F Morelli 
  
X Bombois 
  
C Pernin 
  
F Saggin 
  
A Korniienko 
  
K Colin 
  
L Bako 
  
Resonance Frequency Tracking for MEMS Gyroscopes Using Recursive Identification

MEMS gyroscopes are generally made up of two resonant systems: the so-called drive and sense modes. It is well known that the tracking of the drive-mode resonance frequency is crucial to make the device operate accurately. In this paper, we propose an approach based on recursive identification that allows to estimate this resonance frequency over the time. The proposed approach pertains to a recently developed control configuration which is based on the H∞ control framework and allows this configuration to give satisfactory control performance even when the drive-mode resonance frequency changes due to environment effects.

I. INTRODUCTION

In the recent years, micro-electro-mechanical (MEMS) inertial sensors have found their way in our daily life. Indeed, most of the smart phones are equipped with accelerometers and gyroscopes to ensure e.g., image stabilization. The field of application of MEMS inertial sensors is actually much wider. MEMS inertial sensors can indeed also be found in drones and autonomous vehicles, in automotive safety systems, in consumer electronics, in guidance and navigation systems, in numerous industrial applications and in medical devices [START_REF] Shaeffer | MEMS inertial sensors: a tutorial overview[END_REF].

In this paper, we are particularly interested in MEMS gyroscopes. A MEMS gyroscope is made up of two proof masses (the so-called drive and sense modes) and allows to determine the angular rate of an object using the Coriolis effect. In order to use this effect, a control system ensures that one of the proof masses (the drive mode) vibrates in a controlled way [START_REF] Saukoski | System and circuit design for a capacitive MEMS gyroscope[END_REF]. Indeed, if the latter is done appropriately, the value of the angular rate can be accurately estimated from a measure of the Coriolis force acting on the second proof mass (the sense mode). For the sequel, it is important to note that MEMS gyroscopes have to operate in a large range of external circumstances. Consequently, the gyroscope performance must be made robust against environment changes. This paper considers this problem and focuses more particularly on the control performance of the drive mode.

As mentioned above, it is of the utmost importance that the proof mass of the drive mode vibrates in a controlled
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way. This proof mass is fixed to a reference frame via microsilicon beams and can be driven via an electrostatic force. The transfer function between this force u x and the position x of the mass can generally be accurately represented by a (lightly-damped) second-order resonating system (an extra pole may be necessary to account for the instrumentation). We will call this system the drive mass system in the sequel. This drive mass system must thus vibrate in a controlled way. By this, we mean that x must follow a sinusoidal reference signal x ref . The frequency of the to-be-tracked sinusoidal reference x ref is chosen equal to the resonance frequency of the drive mass system in order to reduce the energy consumption (i.e., to enforce a small actuation signal u x ). Different approaches have been considered in the literature to enforce this objective. A first group of methods is based on the phasor representation of the to-be-controlled signal x. The tracking objective is indeed achieved via two parallel loops that respectively control the amplitude and the phase of this phasor representation (see e.g. [START_REF] Mair | Model-based control concepts for vibratory MEMS gyroscopes[END_REF]). In [START_REF] Chen | A control and signal processing integrated circuit for the JPL-boeing micromachined gyroscope[END_REF], the amplitude information is used to generate a non-linear oscillator at the resonance frequency. Besides these approaches, the literature also considers techniques that are more classical from a control engineering point-of-view (i.e., adaptive control [START_REF] Fei | Robust adaptive control for a MEMS vibratory gyroscope[END_REF], [START_REF] Leland | Adaptive control of a MEMS gyroscope using lyapunov methods[END_REF], [START_REF] Park | Trajectory-switching algorithm for a MEMS gyroscope[END_REF], active disturbance rejection [START_REF] Dong | Drive-mode control for vibrational MEMS gyroscopes[END_REF], Model Predictive Control [START_REF] Pishrobat | Model predictive control of MEMS vibratory gyroscope[END_REF] and H ∞ control [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF], [START_REF] Saggin | Digital control of MEMS gyroscopes: a robust approach[END_REF]). These techniques compute the control action u x based on the actual measurement of the position x of the drive mass system (i.e., without having first to transform the signal x into its phasor description). In this paper, we will more particularly consider the H ∞ control configuration introduced in [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF], [START_REF] Saggin | Digital control of MEMS gyroscopes: a robust approach[END_REF] and where the force u x is computed as the output of a linear time-invariant (LTI) controller K x that takes as input the difference between the sinusoidal reference signal x ref and the measurement of the position x of the proof mass of the drive mode. As shown in Chapters 3 and 4 of [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF], the H ∞ framework allows one to define the specifications of the controller K x in order to guarantee an accurate measurement of the angular rate by the MEMS gyroscope.

In the drive mass control system, the environmental conditions also play an important role. It is indeed well known [START_REF] Saukoski | System and circuit design for a capacitive MEMS gyroscope[END_REF] that the value of the resonance frequency of the drive mass system is influenced by a number of factors (such as the ambient temperature). In the control configuration considered in [START_REF] Chen | A control and signal processing integrated circuit for the JPL-boeing micromachined gyroscope[END_REF], [START_REF] Mair | Model-based control concepts for vibratory MEMS gyroscopes[END_REF], these variations of the resonance frequency are relatively easily taken care of. As opposed to this, in the control configuration with a linear controller (the one considered in this paper), it is crucial to be able to adapt the frequency of the sinusoidal reference signal in such a way that this frequency remains always close to the current value of the resonance frequency of the drive mass system. Otherwise, the amplitude of the control signal u x will increase, yielding an increase of the energy consumption. This may even lead to the saturation of the actuator and thus to a dramatic loss of performance of the drive mass control system. To prevent this, we propose in this paper an approach to adapt the reference signal x ref . More precisely, we propose an algorithm that estimates the resonance frequency over time. This estimate can then be used to adapt the frequency of the sinusoidal reference signal x ref . The above-mentioned algorithm is based on a recursive identification scheme that allows to follow the evolution of the dynamics of the drive mass system over time and, therefore, also the evolution of its resonance frequency. This approach is here possible since the variation of the resonance frequency of the drive mass system is typically order of magnitude slower than the dynamics of the drive mass system.

The proposed solution relies on the theory of system identification [START_REF] Ljung | System Identification-Theory for the User 2nd edition[END_REF] which has already been used to derive nominal models of MEMS gyroscopes (see e.g., [START_REF] Colin | Data informativity for the Prediction Error Identification of MIMO Systems[END_REF], [START_REF] Schein | Parametric Model Identification of Axisymmetric MEMS Resonators Journal of Microelectromechanical Systems[END_REF]). Moreover, in [START_REF] Vasileiou | Model-based resonance tracking of linear systems[END_REF], recursive identification is also proposed to follow the evolution of the resonance frequency of systems like the drive mass system. In this interesting paper, however, the drive mass system is not operated in closed loop with a controller K x and the recursive identification pertains to the estimate of a single parameter linked to the resonance frequency while, in our approach, the whole dynamics of the drive mass system is recursively identified in order to increase the accuracy of the estimate. Finally, unlike in [START_REF] Vasileiou | Model-based resonance tracking of linear systems[END_REF], we here also present experimental results to validate the proposed approach.

For this purpose, we have implemented the recursive identification scheme on a test benchmark platform where a development kit designed for experimenting new control strategies for MEMS sensors (the AS3125-SDK platform developed by ASYGN) is used in combination with a MEMS gyroscope prototype (see [START_REF] Saggin | Digital control of MEMS gyroscopes: a robust approach[END_REF]). Using a thermal chamber to enforce temperature variations (and thus resonance frequency variations), we show that the proposed recursive identification scheme allows to appropriately follow the evolution of the resonance frequency. More importantly, we also show that the performance of the closed loop made up of the drive mass system and of an H ∞ controller K x is strongly improved when we adapt the frequency of the sinusoidal reference x ref based on this estimate of the resonance frequency (compared to the case where this is not done).

Notations:

The matrix I n denotes the identity matrix of dimension n. The symbol z will not only represent the Ztransform variable, but also the shift operator. For a discretetime signal x(t), t represents the sample number. Finally, R denotes the set of real numbers.

II. DESCRIPTION OF THE DRIVE MASS SYSTEM AND OF ITS CONTROL SYSTEM

A. Nominal control design and nominal performance

In Figure 1, we present the H ∞ control strategy that has been proposed for the drive mass system G x in [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF]. This control strategy is implemented in discrete time with a sampling time T s = 1.6 10 -5 s. In Figure 1, x ref (t) is the sinusoidal reference signal, u x is a voltage proportional to the force applied to the drive mass system (i.e., the input of the drive mass system), x is a voltage proportional to the (measured) position of the drive mass1 and v x the process and measurement noise acting on the drive mass system. Finally, K x (z) is the discrete-time H ∞ controller designed based on a nominal model Ĝx (z) of G x (z). This nominal model Ĝx (z) is here a third-order discrete-time transfer function that has been obtained using the open-loop prediction error procedure presented in Chapter 7 of [START_REF] Colin | Data informativity for the Prediction Error Identification of MIMO Systems[END_REF]. It is important to stress that this nominal model will only accurately represent the drive mass system when the factors influencing the resonance frequency will be close to the ones observed during the identification experiment. In our case, the ambient temperature at which the experiment has been performed was 30 o C.

In Figure 2, we observe that Ĝx is a resonating system that has a significant gain (i.e., 9 dB) only at its resonance frequency ω r,x = 72788.728864 rad/s (i.e., 11.5 kHz). Since a resonating system can be better understood in the continuous time, let us consider the following continuoustime version of Ĝx (z):

Gx (s) = k ( s 2 ω 2 n,x + 2ξ ωn,x s + 1)( s k f + 1) (1) 
with s the Laplace variable. In this equation, the resonator is described by its (very low) damping ratio ξ = 5.9 10 -6 and its natural frequency ω n,x = 72788.728866 rad/s, while k = -5.46 10 -5 is the static gain of the transfer function and the pole -k f (k f = 5.7 10 4 ) is due to the instrumentation. The resonance frequency of Gx (s) (and of Ĝx (z)) is defined as the frequency ω r,x at which the modulus | Gx (jω)| of the frequency response of Gx is the largest i.e., ω r,x = 72788.728864 rad/s (i.e., 11.5 kHz). This frequency is extremely close to the natural frequency ω n,x due to the low damping ratio ξ and can be deduced2 as ω r,x = ω n,x 1 -2ξ 2 . For further reference, the resonance frequency ω r,x = 72788.728864 rad/s will be denoted

ω nom r,x
since it is the resonance frequency of the nominal model.

The identification procedure in [START_REF] Colin | Data informativity for the Prediction Error Identification of MIMO Systems[END_REF] also allows to derive an estimate of the process and measurement noise v x (t) acting on the system. In particular, v x can be modeled as a time-series with a standard deviation of 0.0027 V and with a frequency content that is mainly located in the interval Fig. 1: Schematic of the control strategy of the drive mass system.

[0 100] rad/s. More details on the identification results are given in the appendix.

As already mentioned, the H ∞ controller K x (z) is determined based on the nominal model Ĝx (z) of G x (z). Since the magnitude gain of Ĝx is negligible at all frequencies except at the resonance frequency ω nom r,x , the tracking of a sinusoidal reference signal at another frequency than ω nom r,x would require an overly large control effort. Consequently, we will choose x ref (t) = A x sin ω nom r,x t T s with A x = 0.5 V the desired amplitude of the oscillation. Given this, the controller K x is then designed in such a way that the tracking of x ref is accurate enough for the sensing objective of the MEMS gyroscope. As shown in Chapter 3 of [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF], the design, based on the nominal model Ĝx (z), of such a controller K x can be formulated as a convex optimization problem involving an H ∞ criterion [START_REF] Saggin | Robust control for MEMS gyroscopes[END_REF], [START_REF] Saggin | Digital control of MEMS gyroscopes: a robust approach[END_REF]. This leads to the fourth-order controller K x (z) given in the appendix. By observing the high gain characteristic at ω = ω nom r,x of both Ĝx and K x in Figure 2, it is clear that nominal closed-loop [K x Ĝx ] will ensure an accurate tracking of x ref (t) = A x sin ω nom r,x t T s . In order to characterize the performance of this nominal loop [K x Ĝx ] more precisely, we can simulate it with x ref (t) = A x sin ω nom r,x t T s and with a disturbance v x (t) having a standard deviation of 0.0027 V and the low frequency content evidenced by the identification experiment. This simulation is performed for 70 seconds. During the first four seconds of this simulation, the amplitude A x of x ref is progressively increased from zero to 0.5 V (in order to limit the transient behaviour). In Figure 3 and Figure 4, we give the obtained control signal u x (t) and tracking error ϵ x (t) = x ref (t) -x(t). Since they are obtained on the closed loop made up of the nominal model Ĝx (z) and of the controller K x (z) designed with that model, the signals given in Figure 3 and Figure 4 are representative of the desired level of performance (i.e., the nominal performance). In particular, an actuation signal u x of (maximal) amplitude 0.2 V and a tracking error ϵ x of (maximal) amplitude 0.015 V , both including noise, will therefore be seen as nominal performance.

B. Time-varying nature of G x

The control strategy presented above will however not be sufficient to maintain the desired performance. Indeed, due to a number of factors among which temperature variation is the most important, the dynamics of G x (in particular, its resonance frequency ω r,x ) will vary with time. Let us analyze this variation more in details. The gyroscope must function properly for temperatures ranging from -10 o C to 70 o C and for a rate of temperature variation that is smaller than 0.05 o C per second. In steady state, one generally observes that the resonance frequency is decreased by 1 rad/s when the temperature is increased by 1 o C. Consequently, the interval in which the resonance frequency ω r,x will vary is [72748 72828] rad/s (ω nom r,x = 72788 rad/s indeed corresponds to a temperature of 30 o C). Let us first note that the length of this interval is order of magnitude smaller than the value of ω r,x . Moreover, given the maximal rate of temperature variation of 0.05 o C per second, it is also clear that the rate at which the resonance frequency ω r,x will vary in the interval [72748 72828] rad/s is also order of magnitude slower than the dynamics of the drive mass system (dynamics mainly characterized by ω r,x ).

Due to this slow time-varying nature, we will be able to follow the evolution of the dynamics of G x (and in particular the evolution of its resonance frequency) using recursive identification and this will allow us to make the loop in Figure 1 adaptive. Here, in order to limit the control efforts and the tracking error, we will adapt the frequency of the sinusoidal reference x ref in such a way that it remains at all time as close as possible to the actual resonance frequency of G . Indeed, this will ensure that, as in the nominal case, both G x and K x will present a significant gain at the frequency of x ref . The gain of K x remains indeed important in the interval [72748 72828] rad/s.

Remark. Besides the fact that the gain of K x remains important in the interval [72748 72828] rad/s, it can also be proven that K x stabilizes all transfer functions (1) with a resonance frequency ω r,x ∈ [72748 72828] rad/s. This property coupled with the slow-time varying nature of G x ensures the validity of the adaptive control scheme presented in the sequel. More details on the robustness of K x can be found in [START_REF] Ayala | Performance validation of MEMS Gyroscopes using Uncertain and Time-Varying Models PhD thesis[END_REF].

III. RECURSIVE ESTIMATION OF THE VARYING

RESONANCE FREQUENCY

A. Recursive Identification

Considering the time-varying nature of the drive-mass system (see Section II.B) and considering the fact that the nominal model identified at nominal temperature is a thirdorder discrete-time transfer function (see the appendix), we can assume the following time-varying model structure for the dynamics of the drive mass system 3 :

         x(t) = b 0,1 (t)u x (t -1) + b 0,2 (t)u x (t -2)... ... + b 0,3 (t)u x (t -3) -f 0,1 (t)x(t -1)... ... -f 0,2 (t)x(t -2) -f 0,3 (t)x(t -3) x(t) = x(t) + v x (t)
(2) 3 The complexity of this model structure can be further reduced by imposing b 0,3 (t) = 0. Indeed, such a model reduction does not influence the accuracy of the estimate of the resonance frequency.

where θ 0 (t) = (b 0,1 (t), b 0,2 (t), b 0,3 (t), f 0,1 (t), f 0,2 (t), f 0,3 (t)) T is the time-varying parameter vector of dimension n = 6. Recursive identification is an identification technique that allows to derive models of time-varying systems such as the one given in (2) via the determination at each (discrete) time instant of an estimate θ(t) of its time-varying parameter vector θ 0 (t). From this time-varying model Ĝx (t), we will be able to derive an estimate ωr,x (t) of the resonance frequency ω r,x (t) (it will then be used to adapt the sinusoidal reference x ref of the closed loop made up of the drive mass system and the controller K x ). As we will see in the sequel, at each sample t, this estimate ωr,x (t) will be given by the resonance frequency of the transfer function that can be obtained if we freeze the coefficients of the time-varying operator Ĝx (t) at their value at sample t.

Note that, unlike in [START_REF] Vasileiou | Model-based resonance tracking of linear systems[END_REF], the time-varying model structure (2) does not impose that the resonance frequency is the only parameter that varies over time. It only assumes that the order of the dynamics of the drive mass system will not change over time.

Like in all identification methods, we will need to excite the system with an external signal r(t) in order to guarantee that θ(t) is an accurate estimate of θ 0 (t) (and consequently in order to guarantee that ωr,x (t) is an accurate estimate of ω r,x (t)). This external excitation signal will be denoted r(t) and will be added at the output of the controller K x (as shown in the bottom of Figure 5):

u x (t) = K x (z) (x ref (t) -x(t)) + r(t) (3) 
In our implementation, in order to ensure the persistence of excitation, r(t) will be chosen as an RBS (Random Binary Sequence) signal of amplitude 0.02 V (which is small with respect to the amplitude of the signal u x observed in Figure 3). Note that, given the dynamics of G x , a more narrowband signal r(t) could also have been considered. Let us first present the methodology we have used to determine θ(t) using the measurements of u x (t) and x(t) obtained in the loop represented in (the bottom of) Figure 5. Among the possible recursive identification algorithms, we had to make a choice that allowed a compromise between the accuracy of the estimate and the numerical complexity (the computational resources available for the algorithm are indeed limited since the gyroscope is operated with an electronic card). Based on these considerations, we opted for an Output Error (OE) version of a technique called Recursive Prediction Error (RPE) [START_REF] Ljung | System Identification-Theory for the User 2nd edition[END_REF]. As such, this OE version neglects the coloring of the process noise v x (t) and can therefore lead to biased estimates since the identification is performed under closed-loop operation [START_REF] Ljung | System Identification-Theory for the User 2nd edition[END_REF]. However, this bias is likely to be small since the identification is here performed under favorable signal-to-noise ratio (x(t) will be of amplitude 0.5 V and v x (t) has a standard deviation of 0.0027 V ). In the RPE algorithm, the estimate θ(t) at sample t is determined by updating the previous value of the estimate, i.e. θ(t-1), using uniquely the output measurement x(t) at sample t and the input measurement u x (t-1) at sample t-1, and using other quantities that are also recursively updated. In particular, we have 4 :

θ(t) = θ(t -1) + R -1 (t) ψ(t) (x(t) -x(t)) (4) 
where x(t) is the output measurement at sample t and R(t) ∈ R n×n , ψ(t) ∈ R n×1 and x(t) ∈ R are additional quantities that are recursively determined. The quantities x(t) and ψ(t) can be determined using θ(t -1) and the input measurement u x (t-1) at sample t-1 via the following time-varying statespace representation (the state vector φ(t) of this state-space representation is thus also recursively updated): 

     φ(t) = A( θ(t -1))φ(t -1) + B( θ(t -1))u x (t -1) x(t) ψ(t) = C( θ(t -1)) φ(t) (5 
G(z, θ) ∂G(z,θ) ∂θ with G(z, θ) = b 1 z -1 + b 2 z -2 + b 3 z -3 1 + f 1 z -1 + f 2 z -2 + f 3 z -3 (6)
Finally, the matrix R(t) is determined from R(t -1) using the quantity ψ(t) defined in [START_REF] Dong | Drive-mode control for vibrational MEMS gyroscopes[END_REF]:

R(t) = λ R(t -1) + ψ(t)ψ T (t) ( 7 
)
where λ is a scalar tuning parameter, the so-called forgetting factor (0 < λ ≤ 1). This parameter is determined by the user based on the assumed rate of variation of θ 0 (t) in order to optimize the bias-variance trade-off of the estimate. In a nutshell, the faster θ 0 (t) varies, the smaller λ has to be chosen. Here, using a trial-and-error approach, we have determined that λ = 1 -2 10 -5 is a reasonable value.

Once initialized, the recursive algorithm can thus be easily implemented. For this initialization, we have here chosen θ(0) as the parameter vector of the nominal model of the drive mass system i.e., the model identified at nominal temperature and that has been used to design the controller K x . The other quantities that are recursively updated are initialized as follows x(0) = 0, ψ(0) = 0 and R(0) = 0.01 I n (see [10, pp. 299-302] for more details on this choice). Additional features can also be added to the algorithm. It is indeed highly recommended [9, pp. 373] to check at each sample t if the transfer function G(z, θ) for θ = θ(t) is stable and, if it is not the case, to replace (4) by θ(t) = θ(t -1). In addition, it may also be wise to regularly re-initialize the recursive algorithm to avoid numerical issues (that can take the form of an estimate θ(t) that remains constant while θ 0 (t) varies).

B. Estimation of the varying resonance frequency using θ(t)

Let us now show how we can derive ωr,x (t) from θ(t). If we freeze the value of θ(t) at its value at sample t, the dynamics of the drive mass system can be described by G(z, θ * ) with θ * = θ(t) (see ( 6)). The estimate ωr,x (t) of ω r,x (t) at sample t will be then chosen as the resonance frequency of the transfer function G(z, θ * ). Since the damping of G(z, θ * ) is very low, we will use the following expression for ωr,x (t):

ωr,x (t) = 1 T s arg(p * (t)) (8) 
where p * is one of the complex pole of G(z, θ * ) and arg(p) denotes the argument of the complex number p. The complex pole of G(z, θ * ) is here determined in a computationally friendly way via a Newton-Raphson scheme initialized at the complex pole of the initial model.

The estimate ωr,x (t) obtained in this way can then be used to compute x ref (t) as follows:

x ref (t) = A x sin t τ =1 ωr,x (τ ) T s (9) 
As a consequence, the scheme that we propose to tackle the variations of the resonance frequency of the drive mass system (when this system is operated with a linear controller) can be summarized by Figure 5.

Remark. Since the sampling time T s used by the electronic card is small with respect to the expected variation of the resonance frequency, instead of updating the value of the resonance frequency at each sample t, one could further reduce the numerical complexity by updating the value of ωr,x (t) only every t w samples i.e., the approach presented in this subsection to derive ωr,x (t) from θ(t) will thus only be required once every t w samples. This approach is moreover particularly interesting in combination with a recursive algorithm that is frequently re-initialized (see the previous subsection). Indeed, in the instants just after such a re-initialization, the estimate θ(t) of θ 0 (t) may be less accurate and so would be the estimate ωr,x (t) of ω r,x (t) that could be deduced from that θ(t). In the implementation of our algorithm, the recursive algorithm will be re-initialized every 30 seconds and the estimate ωr,x (t) of ω r,x (t) will be determined 15 seconds after each re-initialization 6 and just before the next re-initialization. In other words, the signal ωr,x (t) that will be used to compute x ref will have the form of a staircase signal with a (possible) step every 15 seconds.

IV. EXPERIMENTAL RESULTS

In the previous section, we have presented our approach to improve the control of the drive mass system under varying resonance frequency circumstances. The resonance frequency of the drive mass system is estimated through a recursive identification algorithm and this estimate ωr,x (t) is used in the expression (9) of the sinusoidal reference signal x ref (t) (see Figure 5). A MEMS gyroscope prototype has been instrumented with the platform AS3125SDK comprising an electronic card where the H ∞ controller K x , the recursive identification algorithm and the adaptation of x ref have been implemented in C++. This platform has been chosen for its flexibility and more details can be found at https://asygn.com/as3125-sdk/. The experimental setup is represented in Figure 6. Let us recall that the ambient temperature is the most important factor influencing the value of the resonance frequency. Consequently, in order to investigate the performance of our approach, we operated the experimental setup presented in Figure 6 in a thermal chamber. In particular, we imposed a setpoint of 50 o C at the start of the experiment and, in response to this setpoint, the temperature measured inside the thermal chamber followed the profile given in Figure 7. In this figure, we observe that the temperature, which is initially equal to 26 o C, changes to a temperature of about 52 o C in about ten minutes (i.e., a temperature gradient close to the maximal rate of temperature variation of 0.05 o C/s mentioned in Section II.B). After this, the temperature remains (approximately) constant for another five minutes. Due to the modification of the temperature, the resonance frequency is modified and this fact is confirmed by the estimate ωr,x (t) of this resonance frequency that is computed every 15 seconds by the algorithm described in Section III. This estimate is represented in Figure 8 and is compared to the resonance frequency ω nom r,x of the nominal model. We observe that, starting at7 ω nom r,x , the estimation algorithm requires approximately 45 seconds to settle. As we will see in the sequel, from that moment onwards, the control loop (see Figure 5) will have signals u x and ϵ x whose amplitudes are very close to the ones observed in Figures 3 and4 (the so-called nominal performance that we want to maintain). Consequently, the estimate ωr,x (t) can be deemed close to the actual resonance frequency ω r,x (t) of the drive mass system. Comparing the temperature profile of Figure 7 and the resonance frequency profile of Figure 8, it is clear that the dynamics of the dependence of the resonance frequency on the temperature is rather complex. Let us e.g. observe that ωr,x (t) stays around 72786 rad/s during a long interval of time while, during the same interval of time, the temperature varies from 26 o C to 50 o C. The frequency 72786 rad/s is the resonance frequency that corresponds to a steady-state temperature of approximately 32 o C. However, since the temperature is continuously varying in this interval of time, we never reach steady-state. Note also that, as mentioned in Section II.B, the rate at which the resonance frequency varies in Figure 8 is indeed order of magnitude slower than the dynamics of the drive mass system.

The estimate ωr,x (t) of Figure 8 is used to compute the sinusoidal reference signal x ref via [START_REF] Ljung | System Identification-Theory for the User 2nd edition[END_REF]. Let us now see how the loop in Figure 5 behaves by inspecting the control signal u x (t) and the tracking error signal ϵ x (t). These signals are represented in red in Figures 9 and10. During the 45 first seconds where x ref is computed with a less accurate estimate of the resonance frequency (since the estimation algorithm is in its settling phase), we observe a large control effort 8 3 and4). Note that we observe a very small increase of the amplitude of u x in the second part of the experiment. This may be due to the combination of, on the one hand, the faster decrease of the resonance frequency in this part of the experiment (see Figure 8) and, on the other hand, the fact that ωr,x (t) is only updated every 15 seconds (see the remark at the end of Section III). As already mentioned, the differences between the settling phase (where ωr,x (t) is less accurate) and the remaining of the red curves presented in Figures 9 and10 clearly show the efficiency of our approach to deal with the adverse consequences of the variations of the resonance frequency when the drive mass system is controlled using the LTI controller K x . In order to illustrate the benefit of our approach even further, let us perform a similar experiment in the thermal chamber without the adaptation of the reference signal x ref i.e., x ref is kept during the whole experiment equal to x ref (t) = 0.5 sin(ω nom r,x tT s ) i.e., a sinusoid at the resonance frequency ω nom r,x of the nominal model. This leads to the signals u x and ϵ x given in blue in Figures 9 and11. By comparing the blue and red curves in Figure 9, it is clear that the control signal u x (t) is much larger when x ref (t) = 0.5 sin(ω nom r,x tT s ) than when x ref is adapted. This is particularly obvious in the second part of the experiment where the variation of the resonance frequency is stronger (see Figure 8) and where u x hits its saturation. This saturation of the control effort has a dramatic effect on the tracking error whose amplitude becomes almost as large as x ref (see Figure 11). Comparing the blue and red curves in Figures 9 and 11 clearly evidences the necessity of adapting x ref to tackle the variations of the resonance frequency when the drive mass system is controlled using a LTI controller.

The proposed algorithm is of course also useful when the change of the ambient temperature is less important. Indeed, as the controller is designed for a given nominal model, even small variations near these nominal conditions can deteriorate the performances due to small resonance frequency variations. We have also made multiple tests in these conditions with similar results i.e., signals u x (t) and ϵ x (t) presenting amplitudes that are very close to the ones observed in the nominal case. Since no thermal chamber has to be used for these tests, we have also been able to subject the setup to different rotational speeds using a turning table. We have tested rotational speeds ranging from -300 till 300 degrees per second and the signals u x (t) and ϵ x (t) presented amplitudes that were also very close to the ones observed in the nominal case.

Remark. When facing resonance frequency variations that can be as important as the ones in Figure 8, the adaptation of x ref proposed in this paper allows to maintain the (maximal) amplitudes of u x and ϵ x close to the ones observed in the nominal case (see Figures 3 and4). Consequently, in order to tackle such resonance frequency variations, there seems to be no need of a more complex approach which, besides the adaptation of x ref , would also involve the adaptation of K x . If this would happen to be necessary in certain situations, let us however note that our recursive identification scheme would also enable the adaptation of K x . The estimate θ(t) could indeed be used as scheduling parameter in a Linear Parameter Varying controller (see e.g., [START_REF] Dinh | Parameter dependent H∞ control by finite dimensional LMI optimization[END_REF]). Alternatively, as proposed in [START_REF] Saggin | Parameterdependent H∞ control for MEMS gyroscopes: synthesis and analysis[END_REF], one could also just use ωr,x (t) as scheduling parameter. 

V. CONCLUSION

In a MEMS gyroscope, the proof mass of the drive mode (i.e., the drive mass system) must oscillate at its resonance frequency. When using a linear time-invariant controller to generate this oscillation, the variations of the resonance frequency (due e.g., to temperature variations) can severely alter the performance of the MEMS gyroscope. In this paper, we use recursive identification to estimate the dynamics of the drive mass system over time. Using this dynamics, we derive an estimate of the resonance frequency that is used to adapt the frequency of the sinusoidal reference signal that must be followed by the drive mass system. The experimental results show that the proposed approach allows to maintain a performance level that is very close to the nominal performance level. By performance, we here mean the amplitudes of the tracking error and of the control actuation.
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 2 Fig. 2: Modulus of the the frequency response of Ĝx (z) (blue) and of K x (z) (red).

Fig. 3 :Fig. 4 :

 34 Fig.3: Signal u x (t) obtained in the simulation described in Section II.A (nominal performance).

Fig. 5 :

 5 Fig.5: Control of the drive mass system with the estimate ωr,x (t) of the resonance frequency ω r,x (t) obtained with the Recursive Prediction Error algorithm.

  ) where, for any value of θ = (b 1 , b 2 , b 3 , f 1 , f 2 , f 3 ) T , (A(θ), B(θ), C(θ)) is a state-space representation of the following vector of transfer function 5 :

Fig. 6 :

 6 Fig. 6: Picture of the experimental setup with the electronic card AS3125-SDK and the MEMS gyroscope.

Fig. 7 :

 7 Fig. 7: Temperature profile in the thermal chamber.

Fig. 9 :

 9 Fig. 9: Results of the experiment in Section IV: u x (t) when x ref (t) = 0.5 sin(ω nom r,x tT s ) (blue) and u x (t) when x ref (t) is adapted as shown in Figure 5 (red).

Fig. 10 :

 10 Fig. 10: Results of the experiment in Section IV: ϵ x (t) when x ref (t) is adapted as shown in Figure 5 (red).

Fig. 11 :

 11 Fig. 11: Results of the experiment in Section IV: ϵ x (t) when x ref (t) = 0.5 sin(ω nom r,x tT s ) (blue) and ϵ x (t) of Figure 10 (red).

  and a large tracking error confirming the need of constructing x refFig. 8: Estimate ωr,x (t) of the resonance frequency of the drive mass system (red asterisks) compared to the resonance frequency ω nom r,x of the nominal model (blue solid line).with a good estimate of the resonance frequency. After this settling phase, the signals u x (t) and ϵ x (t) present amplitudes that are very close to the ones observed in the nominal case (see Figures
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With some abuse, we will not distinguish the actual position and its measurement.

This relation is in fact a (small) approximation since this relation is only valid for a second-order resonator.

In order to reduce the numerical complexity, the inversion of the matrix R(t) in (4) can be easily circumvented (see e.g.,[10, pp. 328]).

It is thus clear that x(t) represents the Output Error predictor of x(t) and ψ(t) its gradient.

The estimates θ(t) and ωr,x(t) are indeed less accurate only for a few seconds.

Recall that the recursive identification algorithm is initialized at the nominal model.

The control effort in fact hits the saturation during approximately 30 seconds.

APPENDIX

The identified plant transfer function model Ĝx (z) is given by Ĝx (z) = (b

) with b 1 = -8.5077647181912 10 -6 , b 2 = -2.57566017166506 10 -5 , b 3 = -5.4388129619779 10 -6 , f 1 = -1.189035255700542, f 2 = 1.315148082796523 and f 3 = -0.398835278691147. Moreover, the identification procedure delivers an estimate of v x given by Ĥx (z)e x (t) with a white noise e x of variance σ 2 e = 2.97 10 -6 and with:

) with g 0 = 0.124465065398275, g 1 = -0.098341705374376, g 2 = -3.8803035841 10 -5 , g 3 = 0.098336413076116, g 4 = -0.124431554660694, h 1 = -1.578293401654294, h 2 = 2.617438511677789, h 3 = -1.574095213951813 and h 4 = 0.994687182715191.