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Evolution of granular media under constant-volume multidirectional
cyclic shearing

Ming Yang1 • Mahdi Taiebat1 • Patrick Mutabaruka3 • Farhang Radjaı̈2

Abstract
By means of the three-dimensional discrete element method, we study the long-time evolution toward liquefaction state in

granular materials composed of spherical particles under multidirectional cyclic shearing at constant volume. Extensive

simulations were carried out along 1-D linear, 2-D linear, circular/oval, and 8-like shear paths, and the evolution of the

system was analyzed in terms of pore pressure, shear strain, and granular texture. The macroscopic stress path and stress–

strain response agree well with laboratory experiments. We find that the liquefaction resistance, i.e., the number of cycles

necessary to reach the liquefaction state, is generally lower under multidirectional loading as compared to unidirectional

loading. As the transient vanishing of mean stress does not occur for all stress paths, we introduce a shear strain-based

liquefaction criterion that can be consistently applied to all strain paths. The granular texture is monitored through the

coordination number, particle connectivity, force and fabric anisotropies, and friction mobilization. In particular, a particle-

void descriptor, named centroid distance, is found to be closely related to the shear strain accumulation. We show that the

force anisotropy tensors become almost proportional to the deviatoric stress tensor more quickly than the fabric anisotropy

tensor, which takes most of the pre-liquefaction period to follow the external loading. The relationship between deviatoric

stress ratio and the force and fabric anisotropies, known to hold in monotonic triaxial loading, also holds with high

accuracy in the studied multidirectional cyclic shearing paths; the contributing weights of the anisotropies level off in the

post-liquefaction period and do not depend on the shear path.

Keywords Anisotropy � DEM � Deformation � Granular materials � Liquefaction � Multidirectional shear �
Stability

1 Introduction

The most common practice in conducting the dynamic

analysis of geo-structures, from simpler cases of free field

site response analysis to more complex cases of soil-

structure interactions, is using only a horizontal component

of the ground motion. However, in real earthquakes, soil

deposits are subjected to multidirectional cyclic shearing,

and each component has variable amplitudes and many

frequencies. More specifically, in these multidirectional

cyclic shearing scenarios, in addition to a vertical compo-

nent of the seismic loading, there are two horizontal shear

components. Neglecting their simultaneous effects can

potentially lead to an underestimation of seismic risk.

Pyke et al. [50] were the first to study sand response

under multidirectional shaking, using shaking table tests on

dry Monterey No. 0 sand. They found that the settlement
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caused by shaking in two horizontal directions was nearly

the sum of the settlements caused by each component

alone. Su and Li [61] conducted a pair of centrifuge tests

on loose Toyoura sand under uni- and biaxial shaking, and

the results indicated that the latter could develop 20%
greater peak pore pressure near the sample bottom and 12%

higher permanent settlement. Recently, El Shafee et al.

[14] presented a series of centrifuge tests on a level site

consisting of loose saturated Nevada 120 sand subjected to

uni- and multidirectional base excitations. They concluded

that the practice of only increasing the unidirectional

shaking component by 10% actually underestimates the

soil response under multidirectional shaking. Based on

dynamic centrifuge tests on saturated dense Ottawa sand

under uni- and multidirectional shaking, Cerna-Diaz et al.

[10] also found that multidirectional shaking caused an

increase in pore pressure and volumetric strain by

approximately a factor two compared to unidirectional

shaking. This is a considerably larger effect than found on

loose sands by others.

To mimic the response of soil element in a level or

sloping ground to idealized multidirectional cyclic shearing

under undrained conditions, extensive laboratory experi-

mental work has been conducted over the past decades

[6, 26, 28, 39, 62], generating a comprehensive experi-

mental database for understanding the physics of the

sheared system. The experimental findings show that the

multidirectional cyclic shearing induces a considerable

reduction in the liquefaction resistance compared to the

unidirectional one with a similar shearing amplitude. All

these laboratory findings are still on the overall macro-

scopic behavior given the minimal use of special experi-

mental techniques in cyclic shearing, such as X-ray

computed tomography [20] and photoelasticity technique

[37]. The underlying mechanisms at the particle scale

remain, to a large extent, to be explored and understood. In

addition to experiments, continuum modeling of soil

deposits under multidirectional shaking has been carried

out by Ghaboussi and Dikmen [17], Su and Li [61], Carlton

and Kaynia [9], Zeghal et al. [79], Yang et al. [77], and

Reyes et al. [54], to name a few. The underlying consti-

tutive models are not based on the particle-scale evolution

of the granular microstructure under complex multidirec-

tional shearing, which, to our best knowledge, remains

essentially unexplored.

Discrete element method (DEM) [12] provides a suit-

able framework to study the mechanical response of

granular materials from both macroscopic and grain-scale

perspectives when subjected to multidirectional cyclic

shearing. It also has the advantage of providing perfect

reproducibility of each ‘‘numerical experiment’’ as the

same sample can be reused, thereby eliminating random

noise and natural uncertainty due to the variability of

laboratory tests. Applying the DEM to reproduce lique-

faction phenomenon induced by conventional unidirec-

tional cyclic shearing such as triaxial or simple shear tests

dates back to Ng and Dobry [44]. Later, Sitharam [58]

explored the micromechanics to some extent by consider-

ing the drop of coordination number for loose samples

approaching liquefaction. Huang et al. [22, 23] and Martin

et al. [38] adopted another microscopic indicator called

redundancy index to distinguish the liquefaction state from

the non-liquefaction one; meanwhile, by extracting the

mesoscale structures like loop-like clusters encompassed

by contacts, they observed that the maximum cluster size

decreases to very small values in the liquefaction state.

Wang and Wei [68] and Wang et al. [69] came up with the

centroid distance and mean neighboring particle distance,

respectively, to explore the potential microscopic indica-

tors influencing the post-liquefaction large deformation.

Other topics of special interest for undrained cyclic

shearing include, but are not limited to, fabric anisotropy

evolution [53, 60, 72] and effects of initial and loading

conditions on liquefaction resistance [16, 41, 70, 74, 80], to

name a few. Recently, Wei [71] and Wei et al. [73] con-

ducted DEM simulations of a granular packing subjected to

uni- and multidirectional cyclic shearing. They found that

the same ‘‘stable fabric’’ was reached after a sufficient

number of loading cycles regardless of multidirectional

loading paths.

This paper introduces a novel presentation of the long-

term evolution of granular microstructure in the discrete

element numerical study of multidirectional cyclic shearing

at constant volume. The focus is on the gradual evolution

of the granular material and the onset of liquefaction from

both macroscopic and particle-scale perspectives. A series

of multidirectional cyclic tests along 1-D linear, 2-D linear,

circular/oval, and 8-like shear paths are performed on a

medium dense sample. We explore in detail the effect of

shear paths on pore pressure generation and shear strain

development. Four representative simulations are then

selected for micromechanical investigation with three dif-

ferent approaches: (1) adopting contact-based descriptors

to analyze the degradation of the overall stability of the

contact network [3, 63]; (2) using void-based fabric to shed

light on the post-liquefaction deformation [68]; (3) apply-

ing stress–force–fabric relationship to quantify the

respective contributions of the fabric and force anisotropies

to the load-bearing network [48].



2 Numerical procedures

2.1 Multidirectional cyclic shear test

Cyclic simple shear or torsional tests are usually carried out

in the laboratory using harmonic shearing. Multidirectional

cyclic shear test is similar to the simple shear test with the

major difference that two horizontal shear components are

simultaneously applied on the top of the soil specimen. The

resultant shear stress can change in both magnitude and

orientation with time. Generally, there are two stages in

this test: a consolidation stage by applying confinement

with or without static shear stress to bring the sample to a

well-defined consolidated state, and an undrained cyclic

shear stage by applying the cyclic shear stresses. The two

components of shear stress, sx and sy, evolve with time as

sx
p0

¼ SSRx þ CSRx sinð2pfxtÞ; ð1Þ

sy
p0

¼ SSRy þ CSRy sinð2pfyt þ /Þ: ð2Þ

Here p0 is the initial mean stress used for normalizing the

shear stress, usually adopted for isotropically consolidated

samples. For K0 consolidated samples that are prepared by

unidirectional compression with lateral normal strains

being constrained, p0 is replaced by the initial vertical

stress. Similar to the standard terminology as in simple

shear tests, the static stress ratio (SSR) represents the ratio

of static shear stress and initial confinement stress, and the

cyclic stress ratio (CSR) represents the ratio of cyclic shear

stress amplitude and initial confinement stress. Nonzero

SSR mimics the initial stress state of a soil element under

the sloping ground. One may expect two SSRs for two

static shear stresses and two CSRs for two cyclic shear

stresses in multidirectional cyclic shear test, but by a

proper choice of the coordinate system, the nonzero com-

ponent of SSR can be either SSRx or SSRy. fx and fy are the

frequencies of the two harmonic cyclic shear stresses along

the x and y directions, respectively, and / is the initial

phase difference between the two cyclic components.

Given that the two cyclic stresses can have different

amplitudes, frequencies, and phase angles, a wide range of

different shear paths can be generated. In this paper, we

consider four types of shear paths: 1-D linear, 2-D linear,

circular/oval, and 8-like, as depicted in Fig. 1. The 1-D

linear path is simply the traditional cyclic simple shear test,

which may also include static or bias shear stress in the

same direction as the subsequent undrained cyclic shearing.

It can be attained by setting SSRx ¼ 0, CSRx ¼ 0 in Eq. (1)

and / ¼ 0 in Eq. (2). The 1-D linear path indicates plane

strain condition, mimicking unidirectional shaking of level

(SSRx ¼ 0) or sloping (SSRx 6¼ 0) ground where shaking is

parallel to the slope direction. When the unidirectional

cyclic shearing is applied perpendicular to the direction of

static shear stress, the shear path is a 2-D linear path, as

shown in Fig. 1b. It can be achieved by setting CSRx ¼ 0

in Eq. (1) and SSRy ¼ 0, / ¼ 0 in Eq. (2). Circular/oval

path is obtained by setting SSRx ¼ 0, fx ¼ fy and / ¼ p=2.

When CSRx ¼ CSRy, it corresponds to a circular path.

Otherwise, it is an oval path. The 8-like path is configured

by setting SSRy ¼ 0, / ¼ 0, and fx ¼ 2fy. The component

SSR½ � breaks the symmetry of all the above shear paths.

2.2 Method, sample preparation, and shearing
protocols

An in-house three-dimensional (3D) particle dynamics

DEM platform, named GRFlow3D [42], was used in this

study. The granular assembly is composed of polydisperse

spheres interacting via soft-particle laws. The contact

interactions of spheres consist of normal elastic repulsion,

tangential sliding, rolling, and torsion. As the particles are

assumed to be nearly rigid, the local strain variable d½ �
should be defined from particle positions, and the corre-

sponding force f̂½ � can be calculated using linear spring-

dashpot model:

f̂½ � ¼ �k½ �d½ � � c½ � _d½ �; ð3Þ

where k½ � is the spring stiffness, and c½ � is the viscous

dashpot coefficient. The subscript placeholders can be for n

(normal contact), t (tangential sliding), r (rolling), or o

(torsion). Given the radii of two particles, ai and aj, and

their positions, ri and rj, the normal elastic contact

deflection dn along the normal direction is the overlap

between the two particles, given by

dn ¼ kri � rjk � ai � aj: ð4Þ

To exclude the non-realistic attractive force due to viscous

damping at incipient separation between two particles, the

normal force fn is represented by a ramp function Rðf̂nÞ
where RðxÞ ¼ x if x[ 0 and RðxÞ ¼ 0 if x� 0. The inter-

particle forces and torques exist only when dn\0. For the

tangential force f̂t, the strain variable dt is the cumulative

relative tangential displacement as long as the contact

between two particles exists. The tangential force ft is

equal to f̂t if jf̂tj\ltfn, where lt is the coefficient of fric-

tion, and to sgnðf̂tÞltfn if jf̂tj[ ltfn. Calculating the rolling

and torsional forces (torques) is analogous to the tangential

force. The strain variable dr for rolling is the cumulative

relative rotation of two particles in the contact plane,

whereas the strain variable do for torsion is the cumulative

relative rotation of two particles about their common axis

(perpendicular to the contact plane). Their conjugate



variables are fr and fo, respectively, which both have the

dimension of a torque. The rolling friction coefficient and

torsion friction coefficient are defined as fr ¼ sgnðf̂rÞlrafn
(for jf̂rj[ lrafn) and fo ¼ sgnðf̂oÞloafn (for jf̂oj[ loafn),
respectively, where a ¼ ai þ aj. Unlike the normal

deflection dn, the other three elastic deflections cannot be

directly calculated, but should be cumulated by integration

over time from the instant two particles come to contact, as

explained in detail in [36, 51].

Once all the forces and torques on a particle are

obtained, the translational and angular accelerations can be

calculated using Newton’s second law of motion. These

accelerations, together with the particle velocities at the

beginning of each time step, are then used to update the

velocities and positions of all particles. A velocity-Verlet

time-stepping scheme was used in the simulations.

The simulations involve two stages: preparing a particle

assembly via isotropic compression and applying a speci-

fied shear path to the assembly under the constant-volume

condition. The sample consists of spheres with weak size

plolydispersity, i.e., dmax=dmin ¼ 2 where dmax and dmin ¼
1:0 mm refer to the maximum and minimum particle

diameters, respectively. Between dmin and dmax, the particle

volumes follow a uniform distribution. One can refer to

[43, 67] for details of generating the particle size distri-

bution. Once the particles with their sizes are generated,

they are placed randomly on a 3D sparse lattice to avoid

overlaps. This 3D lattice is contained in a rectangular cell

whose top and bottom sides are rigid walls, and the four

lateral sides are periodic boundaries, denoted as a bi-peri-

odic cell.

The samples are compressed isotropically by moving the

six sides of the cell. During the compression process, the

gravity is set to zero. The six sides follow a translational

motion. The tangential contact friction coefficient lt is

tuned to achieve a certain value of the void ratio e, defined

as the ratio of the total pore volume to the solid volume.

Many of the laboratory procedures for sample preparation

at different densities cannot be precisely simulated; there-

fore, we adopted a simple computational procedure, mod-

ified from [34, 64], to prepare samples comparable with the

laboratory ones. The procedure consists of four substages,

which we describe here by taking the case of constructing a

medium dense sample with the target mean stress

p0 ¼ 100 kPa: (1) with lt ¼ 0:20, densifying the sparse

sample by moving the six sides at a constant speed until

void ratio e reaches 1.0; (2) setting velocities of particles

and the six sides to zero, and using a servo-control algo-

rithm to compress the sample isotropically with the target

p ¼ 10 kPa where lt remains 0.2; (3) increasing the target

p to half of p0, i.e., 50 kPa, and continuing compression of

the sample with lt ¼ 0:20; (4) modifying lt to 0.5 used for

further compressing the sample with the target p ¼ p0 ¼
100 kPa and subsequent cyclic shearing. One can refer to

[47, 63] for the details of the servo-control algorithm. The

first three substages generate an initially dense packing by

controlling the tangential friction coefficient and increasing

the confinement. The last substage is necessary to obtain a

smooth distribution of jftj=ðltfnÞ between 0 and 1 as usu-

ally a different lt is used in the stage of cyclic shearing.

We conducted other simulations on samples with different

numbers of spheres ranging between 2197 and 10,648. We

did not observe significant improvement in the macro-

scopic response under constant-volume (isochoric) cyclic

shearing for samples larger than 8000 spheres. Hence,

samples of 8000 spheres were used in this study, falling

into a range similar to that presented in [34, 38]. Figure 2a

displays one of the samples prepared by the above proce-

dure. The void ratio in all simulations analyzed in this

paper is e ¼ 0:647.

During cyclic shearing, the sample volume was kept

constant. The constant-volume condition in cyclic shearing

mimics the deformation of a porous solid matrix filled with

an incompressible pore fluid without the drainage of the
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Fig. 1 Shear paths simulated in this study (modified from Yang et al. [78]): a 1-D linear shear path; b 2-D linear shear path; c circular/oval shear

path; d 8-like shear path. The applied shear stress in the consolidation stage and the undrained cyclic shear stage are colored in blue and red,

respectively (color figure online)



latter, i.e., a ‘‘truly undrained test.’’ Both laboratory

experiments and DEM studies have confirmed the simi-

larity of the results in these two systems [5, 13]. The

constant-volume condition was achieved by fixing four

lateral sides and the bottom wall and keeping the sample

height h constant (see Fig. 2b). The top wall was free to

move horizontally for the application of shear. The speci-

fied stress paths were exerted via a servo-controlled

approach proposed by Wei et al. [73]. To reduce possible

rigid slippage between the walls and mobile particles, a

layer of particles was glued to the top and bottom walls as

indicated by black spheres in Fig. 2b.

For the choice of the shear rate, the inertial number

I ¼ _cd
ffiffiffiffiffiffiffiffi

q=p
p

was used, where _c ¼ v=h is the shear strain

rate with v the horizontal velocity of the top wall, q the

density of particles, d the mean diameter of particles, and p

the mean stress. The shear is considered to be quasistatic if

I � 1 [40], and the threshold is typically chosen as 10�3.

Below this value, the behavior is practically independent of

the shear rate. In constant-volume cyclic shearing, I varies

due to the change of p. When p degrades in cyclic shearing

and approaches vanishingly small values, I may momen-

tarily increase beyond 10�3. For a range of velocities v of

the top wall between 0:005 m=s and 0:01 m=s in the 1-D

linear path with a zero SSRy, it was found that the

macroscopic response even when p is very small does not

change noticeably during the whole shearing process. Even

at such minimal values of p, I does not exceed 0.05 (evi-

dence provided in the next section). Therefore, in all the

simulations reported in this paper, the velocity v ¼
0:01 m=s was adopted, corresponding to a shear strain rate

_c ’ 0:38 s�1 and consistent with [38]. For this choice, the

simulations are faster, and at the same time, shearing is

quasi-static when p is not very small. The higher values of

I at very small p arise from unstable deformation, which in

our simulations is an intrinsic feature of cyclic liquefaction

only and not influenced by the loading rate.

We checked the velocity profile of the sample during the

cyclic shearing. Before p drops to very small values, the

velocity profile is almost linear across the sample, i.e., the

whole sample is sheared by the motion of the top wall.

When p becomes tiny, the linear velocity profile disap-

pears, and the whole system enters a chaotic regime with

highly fluctuating velocity profiles.

The simulation parameters are given in Table 1. One

can introduce the stiffness number j such that the average

normal deflection dn between two particles in contact sat-

isfies dn=d / j�1 [51]. For the linear contact law in the

normal direction, j ¼ kn=ðpdÞ. In this study, kn was set to

106 N=m to guarantee dn � 10�3d in each contact, i.e., the

Fig. 2 Illustration of particle arrangements and boundary conditions

for a sample composed of 8000 particles: a at the end of sample

preparation; b during constant-volume cyclic shearing. The dark gray

particles are glued to the top and bottom walls of the simulation cell

Table 1 DEM parameters

Description Value

Density, q 2650 kg=m3

Normal stiffness, kn 106 N=m

Normal viscosity, cn 1:15 kg=s

Tangential stiffness, kt 0:8kn

Tangential viscosity, ct 0:2cn

Tangential friction coefficient, lt 0:2þ & 0:5�

Rolling stiffness, kr 0:1kn

Rolling viscosity, cr 0:05cn

Rolling friction coefficient, lr 0.1

Torsion stiffness, ko 0:1kn

Torsion viscosity, co 0:05cn

Torsion friction coefficient, lo 0.1

þIsotropic compression stage �cyclic shearing stage



particles can be considered as nearly undeformable [43].

Then, cn is is fixed to get a value of 0.15 for the normal

coefficient of restitution based on [57]. We also set

lt ¼ 0:5, which is a common value of the friction coeffi-

cient [19, 23, 27]. The values for other microscopic

material parameters can be obtained from their relations to

kn, cn or lt as suggested by Luding [36], and they are listed

in Table 1. The rolling and torsion stiffnesses and their

corresponding friction coefficients are set to a small non-

zero value in order to make rotations slightly dissipative

and accounting in a simple way for the effects due to

aspherical particle shape [15].

Ideally, for simulations of SSR½ � 6¼ 0 with the subscript

½ � for x or y, the static shear stress should be applied in the

compression stage. In this study, however, SSR½ � was

applied in the constant-volume cyclic shearing stage just

before adding the cyclic shear stress. As the current study

focuses on the effect of shear paths on the granular

assembly’s cyclic response, it is natural to use the same

initial sample. These two scenarios may be slightly dif-

ferent in practice. However, given that the sample prepared

in this study is medium dense, the initial condition is not

expected to change significantly if SSR½ � is applied in the

compression stage. The obvious impact of SSR½ � on the

sample response lies in its presence in the cyclic shearing

stage, which shifts the cyclic shear paths along a certain

direction. Furthermore, here we are mainly interested in the

long-time evolution for which the memory of the initial

preparation stage disappears along with cyclic shearing.

Table 2 lists 57 multidirectional cyclic shear tests sim-

ulated in this work, including the conditions implied by the

second to sixth columns. The last three columns of Table 2

refer to the simulation outcomes, which will be explained

in the sequel.

3 Macroscopic response

Stresses and strains at the sample scale can be computed in

the cyclic shearing phase and used to follow the evolution

of the mean effective stress and shear strain. The stress

tensor r is an average defined over a selected volume V

involving the inter-particle forces and contact normal

orientations:

r ¼ 1

V

X

c2Nc

lc 	 f c ð5Þ

where lc is the branch vector connecting the centers of two

particles for interior contacts or connecting the particle

center and the contact point for exterior contacts, f c is the

contact force, 	 denotes the tensor dyadic product and the

summation runs over all the contacts Nc in the selected

Table 2 Conditions and outcomes of multidirectional cyclic shear tests on

a medium dense sampley

Test Shear

path

SSRx SSRy CSRx CSRy NIL ru;lim su;lim=p0

1 1-D

linear

0.20 65.3 1.00 0.00

2 0.05 0.20 53.3 1.00 0.00

3 0.10 0.20 35.2 1.00 0.00

4 0.15 0.20 24.2 1.00 0.00

5 0.20 0.20 37.2 1.00 0.00

6 0.25 0.20 70.2 0.64 0.05

7 0.30 0.20 117.2 0.42 0.11

8 0.25 17.3 1.00 0.00

9 0.05 0.25 15.8 1.00 0.00

10 0.10 0.25 12.2 1.00 0.00

11 0.20 0.25 11.2 1.00 0.00

12 0.30 0.25 39.2 0.61 0.05

13 0.30 8.7 1.00 0.00

14 0.10 0.30 7.2 1.00 0.00

15 0.20 0.30 7.2 1.00 0.00

16 0.30 0.30 18.2 1.00 0.00

17 0.30 0.35 6.2 1.00 0.00

18 2-D

linear

0.05 0.20 60.6 0.91 0.05

19 0.10 0.20 42.0 0.80 0.10

20 0.15 0.20 26.6 0.69 0.15

21 0.20 0.20 21.7 0.56 0.20

22 0.30 0.20 54.7 0.22 0.30

23 0.05 0.25 15.1 0.91 0.05

24 0.10 0.25 12.1 0.80 0.10

25 0.20 0.25 9.2 0.55 0.20

26 0.30 0.25 15.1 0.26 0.31

27 0.05 0.30 6.5 0.91 0.05

28 0.10 0.30 6.0 0.79 0.10

29 0.20 0.30 5.5 0.57 0.20

30 0.30 0.30 7.1 0.27 0.31

31 Circular/

oval

0.15 0.15 48.9 0.71 0.15

32 0.10 0.15 0.15 29.6 0.91 0.05

33 0.20 0.15 0.15 23.6 0.89 0.05

34 0.05 0.20 56.8 0.91 0.05

35 0.10 0.20 34.3 0.80 0.10

36 0.15 0.20 16.9 0.70 0.15

37 0.20 0.20 9.2 0.61 0.20

38 0.05 0.20 0.20 8.5 0.70 0.15

39 0.10 0.20 0.20 6.7 0.80 0.10

40 0.15 0.20 0.20 5.6 0.91 0.05

41 0.20 0.20 0.20 5.9 1.00 0.00

42 0.25 0.20 0.20 8.7 0.90 0.05

43 0.30 0.20 0.20 17.8 0.65 0.12



volume V. The superscript c in lc and f c will be dropped in

the sequel for simplicity. The two shear stresses sx and sy in

Eqs. (1) and (2) refer to the components rzx and rzy,
respectively. The mean effective stress p is given by

ðrxx þ ryy þ rzzÞ=3.

Pore water is not explicitly included in the present DEM

model; however, the deduced excess pore pressure in the

‘‘equivalent’’ undrained system with an incompressible

pore fluid is computed as the variation of the simulated

reduction in mean effective stress

Du ¼ p0 � p: ð6Þ

It is common to use the dimensionless pore pressure ratio

defined by

ru ¼
Du
p0

¼ 1 � p

p0

: ð7Þ

Vanishing pressure p corresponds to ru ’ 1. From this

point forward, any reference to pore pressure or pore

pressure ratio simply means the deduced values from

Eqs. (6) and (7).

The shear strain components ðcx; cyÞ are measured as

cx ¼
xw
h
; cy ¼

yw
h
; ð8Þ

where xw and yw refer to the cumulative horizontal dis-

placements of the top wall along x and y directions,

respectively. Their values at any given time t can be cal-

culated as

xwðtÞ ¼
Z t

0

vxdt; ywðtÞ ¼
Z t

0

vydt; ð9Þ

with vx and vy representing the velocities of the top wall in

the x and y directions, respectively.

Before presenting the results of multidirectional cyclic

shear tests, let us consider Fig. 3, which displays the evo-

lution of inertial number for the constant-volume cyclic

simple shear test with CSR ¼ 0:20 (test 1 in Table 2). We

see that I stays below 10�4 when N\60 and following the

first liquefaction oscillates between 10�4 and 0.05. The

states with I[ 10�3 reflect the small values of p in the

liquefaction state. Note that the mean stress p never van-

ishes as otherwise I would diverge. Hence, the liquefaction

state corresponds here to the unstable collapse of the

microstructure and its fragile and mobile nature, as

described in the sequel.

Figure 4 compares the stress paths from the constant-

volume monotonic and cyclic simple shear tests with

CSR ¼ 0:20. Both tests start from the same state of the

initial packing (IP) and show a contraction tendency (de-

creasing p) at the beginning of shearing. Their stress paths

overlap before the shear reversal in the cyclic test. The

contraction tendency continues in the monotonic test until

the phase transformation (PT) state. It then switches to

dilation tendency (increasing p) until reaching the critical

state (CS) presented in the inset window. The cyclic plot

presents oscillations of stress path with a general decreas-

ing trend of p and finally gets trapped in a butterfly shape,

referred to as ‘‘cyclic mobility’’. Two lines are drawn from

the origin to the PT and CS of the monotonic test with

slopes Mp and Mc, respectively. A third line is determined

to approximate the dilation phase of the butterfly shape

with slope Mf . The phase transformation of the monotonic

test appears to have a higher slope than that of the cyclic

test. Also, the cyclic test does not reach the critical state in

the dilation phase of the butterfly shape, given that
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Fig. 3 Evolution of inertial number I for the constant-volume cyclic

simple shear test with CSR ¼ 0:20

Table 2 (continued)

Test Shear

path

SSRx SSRy CSRx CSRy NIL ru;lim su;lim=p0

44 0.25 0.25 3.7 0.50 0.25

45 0.30 0.25 0.25 4.8 0.90 0.05

46 8-like 0.15 0.15 21.1 1.00 0.00

47 0.10 0.15 0.15 12.0 0.92 0.04

48 0.20 0.15 0.15 16.0 0.76 0.11

49 0.05 0.20 44.5 1.00 0.00

50 0.10 0.20 20.1 1.00 0.00

51 0.15 0.20 9.8 1.00 0.00

52 0.20 0.20 5.5 1.00 0.00

53 0.10 0.20 0.20 4.0 0.92 0.04

54 0.20 0.20 0.20 4.8 0.81 0.09

55 0.30 0.20 0.20 12.6 0.62 0.17

56 0.25 0.25 2.3 1.00 0.00

57 0.30 0.25 0.25 4.5 0.67 0.15

yVoid ratio e ¼ 0:647 and p0 ¼ 100 kPa measured at the end of isotropic
compression

Empty space in the third, fourth, and fifth columns implies zero value



Mf [Mc. The states of IP and CS will be used later for

further comparisons.

3.1 4-way plot

The macroscopic behavior of the granular sample under the

four shear paths is displayed in Figs. 5, 6, 7, and 8, in the

form of a 4-way plot [28]. These figures refer to the tests 1,

19, 37, and 52, respectively, in Table 2, all with the same

CSR of 0.20.

The 4-way plot for 1-D linear path consists of stress

path, stress–strain loop, deduced pore pressure ratio evo-

lution, and shear strain development. The 4-way plots for

the other three paths consist of the applied shear stress

path, the shear strain path, deduced pore pressure ratio

evolution, and development of the resultant shear strain

c 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
x þ c2

y

q

. Among the selected DEM simulations in

these four figures, only the 2-D linear path has a static

shear ratio of 0.10. For each simulation, ‘‘initial liquefac-

tion’’ is defined as when the resultant shear strain reaches

3:0% for the first time [28], i.e., cIL ¼ 3:0%, and the cor-

responding number of cycles is denoted as NIL, as shown in

Figs. 5, 6, 7 and 8. This state divides the cyclic shearing

stage into two parts, pre-liquefaction and post-liquefaction,

for the period prior to and after initial liquefaction, colored

in gray and dark red in these figures, respectively. The limit

pore pressure ratio ru;lim is defined by the maximum

achieved values of pore pressure ratio. The corresponding

resultant shear stress and number of cycles are denoted as

su;lim and Nu;lim, respectively.

In these four simulations, one can see that notional pore

pressure develops along with cyclic shearing. However, its

limit value ru;lim reaches 1.0 in 1-D linear and 8-like paths
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Fig. 4 Comparison of stress paths in constant-volume monotonic and

cyclic simple shear tests (CSR ¼ 0:20). IP stands for initial packing,

PT for phase transformation, and CS for critical state. The straight

lines represent the phase transformation (slope Mp) and critical state
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large mean stress values
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transiently, indicating the vanishing of p, whereas in 2-D

linear and circular paths it remains well below 1.0. We also

see that all shear paths generate large shear strains. These

observations suggest that the vanishing of the mean

effective stress is not a necessary condition for large shear

strain development, although it holds for the cyclic simple

shear test as observed in Fig. 5. Recalling the motivation

behind the application of SSR concerning the stress state in

sloping grounds, as SSR indicates the slope dip direction,

Fig. 6 suggests that large shear strain develops mainly

along the slope direction with the cyclic loading perpen-

dicular to that direction. Moreover, the four simulations

imply that NIL and Nu;lim are fairly close to each other,

suggesting that initial liquefaction occurs almost simulta-

neously with p dropping to its minimum. All these obser-

vations are consistent with the laboratory findings

[6, 26, 28, 29].

A loading cycle in the post-liquefaction period of each

simulation is selected to zoom into the details of the evo-

lution of microscopic descriptors in Sect. 4. The related

cycle is highlighted in cyan color in Figs. 5, 6, 7 and 8,

along with some selected states. In particular, in the related

loading cycle of 1-D linear and 8-like paths, six states C0,

C00 , C1, C2, C20 , and C3, were selected with the prefix C

representing cycle and the subscripts representing the

sequence of occurrence of such states. C0 refers to the

instance with the largest number of floaters (particles

without any contact) when s transitions from negative to

positive (1-D linear) or from quadrant III to quadrant I in

the space of applied shear stresses (8-like). C00 refers to

when ru � 0:99 for the first time after C0, the subsequent C1

refers to sy reaching the shear stress amplitude and C2, C20

and C3 are similar to C0, C00 and C3, respectively, but in the

remaining loading cycle. C00 and C20 are missing in the

shear paths of 2-D linear and circular, but the other par-

ticular states apply to these paths as well, and one can see

those in in Figs. 6 and 7.

In particular, in the related loading cycle of 1-D linear

and 8-like paths, six states were selected with the prefix C

representing cycle: C0 refers to the instance with the largest

number of floaters (particles without any contact) when s
transitions from negative to positive (1-D linear) or from

quadrant III to quadrant I in the space of applied shear

stresses (8-like). C00 refers to when ru � 0:99 for the first

time after C0, the subsequent C1 refers to sy reaching the

shear stress amplitude and C2, C20 and C3 are similar to C0,

C00 and C3, respectively, but in the remaining loading

cycle. C00 and C20 are missing in the shear paths of 2-D

linear and circular, but the other particular states apply to

these paths as well, and one can see those in in Figs. 6 and

7.

−20 −10 0 10 20
τx (kPa)

−20

−10

0

10

20

τ y
(k
Pa

)

C1

C3

−1 0 1
−1

0

1

C0

C0C2

C2

−20 −10 0 10 20
γx (%)

−20

−10

0

10

20

γ
y
(%

)

C0
C0

C1

C2

C2

C3

1.0 0.8 0.6 0.4 0.2 0.0
ru

0

2

4

6

8

10

N Nu,lim = 5.0

ru,lim = 1.00

0 6 12 18 24 30
γ (%)

0

2

4

6

8

10

N

γIL = 3.0 %

NIL = 5.5

Fig. 8 Macroscopic response of constant-volume multidirectional cyclic shear test with CSRx ¼ CSRy ¼ 0:20: 8-like shear path



3.2 Post-liquefaction pore pressure evolution

The evolution of pore pressure ratio ru in Figs. 5, 6, 7 and 8

indicates that once the limit pore pressure ratio is achieved,

the pore pressures oscillate [29]. Thus, for each simulated

test, one can extract the limit pore pressure ratio ru;lim and

the corresponding shear stress ratio su;lim=p0, as shown in

Table 2. Figure 9 shows ru;lim versus su;lim=p0 for all sim-

ulations. Most of the data points can be fitted by a

decreasing linear function y ¼ �2:08xþ 1:00, and the

slope is very close to �1=Mf ¼ �2:04, where Mf ’ 0:49 is

the slope of stress path at butterfly shape as shown in

Fig. 5. This value of Mf is slightly higher but very close to

the shear stress ratio Mc ¼ s=p at critical state of the

constant-volume monotonic simple shear simulation while

the latter is around 0.43. Note that the fit function intercepts

the y-axis at 1, suggesting that ru;lim ¼ 1 occurs simulta-

neously with su;lim ¼ 0. They are necessary and sufficient

conditions for each other.

There are a few data points that do not fall on but are

below the fitted line. They consist of three points from the

1-D linear path, three points from the 2-D linear path, and

one point from the circular path. The three cases of 1-D

linear path occur for SSRx exceeding CSRy so that there is

no shear stress reversal, i.e., the minimum value of sy stays

positive. For these tests, when ru;lim is attained, the corre-

sponding stress state ðsy; pÞ is still away from the failure

surface of Fig. 5, which is consistent with the laboratory

experiments [7, 11, 24, 66, 75]. The three cases of 2-D

linear path correspond to large values of SSRy. For the

circular path, its stress path does not contain the origin

(zero shear stress state) of the applied shear stress in the

space ðsx; syÞ. Kammerer et al. [29] also pointed out certain

similar cases where the imposed shear stress remained so

large that the soil could not contract significantly upon

loading reversal. Hence, the decrease in mean effective

stress is not large enough to bring the granular system close

to the Coulomb failure surface.

3.3 Cyclic liquefaction resistance

Cyclic liquefaction failure is often defined as the state at

which shear strain exceeds a limit value, taken to be 3% in

the present work. Cyclic liquefaction can be triggered by

different combinations of uniform CSR, and the number of

loading cycles. The liquefaction strength curve, i.e., the

plot of CSR versus the number of cycles to the initial

liquefaction NIL, is of great practical importance.

In developing the CSR–NIL curves, the CSR must be

defined differently for different test types. The cyclic

shearing stages of the 1-D and 2-D linear shear paths

require only CSRy, while the circular/oval and 8-like shear

paths require both CSRx and CSRy. To facilitate the

comparative analysis of the liquefaction strength curve, we

select CSR ¼ CSRy as the control variable, and for circular

and 8-like shear paths we only consider the cases with

CSRx ¼ CSRy, i.e., aspect ratio (AR) of 1. Recall that

Figs. 5, 6, 7 and 8 are simulations with CSRy ¼ 0:20, so

that additional simulations with different levels of CSRy

are needed to analyze the cyclic liquefaction strength. For

generating the CSR–NIL curves, the selected 1-D linear,

circular, and 8-like shear paths were those with zero SSR.

For the 2-D linear case, however, SSRx ¼ 0:10.

Figure 10 presents the liquefaction strength curves for

the four types of shear paths where the initial liquefaction

is defined as the first time the total shear strain c ¼
ðc2

x þ c2
yÞ

1=2
reaches 3%. For each shear path, three data

points are shown. We see that the liquefaction resistance

declines with increasing CSRy, as expected. Following the

convention in soil dynamics, the liquefaction strength data

points can be fitted by a power-law function [25, e.g.,]:
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CSRy / N�b
IL ð10Þ

where the exponent is found to be b ’ 0:20 for the four

paths. We also observe a decrease in liquefaction resistance

following the order of 1-D linear, 2-D linear, circular, and

8-like shear paths, in agreement with laboratory findings

[28]. This decrease in NIL for two-dimensional cyclic paths

can be attributed to the shear stress dip in 2-D linear path

and stress rotation in circular and 8-like paths in Fig. 10,

which lead to extra degradation of the granular load-bear-

ing structure and therefore lower level of liquefaction

resistance.

To explore the effect of AR on the cyclic liquefaction

resistance, four additional simulations of circular/oval and

8-like shear paths with different values of CSRx and a fixed

value of CSRy ¼ 0:20 are added to Fig. 10; the data points

are shown with thinner oval and 8-like symbols. The col-

lective data points from the tests at CSRy ¼ 0:20 indicate

an increase in liquefaction resistance with a decreasing AR

as they approach the 1-D linear case, in agreement with

experiments [26, 28]. They coincide with the 1-D linear

case as AR tends to zero.

To explore the effect of static shear stress on cyclic

liquefaction resistance, Fig. 10 can be extended by incor-

porating liquefaction strength curves for different values of

SSR½ �. Here the bracket subscript ½ � represents y for 1-D

linear and circular shear paths and x for 2-D linear and 8-

like shear paths, as illustrated in Fig. 1. In doing so, one

obtains many fitted curves to the corresponding simulation

data using Eq. 10. The simulation data cover different

shearing paths and different values of SSR½ �. To charac-

terize the cyclic resistance ratio (CRR) of the sample in a

certain shearing path and under a certain value of SSR½ �,

the value of CSRy required to cause initial liquefaction at

10 loading cycles, denoted hereafter as CRRy, can be

extracted from the fitted curves. Element level experi-

mental studies on some of these loading paths on sands

were reported in [6, 24, 65, 76]. For developing the CRRy–

SSR½ � plot, and particularly for the circular and 8-like

paths, we only use the simulations with AR ¼ 1, hence

excluding the effect of AR. Therefore, in total, we use 51

out of the 57 simulations presented in Table 2. Figure 11

shows the values of CRRy against SSR½ � for the four shear

paths. The dashed line shows the line CRRy ¼ SSR½ �
dividing the parameter space into two regions. Depending

on the stress path, the points above and below this line

could have different meanings. For the 1-D linear and

circular shear paths, being above this line means experi-

encing the change of sy sign in each loading cycle for the

corresponding cyclic stress ratio, and vice versa for below

the line. The same argument is valid for the 8-like shear

path, but only in terms of the change of sx sign in each

loading cycle. These arguments do not apply to the 2-D

linear shear path.

A marked feature in Fig. 11 is that SSR½ � affects the

cyclic resistance differently for these shear paths. For the

1-D linear shear path, CRRy presents an increasing trend

with increasing SSRy, and for the examined level of SSR½ �
in this study, the curve stays above the dashed line, i.e., in

the region with shear stress reversal. This is similar to the

observations from laboratory experiments [24, 76]. The 2-

D linear shear path curve stays below the 1-D linear one,

and it does not change significantly, consistent with the

laboratory results on medium dense sands [6]. The curves

of circular and 8-like shear paths are located even below

the 2-D linear one, and both cross the line CRRy ¼ SSR½ �.

We could not find any corresponding laboratory study in

the literature revealing the effect of static shear stress on

cyclic liquefaction resistance for circular and 8-like shear

paths in such a systematic way. While Fig. 10 clearly

shows the effect of shear path on the cyclic resistance

curves in absence of SSR½ �, Fig. 11 shows that SSR½ � can

have an obvious impact when SSR is large. For example, in

this figure, around SSRx ¼ 0:20 the CRRy values of 2-D

linear and circular shear paths are similar. The same thing

can be seen around SSRx ¼ 0:30 for the circular and 8-like

shear paths.

Kammerer et al. [29] highlighted two conflicting effects

of the imposed shear stress. As previously shown, for the

stress paths where minðs2
x þ s2

yÞ
1=2=p0 approaches 0 tran-

siently, ru;lim approaches 1, where large shear strain can

develop due to the vanishing resistance of the granular

system. For the stress paths where minðs2
x þ s2

yÞ
1=2=p0 is

above 0, ru;lim stays below 1; however, the imposed shear

stress can still drive the system to deform progressively.

For 1-D linear shearing, the former scenario corresponds to

occurrence of shear stress reversal and large cyclic strains

due to the state ru ’ 1, and the latter scenario corresponds
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Fig. 11 Cyclic liquefaction resistance as a function of the level of

static stress ratio



to no shear stress reversal but development of residual

deformation, as also noted in [11, 24]. More specifically,

the main origin of reaching the cIL ¼ 3% in the 1-D linear

cases of Fig. 10 is the first effect, whereas in the 2-D linear

and circular cases the large strains arise as a result of the

second effect. For the 8-like shear paths, both of these

effects are at work to increase the shear strain beyond

cIL ¼ 3%. This can be observed by comparing the strain

path in Fig. 8 from C0 to C00 (where the first effect is

dominant) with the one from C00 to C1 (where the second

effect is dominant). Given these two effects at low and high

static shear stresses, naturally one would expect that at an

intermediate level of static shear stress CRR attains a

minimal level. Figure 11 indicates that the lowest value of

CRRy is reached along with a certain amount of static shear

stress, quite in line with the suggestion that the balance

between these two competing aspects results in high shear

strain potential [29].

4 Granular microstructure

This section first analyzes the particle connectivity and

friction mobilization, which are correlated with system

stability. Then, a particle-void fabric analysis is adopted to

clarify the mechanisms underlying the macro deformation.

Finally, the fabric and force anisotropies are used to par-

tition the load-bearing network, revealing the particle-scale

origins of shear resistance under cyclic loading and in the

transition to the cyclic liquefaction state.

4.1 Particle connectivity and friction
mobilization

The coordination number zg is the average number of

force-bearing contacts per particle excluding floaters (par-

ticles without contacts):

zg ¼ 2Nc

Np � N0
p

; ð11Þ

where Np is the total number of particles and N0
p is the

number of floaters. In addition to zg, also named ‘‘geo-

metrical coordination number’’ [64], one may also calcu-

late the average coordination number considering all the

particles and the ‘‘mechanical coordination number’’ con-

sidering particles with at least two contacts [63]. Here zg is

used instead of the other two quantities because it better

approximates the level of static redundancy in the system,

i.e., the difference between the total number of constraints

and the total number of degrees of freedom. Thus, it is

more closely linked with the granular system’s overall

stability since a minimum number of contacts are necessary

for the static equilibrium of all particles. Its decrease below

this minimum value reflects the system’s destabilization.

Figure 12 shows the evolution of zg along with the cyclic

shearing process for the four simulations of Figs. 5, 6, 7,

and 8. The time histories are colored according to the value

of ru ranging between 0 and 1. A zoomed-up window for

each test is added to show the variation of zg in a loading

cycle in the post-liquefaction period, and the highlighted

dots represent selected states. We observe an overall

gradual decreasing trend of zg from 4.7 down to a value

below 4 along the cyclic shearing for all the four shear

paths. After the state of minðNu;lim;NILÞ, for 1-D linear and

8-like shear paths, zg tends to oscillate significantly and

drops below 3.6 when ru exceeds 0.99; for the 2-D linear

and circular shear paths, zg oscillates mildly and stays

above 3.6.

As mentioned previously, zg can also be viewed as an

approximate measurement of the level of static redundancy

in the system, i.e., the total number of constraints compared

to the total number of degrees of freedom. For the 3D-

DEM with contact laws consisting of the normal collision,

tangential sliding, rolling, and torsion, each contact

involves three forces and three torques (constraints) to be

determined. On the other hand, the number of equations

equals six force/torque balance equations for the degrees of

freedom of each particle. Hence, removing the floating

particles and equating the number of degrees of freedom

with the number of forces/torques, we come up with the

relation 6Nc ¼ 6ðNp � N0
pÞ for an isostatic system with

infinite friction. Thus, the critical value of zg for isostaticity

is ziso ¼ 2. For a system with finite friction, the value of ziso

may slightly increase due to the mobilization of sliding,

rolling, or torsion friction, thus reducing the number of

constraints. For a system with sliding but zero rolling and

torsion, we have ziso ¼ 6=ð3 � fsÞ where fs is the sliding

mobilization fraction; for a system with sliding but infinite

rolling and torsion, we have ziso ¼ 12=ð3 � fsÞ [22].

However, one cannot express ziso theoretically since zg

cannot be determined only by the combinations of each

friction mobilization fraction. Instead, another descriptor

called ‘‘redundancy index’’ is introduced and may provide

a better choice [18, 23, 31, 38, 49, 81]. Still one can treat

ziso ¼ 2 as the lowest bound for an under-constrained

system. As to the upper bound, given the small values of

rolling and torsion friction in this study, the value ziso � 3

should be a reasonable guess. According to Fig. 12a, one

can assert that along the 1-D linear shear path, the system

becomes transiently under-constrained (zg\2). For the 2-D

linear and circular shear paths, the system remains over-

constrained (zg [ 2) as zg is always well above 3. In the 8-

like shear path, the system may become under-constrained



temporally given that the recorded minimum value of zg is

quite close to 2.

Let us go back to the particular states highlighted in

Figs. 5, 6, 7, and 8, as well as the two reference states IP

and CS. Figure 13 presents the corresponding connectivity

P(c), defined as the proportion of particles with exactly c

contacts. Compared with IP, the monotonic and cyclic

loading paths push the distribution leftwards (smaller val-

ues of c) in two different ways. The monotonic loading

mainly changes the distribution for c� 4 while cyclic

loading drags the whole distribution leftwards. In 1-D

linear and 8-like shear paths, an irregular distribution is

observed with a higher proportion of floaters at C0 and C2.

These are the states corresponding to the lowest zg,

revealing the collapse of the contact network. For the other

selected states, the contact network is well formed. We

observe also a remarkable change of P(c) between C0 and

C00 , or C2 and C20 , despite the proximity of the mean

stresses. As long as ru � 0:99, the sample deforms signifi-

cantly to rebuild the contact network without a significant

change of p. Hence, this process is more akin to a redis-

tribution of forces among particles rather than a buildup of

stress across the sample. For 2-D linear and circular paths,

consistently with the system’s over-constrained state, the

distribution does not vary noticeably.

A local coordinate system ðn; tÞ can be attached to each

contact, with n being the unit vector perpendicular to the

contact plane and t an orthonormal unit vector in the

contact plane oriented along the tangential contact force.

Thus, we have f ¼ fnnþ ftt, with fn and ft representing the

magnitudes of the normal and tangential forces, respec-

tively. To quantify the susceptibility of a contact to sliding,

which is associated with soil plasticity [2], one can define

the friction mobilization index [3, 37]:

Im ¼ jftj=ðltfnÞ ð12Þ

where lt is the friction coefficient. This index varies

between 0 and 1, with 1 indicating sliding or fully mobi-

lized contact.

Figure 14 displays the snapshots of the probability

density function PðImÞ of Im at selected states for the four

shear paths where IP and CS are added for comparison.

Compared with IP, both monotonic and cyclic loading tend

to push PðImÞ rightwards, i.e., a larger proportion of con-

tacts getting close to sliding. Interestingly, the sliding

contact proportion fs at CS is quite similar to the value at
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Fig. 12 Evolution of the coordination number zg under different shear paths: a 1-D linear; b 2-D linear; c circular; d 8-like



IP, around 0:2%. For cyclic loading, the sliding proportion

varies significantly depending on the selected states. At C0

and C2, where the shear stress vanishes for 1-D linear and

8-like shear paths, one can observe a large proportion of

fully mobilized contacts as shown in the inset windows.

The corresponding sliding contact proportions for the 1-D

linear and 8-like shear paths are around 60% and 10%,

respectively. The difference between 1-D linear and 8-like

plots is only due to time resolution, i.e., the recording

frequency of data. The proportion of mobilized contacts

decreases with increasing shear stress [19], as verified at

the states C1 and C3 where fs is around 2% for all four

cyclic stress paths. By comparing C0 with C00 or C2 with

C20 where fs at C00 or C20 is around 10%, one can conclude

that the force network is still not fully established despite

the resilience of the contact network in Fig. 12a and d.

Given the stability of the system for 2-D linear and circular

shear paths, it is expected that PðImÞ does not vary sig-

nificantly, as observed in Fig. 14b and c although Fig. 14b

exhibits a slight increase in the number of mobilized con-

tacts at s reaching its minimum value (C0 or C2). It should

also be remarked that the distribution of Im has a peak value

around Im ’ 0:3 independently of the shear path. This

feature reflects the anisotropy of the contact network with

friction mobilization depending on the orientations of the

contacts.

Figure 15 shows snapshots of normal forces at C2 for

each shear path. This is the system’s weakest state in a

post-liquefaction loading cycle for all paths but the circular

one. The forces are represented as bars joining particle

centers with bar thickness proportional to the intensity of

the normal force. The bar is colored according to the value

of Im at each contact. In addition, Fig. 16b presents a

zoom-in view of Fig. 15a to show the details, where the

color code is replaced by the value of fn, with Fig. 16a at IP

for the comparison. In this ‘‘unjammed’’ state, we observe

the scattering of weak and short force chains with a large

proportion of mobilized contacts for 1-D linear and 8-like

shear paths [4, 21], and a span of strong and long force

chains connecting the top and bottom walls for 2-D linear

and circular shear paths, again compatible with quasistatic

equilibrium.
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Fig. 13 Connectivity diagram expressing the fraction P(c) of particles with exactly c contacts at particular states in shear path of: a 1-D linear;

b 2-D linear; c circular; d 8-like



4.2 Particle-void fabric

We have seen that the system falls into an under-con-

strained state occasionally for 1-D linear and 8-like shear

paths and remains over-constrained for 2-D linear and

circular paths. A related natural question is why large shear

strain still develops in the 2-D linear and circular tests, as

observed in Figs. 6 and 7. The analysis of stress fluctua-

tions during monotonic loading [33] may shed light on this

issue as local failure probably due to a multi-slip mecha-

nism occurs very frequently despite the overall stability of

the system. This local failure reduces the shear resistance

gradually, inducing a mild increase in shear strain. In

drained unidirectional cyclic loading, an abrupt reduction

in the number of sliding contacts is observed upon transi-

tion from loading to reverse loading [1], leading to higher

resistance. The distinct resistance between loading and

reverse loading causes the accumulation of shear strain

along one direction, i.e., the mode of development of

residual deformation (cyclic ratcheting). We may also

resort to void-related fabrics to search for some hints given

that the voids are directly related to the strain [32].

Let us consider a particle-void indicator called ‘‘centroid

distance’’ Dc introduced by [68, 73]. For each particle i,

one can obtain its circumscribed Voronoi cell, and thus the

vector connecting the cell center Oi and particle center Pi,

also normalized by the mean radii of particles R50:

Di
c ¼

Pi � Oi

R50

ð13Þ

As a particle i surrounded by a large Voronoi cell corre-

sponds to a large value of kDi
ck, the latter can be used to

quantify the distribution of voids surrounding the particles

[73]. The centroid distance Dc is the average value of kDi
ck

over all the particles in the system:

Dc ¼
1

Np

X

i2Np

kDi
ck: ð14Þ

Figure 17 displays the evolutions of Dc for the four shear

paths, along with the inset window for zooming in the

selected loading cycle. The time history in each subplot is

colored by the developed shear strain, as shown in the

colorbar. Generally, for the four shear paths, at the

beginning of cyclic loading before initial liquefaction, Dc
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Fig. 14 Probability density function of friction mobilization index at selected particular states for different shear paths: a 1-D linear; b 2-D linear;

c circular; d 8-like



does not change noticeably, then drops significantly near

initial liquefaction, and follows a decreasing trend during

the post-liquefaction period. The values of Dc at the initial

liquefaction are very close (around 0.0704) for 1-D linear,

circular, and 8-like paths, and smaller than that of 2-D

linear (around 0.0720), which may indicate that there still

exist large voids in the test of 2-D linear compared with the

others. This may be because in the 2-D linear test, the

packing network is not fully destroyed according to

Fig. 12b, thus constraining the redistribution of voids due

to cyclic shearing. One can notice the coincidence of a

significant drop of Dc and large shear strain accumulation,

illustrating the direct link between void redistribution and

large shear strain development. From that perspective, the

pre-liquefaction period can be viewed as the stage with

gradual propagation of cyclic disturbance to the whole

sample, generating more connected but smaller voids. The

2-D linear and circular tests show a trend for saturation of

Dc in the last few loading cycles. However, it is not

reflected by the 1-D linear and 8-like paths possibly

because more loading cycles are needed. In the zoom-in

windows of 1-D linear and 8-like tests, significant change

mainly occurs between C0 and C00 , or C2 and C20 , corre-

sponding to the deformation mode of cyclic mobility. In

the zoom-in windows of 2-D linear and circular tests, the

change tends to happen randomly in the loading cycle, a

behavior that may be linked to the mode of residual

deformation development. Interestingly, in the 1-D linear

zoomed-in view, Dc attains the local minima at nearly zero

shear strain, as indicated by the color code.

Fig. 15 Snapshot of normal forces in the sheared sample at C2 for different shear paths: a 1-D linear; b 2-D linear; c circular; d 8-like. Line

thickness is proportional to the normal force at each contact. Color code represents the mobilized friction index Im in the range between 0 and 1.

The same camera view as Fig. 2 is used here (color figure online)



4.3 Fabric and force anisotropies

The scalar variables considered so far do not account for

the vectorial nature of the force network and strain-induced

anisotropy, which play a crucial role in the mechanics of

granular materials [52, 55]. The geometrical anisotropy in a

granular system can be described by the fabric tensor /c,

which describes the distribution of contact normals n

[46, 56]. It is defined as

/c ¼
1

Nc

X

c2Nc

n	 n; ð15Þ

where n is unit vector along the contact normal and Nc is

the total number of contacts. The fabric anisotropy tensor is

defined by

ac ¼
15

2
/c �

1

3
I

� �

; ð16Þ

where I is the second-order identity tensor. One can refer to

[30] for the details of derivation.

In the same way, the contact force anisotropy can be

extracted from force tensors that reflect the distribution of

normal and tangential contact forces [30, 48, 59]. They can

be considered as force-weighted fabric tensors and defined

as

/n ¼
1

Nc

X

c2Nc

fnn	 n

1 þ ac : ðn	 nÞ ð17Þ

/t ¼
1

Nc

X

c2Nc

f t 	 n

1 þ ac : ðn	 nÞ ; ð18Þ

from which two force anisotropy tensors are defined:

an ¼
15

2

/n

trð/nÞ
� 1

3
I

� �

ð19Þ

at ¼
15

3

/t

trð/nÞ
ð20Þ

where trð�Þ is the trace operator. Equation (18) implies

trð/tÞ ¼ 0 given the normality of t and n.

The deviatoric invariants of these tensors represent the

degree of anisotropy:

a½ � ¼ signðS½ �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
a½ � : a½ �

r

ð21Þ

where the subscript ½ � stands for c, n, or t, corresponding to

the three aforementioned anisotropy tensors, respectively.

S½ � is a normalized first joint invariant between s ¼ r� pI

and each of the anisotropy tensors [19, 35], given by

S½ � ¼
a½ � : s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a½ � : a½ �
p ffiffiffiffiffiffiffiffi

s : s
p ð22Þ

The well-known deviatoric stress is q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3=2Þs : s
p

.

Generally, S½ � quantifies the level of coaxiality between two

tensors, with S½ � ¼ 1:0 corresponding to the case where two

tensors are proportional. S½ � can be regarded as defining the

relative orientations of the principal axes (PA) of a½ � with

respect to that of s, i.e., the level of coaxiality. Its sign is

positive (respectively, negative) when the angle between

principal axes is below (respectively, above) p=4.

Figure 18 displays the evolutions of S½ � at the states

where sy=p0 reaches �CSRy in each loading cycle for the

four shear paths. These are the points C1 and C3 of each

loading cycle where the system forms a stable load-bearing

network according to the previous analysis of particle

connectivity. In each loading cycle, one expects marked

oscillations of S½ �, which is indeed what we observe for the

1-D linear, 2-D linear, and 8-like tests as shown in the

zoom-in window of each plot, but not for the circular test.

The difficulty in dealing with cyclic loading is the absence

of an ultimately converged state, such as the critical state

(CS) for monotonic loading. For the conventional cyclic

simple shear test, the closest states to the CS are C1 and C3

and thus assumed also for the other three shear paths. It is

generally believed that q/p reaches its critical state values

Fig. 16 Contact force networks for the system at a IP and b C2 of 1-D

linear path. Line thickness and color are proportional to normal

contact force (color figure online)



at these states after sufficient loading cycles. Sn is always

close to 1, meaning that force anisotropy closely follows

the stress deviator.

It is remarkable that the force anisotropy tensors an and

at are nearly proportional to s from the beginning of cyclic

loading at C1 and C3. In contrast, during the pre-lique-

faction period they are not fully proportional although

noncoaxiality decreases as the geometrical structure of the

system changes until ac becomes nearly proportional to s at

the selected states. All the anisotropy tensors become

nearly proportional to s at selected states in the post-liq-

uefaction period. During the selected loading cycle in each

inset, a significant change in S½ � is observed at the instance

of unloading, where St oscillates. In the subsequent load-

ing, at and an adjust themselves to follow s more quickly

than ac. It should be noted that the three anisotropy tensors

in the case of circular shear path change almost at the same

pace with s. Sn and Sc become negative only in the 1-D

linear path upon unjamming, whereas only St becomes

negative in the 8-like path. Note that the limit ru ’ 1 is

reached only in these two paths.

According to [48, 55], the shear strength normalized by

the mean stress is with a good approximation a linear

combination of the three anisotropy tensors:

s

p
’ 2

5
ac þ an þ

3

2
at

� �

ð23Þ

Since these anisotropy tensors are nearly coaxial with the

stress tensor up to very short deviations during unjamming,

as observed in Fig. 18, at selected states after sufficient

number of loading cycles, Eq. (23) can be further simpli-

fied as

q

p
’ 2

5
ac þ an þ

3

2
at

� �

ð24Þ

This equation is checked for the four shear paths in

Figs. 19a, c, e and g, where the evolutions of fabric and

force anisotropies at C1 and C3 of each loading cycle are

shown along with a zoom-in window displaying the

detailed change of anisotropies during the selected post-

liquefaction loading cycles. In the post-liquefaction period,

the three anisotropies tend to level off, with values

increasing in the order of at, ac, and an.

Figure 19b, d, f, and h shows the anisotropies and

deviatoric stress ratio q/p, as well as its approximation
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Fig. 17 Evolution of centroid distance Dc for different shear paths: a 1-D linear; b 2-D linear; c circular; d 8-like



ð2=5Þac þ ð2=5Þan þ ð3=5Þat by Eq. (24). We see that this

approximation holds quite nicely during the whole cyclic

shearing. We also see how much each anisotropy additively

contributes to q/p. After the initial liquefaction, the

weighted contribution of each anisotropy to q/p reaches a

plateau where we have ac ’ 0:4, an ’ 0:5 and at ’ 0:1,

irrespective of the shear path type. One may attribute this

universal partition to the intrinsic feature of the material

and its state, which can only change with particle shape and

size polydispersity based on studies of monotonic loading

[8, 45].

5 Conclusion

In this paper, we used a 3D DEM to conduct a compre-

hensive series of multidirectional cyclic shear tests for 1-D

linear, 2-D linear, circular/oval, and 8-like paths, all under

constant volume condition. At the system scale, the accu-

mulation of large shear strain was observed for all the

simulated tests, although the mean stress does not vanish

for some of them. A well-defined relationship was shown

between the limit pore pressure ratio and the corresponding

shear stress ratio. With initial liquefaction defined as the

state of total shear strain reaching 3% for the first time, the

cyclic liquefaction resistance was found to decrease in the

order of 1-D linear, 2-D linear, circular, and 8-like, for

AR ¼ CSRx=CSRy ¼ 1 in the two latter cases. As AR

decreases with fixed value of CSRy, both circular/oval and

8-like paths present enhanced cyclic resistance, which is

expected to approach the value of 1-D linear path as

AR ! 0. As to the effect of SSR½ �, for all four shear paths

the cyclic liquefaction resistance declines first with

increasing SSR½ � and then increases later for larger values

of SSR½ �. A subsequent decrease in cyclic resistance is

observed only for circular paths.

A detailed micromechanical analysis was also carried

out to investigate three aspects. From the viewpoint of

system stability, the coordination number and the particle

connectivity diagram indicate that the system becomes

transiently under-constrained for the 1-D linear and 8-like

shear paths, occurring at the instance of vanishing mean

stress, whereas the system stays over-constrained in the 2-

D linear and circular shear paths. The system’s under-

constrained state is also characterized by a large proportion

of mobilized contacts and a scattering of short and weak

Fig. 18 Evolution of the normalized first joint invariant between fabric tensors and deviatoric stress tensor at C1 and C3 of each loading cycle for

different shear paths: a 1-D linear; b 2-D linear; c circular; d 8-like. The insets zoom in on a few cycles in the marked window
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force chains. A particle-void fabric indicator called cen-

troid distance Dc was adopted to analyze the shear strain

development. A significant drop of Dc occurs near the

initial liquefaction, indicating a noticeable redistribution of

voids by destroying large voids into small ones. Dc pre-

sents a general decreasing trend in the post-liquefaction

period due to the accumulation of shear strain. In the 1-D

linear and 8-like tests, the change of Dc mainly happens

when ru � 0:99, corresponding to the deformation mode of

cyclic mobility. In the 2-D linear and circular tests, the

change of Dc occurs randomly in the whole loading cycle,

corresponding to a deformation mode of residual defor-

mation. Finally, the fabric and force anisotropies were

calculated to explain the source of the load-bearing net-

work where force anisotropy tensors quickly become

almost coaxial with the deviatoric stress tensor while fabric

anisotropy tensor needs most of the pre-liquefaction period

to follow the loading. The weighted sum of these aniso-

tropies can well approximate the deviatoric stress ratio at

the peak of applied shear stress; their contributions to the

post-liquefaction period level off, with the values that are

independent of the shear path type.

The observed differences in the long-time behavior

depending on the shear path show that the simple shear

tests are insufficient to characterize the rheological

behavior of granular materials under cyclic shearing. In

particular, the liquefaction in the sense of large shear

strains does not require the vanishing of the mean stress.

Large strains are obtained through a smaller number of

cycles when combinations of shear stress happen in two

directions. These effects have to do with how the evolution

of the microstructure interacts with the subsequent change

of the shear stress direction or sign, conducting the system

through different paths toward liquefaction. This work can

be pursued to further analyze the spatiotemporal behavior

of cyclic shearing along different paths by including the

effects of material parameters such as the sliding, rolling,

and twisting coefficients of friction are considered as proxy

parameters for particle shape variables. The sample void

ratio is another basic parameter that directly impacts the

liquefaction resistance and shear strain development. It is

essential to formulate necessary and sufficient conditions

for the onset of liquefaction from the particle-scale

parameters such as the coordination number and the fabric

and force anisotropies for a given void ratio and particle

shape.
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57. Schwager T, Pöschel T (2007) Coefficient of restitution and

linear-dashpot model revisited. Granular Matter 9(6):465–469

58. Sitharam TG (2003) Discrete element modelling of cyclic beha-

viour of granular materials. Geotech Geol Eng 21(4):297–329

59. Sitharam TG, Vinod JS, Ravishankar BV (2009) Post-liquefac-

tion undrained monotonic behaviour of sands: experiments and
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