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Abstract. Ensuring safety of critical systems is crucial and is often
attained by extensive testing of the system. Formal methods are now
commonly accepted as powerful tools to obtain guarantees on such sys-
tems, even if it is generally not possible to formally prove the safety
and correctness of the whole system. This paper presents an ongoing
work on the formal verification of the Paparazzi UAV autopilot using
the Frama-C verification platform. We focus on a Paparazzi mathemati-
cal library providing different UAV state representations and associated
conversion functions and manage to prove the absence of runtime errors
in the library and some interesting functional properties on floating-point
conversion functions.

Keywords: proof of program · critical systems · deductive methods · abstract
interpretation

1 Introduction

Formal methods are verification techniques based on mathematics which facili-
tate the formal verification of properties of hardware, software or models. They
are nowadays widely accepted as an efficient complement to testing, particularly
for critical systems, see for instance the DO-330 supplement to DO-178C. There
are many formal methods and they can be distinguished by the properties they
can help to verify, the efforts required to specify the system in order to use the
verification tools, or their automation level. For instance, abstract interpretation
is often used to prove the absence of runtime errors and is an automatic tool.
Deductive verification is another tool that can be used to prove more complex
properties, like correctness of a program given a formal specification, and gen-
erally uses automated solvers, though sometimes needs to use a proof assistant
and requires human intervention.

The goal of this ongoing project is to review different formal verification
techniques to define an analysis process taking advantage of these tools in order
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to verify properties of an UAV autopilot. This analysis process is applied on the
Paparazzi autopilot developed at ENAC and implemented in the C programming
language [6,9].

Frama-C [7] is a C code analysis tool facilitating formal verification. Verifica-
tion with Frama-C require the addition of annotations in the C code as special
comments to specify the expected properties: definition of contracts for func-
tions (preconditions, postconditions and frame specification (i.e., all the memory
elements that will be modified during the execution of the function), and the
definition of invariants and variants for loops and assertions. Frama-C has many
plugins but three were of particular interest: WP (Weakest Precondition) which
uses the weakest preconditions calculus, RTE (RunTime Errors) that automat-
ically add assertions to verify the absence of runtime errors, and EVA (Evolved
Value Analysis) using abstract interpretation to compute sets of possible values
for each variable of the program.

Verification of the Paparazzi autopilot is currently done using the Frama-C
platform (version 23.0 Vanadium) and mainly automatic provers4. We focused
on verifying a mathematical library presented in section 2. Section 3 details the
analysis concerning the absence of runtime errors. The second part of the anal-
ysis covers the verification of functional properties for some state representation
transformation functions. Section 4 details the verification process using only
automatic provers. As automatic provers were not able to prove some of these
functions, section 5 presents how we proved such functions using the interactive
prover Coq [12]. Finally, section 6 gives a conclusion and some perspectives.

2 The Paparazzi autopilot

Paparazzi [6] is an open-source autopilot under GPL license developed at ENAC
since 2003. Paparazzi supports various types of drones and permits the control
of several of them simultaneously. Paparazzi has also various built-in modes and
offers the ability to create personalized flight plans. The mathematical library
studied here provides functions converting different representations of vector
rotations as rotation matrices, Euler angles, or quaternions. It also defines el-
ementary operations on these representations. This library is written in the C
programming language and each function is available in three versions: one using
double values, another one with float values and the last one using int values
to represent fixed point values.

3 Proving the absence of runtime errors

The studied library defines C structures for the different representations (rota-
tion matrices, quaternions, vectors, etc). The library functions take only pointers

4 Complete specified code of Paparazzi, tools versions, and installation instructions
are available on https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/tree/
fmics-2021.
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on such structures as inputs and always return pointers. Preconditions ensuring
the validity of pointers have been added in the contracts as the functions are
not designed to work with invalid pointers. It has also been necessary to specify
which variables will be modified during the execution of the function. Finally,
invariants on for loop have been added to help the provers to ensure the absence
of runtime errors.

The WP plugin of Frama-C offers different models of arithmetic that take
into account more or less precisely C semantics. The verification of the int

flavor of the functions was made using 32-bits integer arithmetic with overflows.
When using the RTE plugin to verify the absence of runtime errors, assertions
are automatically added to check that there is no overflow for each arithmetical
operation. To verify this, each function was manually analyzed to determine
the maximum possible value for the different variables. When bounds of the
variables have been determined, they were added as preconditions in the function
contracts. Unfortunately, WP associated with automatic provers is not able to
verify these new contracts. Even if the complete memory separation of structures
used in a function is specified as precondition, the solvers are unable to prove
that the modification of a field in a structure does not change any other part of
the memory.

To overcome this problem, we decided to associate the EVA plugin to WP.
EVA has no issue dealing with pointers nor aliasing and is able to compute
accurate intervals of possible values for each variable. The result is then passed
to WP by Frama-C, which makes it easier to conclude some proofs. This WP
limitation when pointers are extensively used as input and output parameters
was also found by Vassil Todorov during his PhD thesis [13]. He also used a
static analysis tool using abstract interpretation, Astrée [3], to solve the same
problem. To conclude, the association of EVA and WP enables the verification
of absence of runtime errors for the functions using int values.

WP has also an arithmetical model real for real arithmetic. We decided to
use this model for the verification of the library functions working on floating-
point values. Using the same precondition used for the int version of the func-
tions, and such a model permits us to verify the absence of division by zero and
that real variables do not take the NaN value. To perform these verifications,
it was only necessary to add as preconditions the fact that each pointer refers
to a valid address. The absence of these two kind of runtime errors as well as
the termination of the functions have been proven, using WP and EVA, for the
float and double versions of the library. Unfortunately, our verification does
not offer any guarantee on the risk of floating-point overflow or on rounding
errors. Moreover, the properties proven for the real model can only serve as
an hint, but not a guarantee, that they hold for floating-point values. However,
this model was particularly useful to verify functional properties as presented
in section 4. Indeed, even if the model is semantically incorrect and we cannot
get functional guarantees during execution, it permits at least to verify that the
code is correct in the mathematical sense.
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4 Functional verification using automatic provers

The goal of functional verification is to ensure properties about the behavior
of functions. We will first focus here on the function float rmat of quat to
explain the process used. This function takes a normalized quaternion as input
and returns the corresponding rotation matrix.

In order to specify the functional properties of such a function, types and
predicates have been defined in the logic provided by ACSL [1], the language used
to express Frama-C annotations. We defined types for matrices and quaternions,
as well as elementary algebraic operations. We specified lemmas and then verified
them to ensure that these operations are correct (e.g., we verified that matrix
transposition is idempotent). Then, a logical function that converts a quater-
nion to a rotation matrix has been defined independently of the C code from the
library. This function is based on the mathematical equation that expresses the
conversion of a quaternion to a rotation matrix [5,8]. In the following, we will note
rmat of quat the function that represents this conversion. rmat of quat’s se-
mantics is expressed in ACSL as a mathematical, model-based specification. This
function takes as parameter a unitary quaternion q and returns a rotation matrix.
Frama-C is able to verify automatically that for any given unitary quaternion q,
the rotation matrix computed by rmat of quat corresponds to the same rota-
tion as described by the quaternion. Verification of this property has required to
verify the following lemma: ∀q ∈ H, v ∈ R3, q(0, v)q∗ = (0, rmat of quat(q).v).
This lemma states that given a quaternion q and a vector v, applying the ro-
tation with the quaternion q on vector v is equivalent to applying the rotation
matrix obtained from q by rmat of quat on v.

The contract for the function float rmat of quat has then been established
using these ACSL functions. Assuming that the quaternion passed as parameter
is normalized, we wanted to verify two functional properties. The first one is that
the returned matrix does indeed correspond to the conversion of the quaternion
passed as a parameter: our post-condition verifies that the rotation matrix gen-
erated by the C code is equal to the rotation matrix generated by our logical
function rmat of quat. As presented in the previous section, we use the WP
real model for the verification of this property, thus ignoring the differences
in the results between the C version and the mathematical version which could
have been introduced by rounding errors. The second verified property is that
the generated matrix is indeed a rotation matrix, i.e. the transpose of the matrix
is its inverse, and its determinant is equal to 1.

Despite the use of the real arithmetic model, WP could not verify this con-
tract. It was therefore necessary to manually review the code. We noticed that
the C code used a constant M SQRT2 to represent

√
2. By analyzing the calcu-

lations done in the code, we realized that the constant M SQRT2 was every time
multiplied by itself. We therefore suggested a code modification that replaces
M SQRT2 * M SQRT2 by 2. This modification does not change the number of mul-
tiplications in the C code but permits to reduce the rounding errors propagated
by the function. With this code change and the arithmetic model real, WP
verifies the contract of the function float rmat of quat.

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L639
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5 Functional verification using interactive provers

The same verification has been attempted for the inverse function float quat

of rmat that converts a rotation matrix into a quaternion. There are different
equations to perform this conversion in the literature but we use the four formu-
lae using Shepperd’s method [11,10]. These equations are directly deduced from
the formula that converts a quaternion into a rotation matrix and are defined
according to the diagonal values of the rotation matrix: one is defined when
the trace is strictly positive, the three other ones are defined when the trace is
negative and correspond to the possible choices for the greatest element of the
diagonal of the matrix. We defined each of these formulae by an ACSL logical
function. When defining postconditions of C functions, we uses ACSL behavior

feature to specify one sub-contract per Shepperd’s case, specifying as precondi-
tions in the sub-contract the conditions for which the corresponding Shepperd’s
function is defined. For instance, we defined a behavior that requires as precondi-
tion that the trace of the input matrix is positive. These behaviors then ensure,
as postconditions, that the quaternion computed by the C function is equal to
the quaternion computed using the corresponding logical function. Another fea-
ture offered by Frama-C is the possibility to verify that the behaviors are disjoint
and complete. I.e. for every input matrix, there is one and only one behavior
such that its preconditions are fulfilled by the matrix. With this contract, we
were able to verify that the function returns a quaternion that corresponds to
the same rotation as the matrix used as input.

Let us denote by quat of rmat the mathematical function that returns the
quaternion corresponding to a given rotation matrix. Let us consider here the
case where the rotation matrix used as input has a positive trace. Verifying that
quat of rmat is correct in this case is equivalent to verifying that the property
described on the following lemma holds: ∀R∀q ||q|| = 1 ∧ Tr(R) > 0 → (R =
rmat of quat(q) ↔ q = quat of rmat(R)). This lemma can be read as follows:
for all rotation matrices R with a positive trace and for all unitary quaternions
q, R represents the rotation matrix obtained from rmat of quat(q), if and only
if the function quat of rmat will return q when applied to R. It has then been
translated into an ACSL lemma, as well as the similar equations resulting from
the three other cases.

Unfortunately, Frama-C is not able to prove these lemmas using only auto-
matic SMT solvers, even after extending the timeout value considerably. The
proof requires specific transformations, such as factorization, that the solvers
might not be able to find. We therefore had to use the interactive mode of
WP. This mode generates incomplete proof scripts for each unproven goal. The
scripts contain all the definitions and lemmas that have already been proved by
Frama-C and the solvers. The theorem corresponding to an unproven goal needs
to be verified with some interactive prover where in our case, we use Coq [12].
The implication that if R is obtained from rmat of quat(q), then the function
quat of rmat will return q has been verified with Coq for the four lemmas. The
reverse implication has not been proved yet. However, by considering the verifi-
cation of the function rmat of quat, this proof is sufficient to guarantee that the

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L965
https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L965


6 B. Pollien et al.

result of the function quat of rmat describe the same rotation than the input
matrix.

We also wanted to verify the function implementing the conversion from the
Euler representation of a rotation to a rotation matrix. In the library, there are
two functions, float rmat of eulers 321 and float rmat of eulers 312, that
implement this conversion. These two functions differ on the order of Euler angles
(given the (z,y,x) axis for the 321 function and given the (z,x,y) axis for the
312 function). The contracts defined for these functions ensure that the matrix
must be special orthogonal, i.e., a rotation matrix. In order to verify these con-
tracts, we started using only automatic SMT solvers. The first problem we faced
was that the code for the conversion uses the cosf and sinf trigonometric func-
tions from the C standard library. Frama-C equips these built-in functions with
contracts, but these contracts do not provide enough information. We decided
to add an hypothesis in the contract stating that the result of these functions
was equal to the result obtained with the corresponding mathematical trigono-
metric function of ACSL (defined by \cos and \sin). This hypothesis might not
be correct. However, as we use the real model, this hypothesis permits to use
properties of trignometric functions (for instance ∀a ∈ R, cos a2 + sin a2 = 1).

Unfortunately, Frama-C was not able to prove the postcondition of the con-
version functions, even with this hypothesis and WP tactics. WP tactics are a
feature offered by WP that applies basic transformations on the goals to simplify
them in order to discharge the solvers (for instance, definitions can be unfolded
or goals splitted into subgoals). Even by using tactics, there were remaining
unproven subgoals. Instead of using Coq to verify the whole postcondition, we
decided to define generic lemmas in ACSL which correspond to the subgoals
unproven by SMT solvers and verify them in Coq. Such a lemma is for instance
∀a, b, c ∈ R sin a2 ∗ cos b2 + (sin a ∗ sin b ∗ cos c− sin c ∗ cos a)2 + (cos c ∗ cos a +
sin a ∗ sin b ∗ sin c)2 = 1, which can easily be proved by hand using factorization
and properties of trigonometric functions.

6 Conclusion

We have presented in this paper an ongoing work on formal verification of a
mathematical library of the open-source autopilot Paparazzi. We have mainly
focused on the verification of the absence of runtime errors, but also have proven
interesting properties of rather complex functions.

In future work, we plan on completing the proof remaining presented in sec-
tion 5. Some functional properties of other functions from the same mathematical
library of Paparazzi should also be verified. We want especially to focus on veri-
fying rounding errors, and therefore do not use WP real model but rather using
a model that represents accurately the floating-point numbers. We should also
compare our approach to autoactive proofs, where interactive provers are not
used, but SMT solvers are guided by assertions inserted by developers to help
the provers [2,4]. Finally, we plan to tackle formal verification of the Paparazzi
flight plan generator.

https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L618
https://gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c/-/blob/fmics-2021/sw/airborne/math/pprz_algebra_float.h#L626
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