
Here we elaborate on RCA, both being possibly combined. To the best of our
knowledge, there is still no work about the extraction of “cross-family” variabil-
ity information.

6 Conclusion

As software systems grow and the software product line engineering is spreading,
collaborative design of huge product lines which combine several concerns will
become more and more critical. Complex variability can take various forms,
including variability among inter-connected software families. In this paper,
we address the aim to extract such cross-family variability from a set of inter-
connected product configurations. We propose to employ Relational Concept
Analysis (RCA), an extension of Formal Concept Analysis to assist this ex-
traction. We introduce cross-family features and cross-family relationships that
take the form of binary implications, mutex, co-occurrences or groups that in-
volve both boolean features and cross-family features. Extracting such informa-
tion has the inherent complexity of related data-mining methods. We expect
reasonable complexity for exact extraction of binary implications, mutex, co-
occurrences, and probably difficulties, if not unfeasibility, for groups, requiring
approximate methods. We then discuss the possibility to use this variability
information to assist the design of FMs with new kinds of references, or to ex-
plore a set of inter-connected configurations. As future work, we plan to apply
the method to inter-connected product descriptions, such as connected PCMs,
or by dividing large tabular descriptions, like the one produced for JHipster in
[HNA+17], into separate concerns. Previous work that applied FCA and RCA
to Wikipedia’s or synthetic PCMs [CHG15] gave us some preliminary results
on the feasibility. Exploring the effects of the different RCA scaling quantifiers
on these datasets will be very informative to tune the method. We also are
interested by the possibilities of composing different inter-connected FMs with
the support of our method. Finally, we will study the way this cross-family
variability has to be taken into account to guide the users during a product

15

selection/construction.

References

[ACLF10] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B.
France. Comparing approaches to implement feature model com-
position. In Proc. of the 6th Europ. Conf. on Modelling Founda-
tions and Applications (ECMFA’10), pages 3–19, 2010.

[ACP+12] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Hey-
mans, Charles Vanbeneden, Philippe Collet, and Philippe Lahire.
On extracting feature models from product descriptions. In Proc.
of the 6th Int. Works. on Variability Modelling of Soft.-Intensive
Syst. (VaMoS’12), pages 45–54, 2012.

[AMdSH+14] Ra’Fat Al-Msie ’deen, Abdelhak-Djamel Seriai, Marianne
Huchard, Christelle Urtado, Sylvain Vauttier, and Ahmad Al-
Khlifat. Concept lattices: A representation space to structure
Soft. variability. In Proc. of the 5th Int. Conf. on Information
and Communication Syst. (ICICS’14), pages 1–6, 2014.

[AMHS+14] Ra’Fat Al-Msie’deen, Marianne Huchard, Abdelhak Seriai, Chris-
telle Urtado, and Sylvain Vauttier. Reverse Eng. Feature Mod-
els from Soft. Configurations using Formal Concept Analysis. In
Proc. of the 11th Int. Conf. on Concept Lattices and Their Ap-
plications (CLA’14), pages 95–106, 2014.

[Bat05] Don S. Batory. Feature models, grammars, and propositional
formulas. In Proc. of the 9th Int. Soft. Product Line Conf.
(SPLC’05), pages 7–20, 2005.

[BBGA15] Guillaume Bécan, Razieh Behjati, Arnaud Gotlieb, and Mathieu
Acher. Synthesis of attributed feature models from product de-
scriptions. In Proc. of the 19th Int. Conf. on Soft. Product Line
(SPLC’15), pages 1–10, 2015.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic Handbook. Cambridge
Univ. Press, Cambridge, UK, 2003.

[BDHB18] Agnès Braud, Xavier Dolques, Marianne Huchard, and Flo-
rence Le Ber. Generalization effect of quantifiers in a classifi-
cation based on relational concept analysis. Knowl.-Based Syst.,
160:119–135, 2018.

[BEGB11] Ebrahim Bagheri, Faezeh Ensan, Dragan Gasevic, and Marko
Boskovic. Modular feature models: Representation and configu-
ration. Journal of Research and Practice in Information Technol-
ogy, 43(2):109–140, 2011.

16

[Bot13] Goetz Botterweck. Variability and Evolution in Systems of Sys-
tems. In Proc. of the 1st Workshop on Advances in Systems of
Systems (AiSoS’13), pages 8–23, 2013.

[BSA+14] Guillaume Bécan, Nicolas Sannier, Mathieu Acher, Olivier
Barais, Arnaud Blouin, and Benoit Baudry. Automating the
formalization of product comparison matrices. In Proc. of the
ACM/IEEE Int. Conf. on Aut. Soft. Eng., (ASE’14), pages 433–
444, 2014.

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ul-
rich W. Eisenecker. Generative Programming for Embedded Soft.:
An Industrial Experience Report. In Proc. of the 1st ACM SIG-
PLAN/SIGSOFT Conf. on Generative Programming and Com-
ponent Eng. (GPCE’02), pages 156–172, 2002.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker.
Staged Configuration Using Feature Models. In Proc. of the 3rd
Int. Soft. Product Line Conf. (SPLC’04), pages 266–283, 2004.

[CHG15] Jessie Carbonnel, Marianne Huchard, and Alain Gutierrez. Vari-
ability representation in product lines using concept lattices: Fea-
sibility study with descriptions from wikipedia’s product compari-
son matrices. In Proc. of ws. FCA&A 2015, co-loc. 13th Int. Conf.
on Formal Concept Analysis (ICFCA), pages 93–108, 2015.

[CHMN17] Jessie Carbonnel, Marianne Huchard, André Miralles, and
Clémentine Nebut. Feature model composition assisted by formal
concept analysis. In Proc. of the 12th Int. Conf. on Evaluation
of Novel App. to Soft. Eng. (ENASE’17), pages 27–37, 2017.

[CHN19a] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut.
Modelling equivalence classes of feature models with concept lat-
tices to assist their extraction from product descriptions. Journ.
of Syst. and Soft., 152:1 – 23, 2019.

[CHN19b] Jessie Carbonnel, Marianne Huchard, and Clémentine Nebut. To-
wards complex product line variability modelling: Mining rela-
tionships from non-boolean descriptions. Journ. of Syst. and Soft.
(doi:10.1016/j.jss.2019.06.002), 2019.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature Diagrams
and Logics: There and Back Again. In Proc. of the 11th Int. Soft.
Product Line Conf. (SPLC’07), pages 23–34, 2007.

[DDH+13] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu
Acher, Jane Cleland-Huang, and Patrick Heymans. Feature
model extraction from large collections of informal product de-
scriptions. In Proc. of the 9th Joint Meeting of the Europ. Soft.

17

Eng. Conf. and the ACM SIGSOFT Symposium on the Founda-
tions of Soft. Eng. (ESEC/FSE’13), pages 290–300, 2013.

[DSB+11] Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick
Rabiser, Paul Grünbacher, David Benavides, and José A.
Galindo. Configuration of multi product lines by bridging het-
erogeneous variability modeling app. In Soft. Product Lines -
15th Int. Conf., SPLC 2011, pages 120–129, 2011.

[FSSP07] Wolfgang Friess, Julio Sincero, and Wolfgang Schroeder-
Preikschat. Modelling compositions of modular embedded soft.
product lines. In Proc. of the 25th Conf. on IASTED Int. Multi-
Conf.: Soft. Eng., pages 224–228. ACTA Press, 2007.

[GK01] Bernhard Ganter and Sergei O. Kuznetsov. Pattern Struct. and
Their Projections. In Proc. of the 9th Int. Conf. on Conceptual
Struct. (ICCS’01), pages 129–142, 2001.

[GW99] Bernhard Ganter and Rudolf Wille. Formal concept analysis -
mathematical foundations. Springer, 1999.

[HGR12] Gerald Holl, Paul Grünbacher, and Rick Rabiser. A systematic re-
view and an expert survey on capabilities supporting multi prod-
uct lines. Information & Soft. Technology, 54(8):828–852, 2012.

[HLE11] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexan-
der Egyed. Reverse Eng. Feature Models from Programs’ Fea-
ture Sets. In Proc. of the 18th Work. Conf. on Reverse Eng.
(WCRE’11), pages 308–312, 2011.

[HLE13] Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. On Extracting Feature Models from Sets of
Valid Feature Combinations. In Proc. of the 16th Int. Conf. on
Fundamental App. to Soft. Eng. (FASE’13), pages 53–67, 2013.

[HNA+17] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey,
Gilles Perrouin, and Patrick Heymans. Yo Variability! JHip-
ster: A Playground for Web-Apps Analyses. In 11th Int. Works.
on Variability Modelling of Soft.-intensive Syst., pages 44 – 51,
Eindhoven, Netherlands, February 2017.

[JRJ94] Guy-Vincent Jourdan, Jean-Xavier Rampon, and Claude Jard.
Computing on-line the lattice of maximal antichains of posets.
Order, 11(3):197–210, 1994.

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-021, Soft. Eng.
Institute, 1990.

18

[LLE14] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. Feature Model Synthesis with Genetic Programming. In
Proc. of the 6th Int. Symposium on Search-Based Soft. Eng. (SS-
BSE’14), pages 153–167, 2014.

[LP07] Felix Loesch and Erhard Ploedereder. Restructuring Variability
in Soft. Product Lines using Concept Analysis of Product Config-
urations. In Proc. of the 11th Europ. Conf. on Soft. Maintenance
and ReEng. (CSMR’07), pages 159–170, 2007.

[MZB+17] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques
Klein, and Yves Le Traon. Bottom-up technologies for reuse:
Automated extractive adoption of soft. product lines. In Comp.
Proc. of the 39th Int. Conf. on Soft. Eng. (ICSE’17), pages 67–70,
2017.

[RHHNV13] Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli,
and Petko Valtchev. Relational concept analysis: mining concept
lattices from multi-relational data. Annals of Math. and Artificial
Intelligence, 67(1):81–108, 2013.

[RPK11] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. Extraction of
feature models from formal contexts. In Works. Proceedings (Vol-
ume 2) of the 15th Int. Conf. on Soft. Product Lines (SPLC’11),
pages 4:1–4:8, 2011.

[RSKuR08] Marko Rosenmüller, Norbert Siegmund, Christian Kästner, and
Syed Saif ur Rahman. Modeling dependent software product lines.
In Proc. of the GPCE Workshop on Modularization, Composition
and Generative Techniques for Product Line Engineering (McG-
PLE’08), pages 13–18, 2008.

[SDM+11] Camille Salinesi, Olfa Djebbi, Raúl Mazo, Daniel Diaz, and Al-
berto Lora-Michiels. Constraints: The core of product line eng.
In Proc. of the Fifth IEEE Int. Conf. on Research Challenges in
Information Science (RCIS’11), pages 1–10, 2011.

[SHTB07] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Tri-
gaux, and Yves Bontemps. Generic semantics of feature diagrams.
Computer Networks, 51(2):456–479, 2007.

[SLB+11] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski,
and Krzysztof Czarnecki. Reverse eng. feature models. In Proc.
of the 33rd Int. Conf. on Soft. Eng., (ICSE’11), pages 461–470,
2011.

[SRA+14] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wasowski, and
Krzysztof Czarnecki. Efficient synthesis of feature models. Infor-
mation & Soft. Technology, 56(9):1122–1143, 2014.

19

[SSS17] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari A. Sahraoui.
Recovering soft. product line architecture of a family of object-
oriented product variants. Journal of Syst. and Soft., 131:325–
346, 2017.

[UBC14] Simon Urli, Mireille Blay-Fornarino, and Philippe Collet. Han-
dling complex configurations in software product lines: a tooled
approach. In 18th Int. Soft. Product Line Conf. (SPLC ’14),
pages 112–121, 2014.

20

