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Abstract

MEMS gyroscopes are generally made up of two resonant systems: the so-called drive and
sense modes. It is well known that the drive-mode resonance tracking is crucial to make the de-
vice operate accurately. In this paper, we propose an approach based on recursive identification
that allows to estimate the resonance frequency over the time. The proposed approach pertains
to a recently developed control conguration which is based on the H∞ control framework.

1 Introduction

In the last years, micro-electro-mechanical (MEMS) inertial sensors have found their way in our
daily life. Indeed, most of the smart phones are equipped with accelerometers and gyroscopes to
ensure e.g., image stabilization and navigation. The field of application of MEMS inertial sensors
is actually much wider. MEMS inertial sensors can indeed also be found in drones and autonomous
vehicles, in automotive safety systems, in consumer electronics, in guidance and navigation systems,
in numerous industrial applications and in medical devices [1, 10, 21].

In this paper, we are particularly interested in MEMS gyroscopes. A MEMS gyroscope is made
up of two proof masses (the so-called drive and sense modes) and allows to determine the angular
rate of an object using the principle of the Coriolis force. In order to use this principle, a control
system ensures that one of the proof masses (i.e., the drive mode one) vibrates in a controlled way
[19]. Indeed, if the latter is done appropriately, the value of the angular rate can be accurately es-
timated from a measure of the Coriolis force acting the second proof mass (i.e., the sense mode one).

As mentioned above, it is of the utmost importance that the proof mass of the drive mode
vibrates in a controlled way. This proof mass is fixed to a reference frame via micro-silicon beams
and can be driven via a force. The transfer function between this force ux and the position x of the
mass can generally be accurately represented by a (lightly-damped) second-order resonating system
(an extra pole may be necessary to account for the instrumentation). We will call this system the
drive mass system in the sequel. This drive mass system must thus vibrate in a controlled way.

∗The financial support of BPI France (Next4MEMS project) is gratefully acknowledged.
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By this, we mean that x must follow a sinusoidal reference signal xref . Generally, this control
objective is achieved via two parallel loops that respectively control the amplitude and the phase
of the phasor representation of the to-be-controlled signal x (see e.g. [7]). In [3], an alternative
is proposed where the amplitude information of the phasor is used to generate a non-linear oscil-
lator at the resonance frequency. Besides these phasor approaches, the literature also considers
techniques that are more classical from a control engineering point-of-view i.e., techniques that
compute the control action ux based on the actual measurement of the position x of the drive mass
system (i.e., without having first to transform the signal x into its phasor description). We can
distinguish different types of approaches: adaptive control [11, 14, 8], active disturbance rejection
[6] and Model Predictive Control [15].

Since the to-be-controlled system can be represented by a third-order linear system1, the use
of classical linear control design methods (such as frequency design methods, H∞ control, ...) is
certainly also another valid option to efficiently control the drive mass system (these techniques
indeed easily allow one to enforce stability and performance guarantees). With these control design
methods, the force ux is computed as the output of a linear controller Kx that takes as input the
difference2 between the sinusoidal reference signal xref and the measurement of the position x of the
proof mass of the drive mode. Within these classical linear control design methods, H∞ control is
a particularly promising solution. Indeed, as shown in Chapters 3 and 4 of [16], the H∞ framework
allows one to define the specifications of the controller Kx in order to guarantee an accurate mea-
surement of the angular rate by the MEMS gyroscope. This possibility is the main reason that has
led us to consider an H∞ control approach in the Next4MEMS project, an industrial project which
aims at improving the performance of MEMS gyroscopes. Within this project, system identification
has been used to derive, using specially dedicated open-loop experiments, accurate models of the
dynamics of the gyroscopes (together with its instrumentation) [4]. Based on such an identified
model, an H∞ control approach has been devised in order to design the controller Kx ensuring
a sufficiently accurate tracking of the sinusoidal reference xref for the sensing accuracy of the
MEMS gyroscope to be guaranteed [18, 16]. In addition, the frequency of the to-be-tracked sinu-
soidal reference xref is chosen equal to the resonance frequency3 of the identified model of the drive
mass system in order to reduce the energy consumption (i.e., to enforce a small actuation signal ux).

The fact that the controller has to follow a sinusoidal reference signal xref at the resonance fre-
quency of the drive mass system makes the linear control loop described in the previous paragraph
particularly vulnerable to eventual variations of this resonance frequency. Yet, these variations of
the resonance frequency are rather frequent. Indeed, it is well known [19] that the value of the
resonance frequency of the drive mass system is influenced by a number of factors (such as the
ambient temperature), while MEMS gyroscopes have to operate in a large range of external cir-
cumstances. In the control configuration based on the phasor description [7, 3], these variations of
the resonance frequency are relatively easily taken care of. In particular, in the classical two-loop
configuration (see [7]), the phase loop allows a smooth tracking of the resonance frequency since
this loop ensures that the phase shift between ux and x is kept at a value4 of −π2 rad. In the control

1As will be discussed in the next paragraph, this will in fact hold for a fixed environment (i.e., temperature,
pressure, ...).

2In this paper, we will consider a controller with one degree of freedom, but the results also apply to controllers
with two degrees of freedom.

3Recall that the drive mass system is basically a (lightly-damped) resonating system.
4If the drive mass system is a pure resonator, this property can only be attained if ux and x are sinusoids at the

resonance frequency. Note however that, due to the dynamics of the instrumentation, the argument of the frequency
response of the drive mass system at the resonance frequency will not be precisely equal to −π

2
rad.
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configuration with a linear controller that we consider in the Next4MEMS project, the variation
of the resonance frequency is not dealt with in such an easy way. That is why, in this paper,
we propose an approach to make this control configuration able to tackle the resonance frequency
variations. For this purpose, we supply this control configuration with an algorithm that estimates
the resonance frequency over time. This estimate can then be used to adapt the frequency of the
sinusoidal reference signal xref . The above-mentioned algorithm is based on a recursive identifica-
tion scheme that allows to follow the evolution of the dynamics of the drive mass system over time
and, therefore, also the evolution of its resonance frequency.

To validate our approach, we implement it on the test benchmark platform of the Next4MEMS
project where a development kit designed for experimenting new control strategies for MEMS
sensors (the AS3125-SDK platform developed by ASYGN) is used in combination with a MEMS
gyroscope prototype (see [18]). Using a thermal chamber to enforce fast temperature variations
(and thus fast resonance frequency variations), we show that the proposed recursive identification
scheme allows to appropriately follow the evolution of the resonance frequency. More importantly,
we also show that the performance of the closed loop made up of the drive mass system and of a
linear controller5 Kx is strongly improved when we adapt the frequency of the sinusoidal reference
xref based on this estimate of the resonance frequency (compared to the case where this is not done).

Notations: The matrix In denotes the identity matrix of dimension n. The symbol z will not only
represent the Z-transform variable, but also the shift operator. For a discrete-time signal x(t),
t represents the sample number. Finally, R denotes the set of real numbers.

2 Description of the drive mass system and of its control system

2.1 Identified model of the drive mass system

As mentioned in the introduction, the resonance frequency of the drive mass system Gx can vary
due to a number of factors among which temperature variation is the most important one. In this
paper, we will present a methodology allowing to adapt the sinusoidal reference signal xref of the
closed loop represented in Figure 1 in order to maintain its performance level despite these possible
variations of the resonance frequency. The controller Kx of this closed loop is here designed based
on a nominal model Ĝx of Gx that is identified using the open-loop prediction error procedure
presented in Chapter 7 of [4]. It is important to stress that this nominal model will only accurately
represent the drive mass system when the factors influencing the resonance frequency will be close
to the ones observed during the identification experiment. As an example, the ambient temperature
at which the experiment has been performed was 30 oC (in the sequel, we will call this temperature
the nominal temperature Tnom). The identification procedure at Tnom has led to the following
(discrete-time) model of the drive mass system (the sampling time Ts is here equal to 1.6 10−5 s):

x(t) = Ĝx(z) ux(t)︸ ︷︷ ︸
x̆(t)

+ Ĥx(t) ex(t)︸ ︷︷ ︸
vx(t)

(1)

where ux is the force applied to the drive mass system (i.e., the input6 of the drive mass system),
x is the position of the drive mass (i.e., the output of the drive mass system) and vx the process

5This linear controller will be here an H∞ controller.
6The actuation system is in fact a bit more complex: the force ux is indeed generated via a voltage source (see

e.g., [4]).

3



Figure 1: Schematic of the control strategy of the drive mass system.

noise acting on the drive mass system. The plant transfer function model Ĝx(z) is given by

Ĝx(z) =
b1z
−1 + b2z

−2 + b3z
−3

1 + f1z−1 + f2z−2 + f3z−3
(2)

with b1 = −8.508 10−6, b2 = −2.576 10−5, b3 = −5.439 10−6, f1 = −1.189, f2 = 1.315 and
f3 = −0.3988. The process noise vx is modeled as Ĥx(t)ex(t) with a white noise ex of variance
σ2
e = 2.97 10−6 and with:

Ĥx(z) =
1 + c1z

−1 + c2z
−2 + c3z

−3 + c4z
−4

1 + d1z−1 + d2z−2 + d3z−3 + d4z−4 + d5z−5
(3)

with c1 = 0.9636, c2 = −0.3466, c3 = −1.197, c4 = −0.3669, d1 = −0.05898, d2 = −0.8191,
d3 = −0.5455, d4 = 0.5646 and d5 = −0.1345. The modulus of the frequency responses of Ĝx and
Ĥx are given in Figure 2. As mentioned in the introduction, Ĝx is basically a resonating system with
a sharp resonance peak (an extra pole is due to the instrumentation). Since a resonating system
can be better understood in the continuous time, let us consider the following continuous-time
version of the discrete-time transfer function Ĝx(z):

G̃x(s) =
k

( s2

ω2
n,x

+ 2ξ
ωn,x

s+ 1)( s
kf

+ 1)
(4)

with s the Laplace variable. In this equation, the resonator is described by its (very low) damping
ratio ξ = 5.9 10−6 and its natural frequency ωn,x = 72788.728866 rad/s, while k = −5.46 10−5 is
the static gain of the transfer function and kf = 5.7 104 represents the extra pole due to the in-

strumentation. The resonance frequency of G̃x(s) (and of Ĝx(z)) is defined as the frequency ωr,x at
which the modulus |G̃x(jω)| of the frequency response of G̃x is the largest i.e., ωr,x = 72788.728864
rad/s. This frequency is extremely close to the natural frequency ωn,x due to the low damping

ratio ξ and can be deduced7 as ωr,x = ωn,x
√

1− 2ξ2. For further reference, the resonance frequency
ωr,x = 72788.728864 rad/s will be denoted ωnomr,x since it is the resonance frequency of the nominal
model.

The modulus |Ĥx(ejωTs)| of the frequency response of the noise transfer function Ĥx presents
higher gains in low frequencies than in high frequencies. Observe also the resonance peak at a
frequency which is slightly higher than ωnomr,x (see Figure 2b).

7This relation is in fact a (small) approximation since this relation is only valid for a second-order resonator.
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Figure 2: Modulus of the frequency responses of Ĝx (blue line in plot (a)) and of Ĥx (blue line in
plot (b)). The vertical line in red dashed is placed at ω = ωnomr,x in plot (b).

2.2 Closed-loop system and nominal performance

As mentioned in Section 1, the drive mass system is operated in closed loop to generate and ensure
a sinusoidal oscillation of the mass. For this purpose, we will use the following control configuration
using a linear time-invariant (LTI) controller Kx(z) (see also Figure 1):

x(t) = Gx(z)ux(t) + vx(t)

ux(t) = Kx(z) εx(t)

εx(t) = xref (t)− x(t)

(5)

where the reference signal xref (t) is chosen as

xref (t) = Ax sin (ωref t Ts) (6)

with Ax the desired amplitude of the oscillation (Ax = 0.5 in our case) and ωref the desired
frequency of the oscillation. To limit the control action, ωref has to be chosen as close as possible
to the resonance frequency of the actual drive mass system Gx. At nominal temperature8 Tnom, a
sensible choice is thus ωref = ωnomr,x i.e., the resonance frequency of the identified model Ĝx of Gx.
The controller Kx must be designed in such a way that the tracking of xref is accurate enough for
the sensing objective of the MEMS gyroscope. As shown in Chapter 3 of [16], the design, based on
the nominal model (1), of such a controller Kx can be formulated as a convex optimization problem
involving an H∞ criterion [16, 18]. Using this methodology, we here obtain:

Kx(z) =
0.1245− 0.09834 z−1 − 3.88 10−5 z−2 + 0.09834 z−3 − 0.1244 z−4

1− 1.578 z−1 + 2.617 z−2 − 1.574 z−3 + 0.9947z−4
(7)

whose modulus of the frequency response is represented in Figure 3. In this figure, we observe the
high gain characteristic at ω = ωnomr,x (allowing accurate tracking of a sinusoidal reference at this
frequency). Note that this high gain characteristic also allows the rejection of the components of
the process noise vx around ω = ωnomr,x . Note that a better disturbance rejection is here not possible

8and when the other external factors influencing the resonance frequency (such as the pressure) are also equal or
close to the ones observed during the identification experiment leading to the nominal model (1).
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since Ĝx has negligible gains at other frequencies.
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Figure 3: Modulus of the the frequency response of Kx(z)

Let us analyze the performance of this controller Kx when applied to the model (1) and when
xref (t) = Ax sin(ωnomr,x tTs) (i.e., the nominal performance of Kx). For this purpose, let us consider
the following (nominal) closed-loop transfer functions:

S(z) =
1

1 + Ĝx(z)Kx(z)
, F (z) =

Kx(z)

1 + Ĝx(z)Kx(z)
(8)

In the loop represented in Figure 1 with Gx replaced by Ĝx, these transfer functions (whose fre-
quency responses are represented in Figures 4 and 5) relate the external signals xref and vx to the
tracking error εx = xref − x and the actuation signal ux, respectively:

εx(t) = S(z)xref (t)− S(z)vx(t) and ux(t) = F (z)xref (t)− F (z)vx(t) (9)

We observe that the modulus of the frequency response of the sensitivity function S is very low
(−67dB) at ω = ωnomr,x . This will allow an accurate tracking of xref and the rejection of the compo-
nent of the noise vx around the resonance frequency. We also observe that the transfer function F
has a local minimum at ω = ωnomr,x (|F (ejω

nom
r,x Ts)| = −8.7dB). Consequently, the tracking of xref

and the rejection of the component of the noise vx around the resonance frequency will be achieved
with low control efforts.

Let us give more details on the performance of this nominal loop using (9). The signal εx will
be made up of a sinusoidal term of amplitude Ax|S(ejω

nom
r,x Ts)| = Ax/2238 = 2 10−4 and a Gaussian

noise contribution of standard deviation ||HxS||2σe = 0.0027 (the 2-norm ||HxS||2 of HxS is indeed
equal to 1.57). This Gaussian noise contribution will therefore be the dominant part of εx.

As far as ux is concerned, we observe that ||HxF ||2 = 3.64. Consequently, ux is made up of a
sinusoidal part of amplitude Ax|F (ejω

nom
r,x Ts)| = 0.37Ax = 0.185 and a Gaussian noise contribution

of standard deviation ||HxF ||2σe = 0.033.
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Figure 4: Modulus of the frequency responses of F (z) (blue line in plot (a)) and of S(z) (blue line
in plot (b)).
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These observations are confirmed by the following simulation. The loop in Figure 1 is simu-
lated for 70 seconds9 with the nominal model (1) and with the controller Kx given in (7) and using
xref (t) = 0.5 sin(ωnomr,x tTs). In Figure 6, we give the obtained signals εx and ux.

Since they have been obtained on the closed loop made up of the nominal model (1) and of
the controller Kx designed with that model, the signals given in Figure 6 are representative of the
desired level of performance (i.e., the nominal performance). In particular, an actuation signal ux
of (maximal) amplitude 0.2 and a tracking error εx of (maximal) amplitude 0.015 will therefore
be seen as good performance. Consequently, if such amplitudes are also observed when the loop
is perturbed by a varying resonance frequency, we will then be able to conclude that the nominal
performance is maintained despite the varying resonance frequency.
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(a) ux
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(b) εx

Figure 6: Results of the simulation described in Section 2.2 (nominal performance).

2.3 Influence of resonance frequency variations on the performance

In this subsection, we will analyze the performance of the loop represented in Figure 1 when the
resonance frequency of Gx varies. These variations are indeed very frequent in practice [19]. As
an example, we typically observe that, in steady state, the resonance frequency is decreased by 1
rad/s when the temperature is increased by 1 oC.

Let us thus simulate the loop represented in Figure 1 using the controller Kx designed with the
nominal model (see (7)) and the sinusoidal reference at the frequency of the nominal model (i.e.
xref (t) = 0.5 sin(ωnomr,x tTs)), but with the resonance frequency of Gx that varies as follows (see also
Figure 7):

ωr,x(t) =


ωnomr,x tTs ≤ 75

ωnomr,x + αω(tTs − 75) 75 < tTs ≤ 575

ωnomr,x + 500αω 575 < tTs ≤ 675

(10)

with αω = 0.0804 i.e., the resonance frequency changes from ωnomr,x = 72788 rad/s to 72828 rad/s

9In this simulation, during the first four seconds, the amplitude Ax of xref is progressively increased from zero to
0.5. This is done in order to limit the transient behaviour.
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in 500 seconds.
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Figure 7: Varying resonance frequency as given by (10)

Under the circumstances given in (10), the signals εx and ux describing the performance of the
closed-loop system of Figure 1 are given by the blue curves in Figure 8. Comparing these signals
with the ones in Figure 6, it is clear that the amplitudes of both signals are much higher once
the resonance frequency is no longer equal to ωnomr,x (i.e., after 75 seconds). In other words, the
performance of the closed loop is strongly altered10 when the resonance frequency is no longer equal
to ωnomr,x .
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Figure 8: Results of the simulations described in Sections 2.3 and 2.4 with a varying resonance
frequency given by (10). The blue curve corresponds to the case where xref (t) = 0.5 sin(ωnomr,x tTs)
and the red curve corresponds to the case where xref is given by (15) with ωref (t) = ωr,x(t)

In order to perform the simulation with the varying resonance frequency (10), the closed-
loop system in Figure 1 is simulated using the following Linear Parameter Varying operator to

10An eventual saturation of ux could lead to a signal εx with an even higher amplitude.
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compute x(t):


Gx(ωr,x(t)) : x̆(t) = b1(ωr,x(t))ux(t− 1) + b2(ωr,x(t))ux(t− 2) + b3(ωr,x(t))ux(t− 3) . . .

· · · − f1(ωr,x(t))x̆(t− 1)− f2(ωr,x(t))x̆(t− 2)− f3(ωr,x(t))x̆(t− 3)

x(t) = x̆(t) + vx(t)

(11)
where the time-varying coefficients bi(ωr,x(t)) and fj(ωr,x(t)) (i = 1, ..., 3, j = 1, ..., 3) at time t are
determined as the coefficients of the discrete-time version Gx(z, ωr,x) of the following continuous-
time transfer function with ωr,x equal to the value of ωr,x(t) at time t:

G̃x(s, ωr,x) =
k(

1−2ξ2

ω2
r,x

s2 +
2ξ
√

1−2ξ2

ωr,x
s+ 1

)
( s
kf

+ 1)

(12)

where ξ = 5.9 10−6, k = −5.46 10−5 and kf = 5.7 104 (such as in (4)). The discrete-time version
of (12) has indeed the following form:

Gx(z, ωr,x) =
b1(ωr,x)z−1 + b2(ωr,x)z−2 + b3(ωr,x)z−3

1 + f1(ωr,x)z−1 + f2(ωr,x)z−2 + f3(ωr,x)z−3
(13)

The modulus of the frequency response of Gx(z, ωr,x) for different frozen values of ωr,x in the in-
terval [72748 72828] rad/s are represented in Figure 9.
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Figure 9:
∣∣Gx(ejωTs , ωr,x)

∣∣ for different frozen values of ωr,x ∈ [72748 72828] rad/s. The tick blue
line represents this modulus for ωr,x = ωnomr,x . The vertical line in red dashed is placed at ω = ωnomr,x .

In order to understand the performance degradation observed in Figure 8, it is useful to observe
the frequency response of the following closed-loop transfer functions:

Sωr,x(z) =
1

1 + Gx(z, ωr,x)Kx(z)
Fωr,x(z) =

Kx(z)

1 + Gx(z, ωr,x)Kx(z)
(14)

that corresponds to a loop made up of the controller Kx (see (7)) and the plant Gx(z, ωr,x) i.e.,
a plant with a resonance at a frequency ωr,x. The modulus of the frequency responses of these

10



two transfer functions are represented in Figure 10 for different values of ωr,x ∈ [72748 72828]
rad/s. Let us observe that the moduli of the frequency response of these transfer functions evalu-
ated at ω = ωnomr,x (i.e.,

∣∣Fωr,x(ejω
nom
r,x Ts)

∣∣ and
∣∣Sωr,x(ejω

nom
r,x Ts)

∣∣) are much larger when these trans-
fer functions are computed with a plant Gx(z, ωr,x) with a resonance frequency ωr,x 6= ωnomr,x

than when they are computed with the nominal model considered in the previous subsection i.e.,

Gx(z, ωnomr,x )
∆
= Ĝx(z). This larger modulus is the main reason of the performance degradation

observed in Figure 8 (recall that xref (t) = 0.5 sin(ωnomr,x tTs) in this simulation). Note indeed that
||HxFωr,x ||2 and ||HxSωr,x ||2 remain (approximatively) equal to 3.64 and 1.57, when ωr,x varies in
[72748 72828] rad/s.
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Figure 10: Modulus of the frequency responses of the two transfer functions in (14) for different
values of ωr,x ∈ [72748 72828] rad/s. The tick blue line in both plots represents the modulus for
ωr,x = ωnomr,x . For the transfer functions with ωr,x 6= ωnomr,x , the red asterisks are located at ω = ωr,x
in each of these plots.

2.4 Proposed approach to tackle the variations of the resonance frequency of
the drive mass system

Figure 10 also allows to justify the procedure proposed in the introduction to tackle the resonance
frequency variations. Let us indeed observe that

∣∣Fωr,x(ejωTs)
∣∣ and

∣∣Sωr,x(ejωTs)
∣∣ both present a

minimum at ω = ωr,x. Consequently, when the plant presents a resonance at ωr,x, the closed loop
made up of this plant and the controller Kx (see (7)) will be able to track a sinusoidal reference at
that particular frequency ωr,x (i.e., xref (t) = 0.5 sin(ωr,xtTs)) with a small tracking error εx and a
small ux. Consequently, as proposed in the introduction, the resonance frequency variations will be
here tackled by just adapting xref , while letting the linear time-invariant controller Kx unchanged.

The above reasoning is done for a frozen value of the resonance frequency. Extending this
reasoning to the case of a resonance frequency ωr,x(t) varying with time (e.g., as in (10)), we
propose the scheme depicted in Figure 11 where Gx is the LPV operator (11) and where the
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reference signal is chosen as:

xref (t) = Ax sin

(
t∑

τ=1

ωref (τ) Ts

)
(15)

with ωref (t) = ωr,x(t) (see Figure 11).

When simulating the loop of Figure 11 with the resonance frequency variation given in (10), we
obtain the signals εx and ux depicted in red in Figure 8. The amplitudes of these signals are very
close to the ones observed in the nominal case11 (see Figure 6), showing the potential efficiency of
the proposed approach.

Figure 11: Control of the drive mass system for time varying resonance frequency ωr,x(t). In this
figure, Gx is the LPV operator (11).

The configuration presented in Figure 11 is however an ideal scenario. Indeed, in practice, the
evolution of the resonance frequency over time is unknown and therefore needs to be estimated. As
mentioned in the introduction, we propose a recursive identification scheme for this purpose which
will yield an estimate ω̂r,x(t) of ωr,x(t) and the sinusoidal reference signal (15) will consequently be
constructed using ωref (t) = ω̂r,x(t).

Remark. It is to be noted that, to perform the simulations leading to Figure 8, we assume that
the only varying parameter of Gx is the resonance frequency while ξ, k and kf remain equal to the
values they had in the nominal model (4). It is important to stress that this assumption is made
here only to be able to perform the simulations leading to Figure 8 and that this assumption will
not be made in the sequel of the paper. Indeed, even though the resonance frequency is likely to
be the parameter that varies most, it is clear that some of the other parameters can also vary with
time.

3 Recursive estimation of the varying resonance frequency

3.1 Recursive Identification

Considering the fact that the dynamics of the drive-mass system will vary with external factors
(such as the temperature, the pressure, ...) and considering the order of the nominal model of

11We nevertheless observe a small increase of the amplitude of εx. This phenomenon could be expected by comparing
the value of

∣∣Sωr,x(ejωr,xTs)
∣∣ for ωr,x 6= ωnomr,x and for ωr,x = ωnomr,x in Figure 10b.
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this system (see Section 2.1), we can assume the following time-varying model structure for the
dynamics of the drive mass system12:

x̆(t) = b0,1(t)ux(t− 1) + b0,2(t)ux(t− 2) + b0,3(t)ux(t− 3) . . .

· · · − f0,1(t)x̆(t− 1)− f0,2(t)x̆(t− 2)− f0,3(t)x̆(t− 3)

x(t) = x̆(t) + vx(t)

(16)

where θ0(t) = (b0,1(t), b0,2(t), b0,3(t), f0,1(t), f0,2(t), f0,3(t))T is the time-varying parameter vector of
dimension n = 6. Recursive identification is an identification technique that allows to derive models
of time-varying systems such as the one given in (16) via the determination at each time instant of
an estimate θ̂(t) of its time-varying parameter vector θ0(t). From this time-varying model Ĝx(t),
we will be able to derive an estimate ω̂r,x(t) of the resonance frequency ωr,x(t) (which will then be
used to adapt the sinusoidal reference xref of the closed loop made up of the drive mass system
and the controller Kx). As we will see in the sequel, at each time instant t, this estimate ω̂r,x(t)
will be given by the resonance frequency of the transfer function that can be obtained if we freeze
the coefficients of the time-varying operator Ĝx(t) at their value at time t.

Note that, unlike in the simulations of the previous section, the time-varying model struc-
ture (16) does not impose that the resonance frequency is the only parameter that varies over time.
It only assumes that the order of the dynamics of the drive mass system will not change over time.

Like in all identification methods, we will need to excite the system with an external signal
r(t) in order to guarantee that θ̂(t) is an accurate estimate of θ0(t) (and consequently in order
to guarantee that ω̂r,x(t) is an accurate estimate of ωr,x(t)). This external excitation signal will
be denoted r(t) and will be added at the output of the controller Kx (as shown in the bottom of
Figure 12):

ux(t) = Kx(z) (xref (t)− x(t)) + r(t) (17)

In our implementation, r(t) will be chosen as an RBS (Random Binary Sequence) signal of ampli-
tude 0.02 (which is small with respect to the amplitude of the signal ux observed in Figures 6 and 8).

Let us first present the methodology we have used to determine θ̂(t) using the measurements of
ux(t) and x(t) obtained in the loop represented in (the bottom of) Figure 12. Among the possible
recursive identification algorithms, we have had to make a choice that allowed a compromise between
the accuracy of the estimate and the numerical complexity (the currently available electronic card
has some strong computational limitations). Based on these considerations, we opted for an Output
Error (OE) version of a technique called Recursive Prediction Error (RPE) [12]. As such, this OE
version neglects the coloring of the process noise vx(t) and can therefore lead to biased estimates
since the identification is performed under closed-loop operation [12]. However, this bias is likely to
be small since the identification is here performed under favorable signal-to-noise ratio (x(t) will be
of amplitude 0.5 and vx(t) has a standard deviation of 0.0027). In the RPE algorithm, the estimate
θ̂(t) at time t is determined by updating the previous value of the estimate (i.e., θ̂(t − 1)) using
uniquely the output measurement x(t) at time t and the input measurement ux(t− 1) at time t− 1
and using other quantities that are also recursively updated. In particular, we have13:

θ̂(t) = θ̂(t− 1) +R−1(t) ψ(t) (x(t)− x̂(t)) (18)

12The complexity of this model structure can be further reduced by imposing b0,3(t) = 0. Indeed, such a model
reduction does not influence the accuracy of the estimate ω̂r,x(t).

13In order to reduce the numerical complexity, the inversion of the matrix R(t) in (18) can be easily circumvented
(see e.g., [13, pp. 328]).
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Figure 12: Control of the drive mass system with the estimate ω̂r,x(t) of the resonance frequency
ωr,x(t) obtained with the Recursive Prediction Error algorithm.

where x(t) is the output measurement at time t and R(t) ∈ Rn×n, ψ(t) ∈ Rn×1 and x̂(t) ∈ R
are additional quantities that are recursively determined. The quantities x̂(t) and ψ(t) can be
determined using θ̂(t − 1) and the input measurement ux(t − 1) at time t − 1 via the following
time-varying state-space representation (the state vector ϕ(t) of this state-space representation is
thus also recursively updated):

ϕ(t) = A(θ̂(t− 1)) ϕ(t− 1) + B(θ̂(t− 1)) ux(t− 1)(
x̂(t)

ψ(t)

)
= C(θ̂(t− 1)) ϕ(t)

(19)

where, for any value of θ = (b1, b2, b3, f1, f2, f3)T , (A(θ), B(θ), C(θ)) is a state-space representation
of the following vector of transfer function14:(

G(z, θ)
∂G(z,θ)
∂θ

)
with G(z, θ) =

b1z
−1 + b2z

−2 + b3z
−3

1 + f1z−1 + f2z−2 + f3z−3
(20)

Finally, the matrix R(t) is determined from R(t− 1) using the quantity ψ(t) determined in (19):

R(t) = λ R(t− 1) + ψ(t)ψT (t) (21)

where λ is a scalar tuning parameter, the so-called forgetting factor (0 < λ ≤ 1). This parameter
is determined by the user based on the assumed rate of variation of θ0(t) in order to optimize the
bias-variance trade-off of the estimate. In a nutshell, the faster θ0(t) varies, the smaller λ has to
be chosen. Here, using a trial-and-error approach, we have determined that λ = 1 − 2 10−5 is a
reasonable value.

Once initialized, the recursive algorithm can thus be easily implemented. For this initialization,
we have here chosen θ̂(0) as the parameter vector of the nominal model of the drive mass system i.e.,
the model identified at nominal temperature and that has been used to design the controller Kx.

14It is thus clear that x̂(t) represents the Output Error predictor of x(t) and ψ(t) its gradient.
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The other quantities that are recursively updated are initialized as follows x̂(0) = 0, ψ(0) = 0 and
R(0) = 0.01 In (see [13, pp. 299-302] for more details on this choice). Additional features can also
be added to the algorithm. It is indeed highly recommended [12, pp. 373] to check at each time
instant t if the transfer function G(z, θ) for θ = θ̂(t) is stable and, if it is not the case, to replace (18)
by θ̂(t) = θ̂(t− 1). In addition, it may also be wise to regularly re-initialize the recursive algorithm
to avoid numerical issues (that can take the form of an estimate θ̂(t) that remain constant while
θ0(t) varies).

3.2 Estimation of the varying resonance frequency using θ̂(t)

Let us now show how we can derive ω̂r,x(t) from θ̂(t). If we freeze the value of θ̂(t) at its value at

time t, the dynamics of the drive mass system can be described by G(z, θ∗) with θ∗ = θ̂(t) (see
(20)). The estimate ω̂r,x(t) of ωr,x(t) at time t will be then chosen as the resonance frequency of
the transfer function G(z, θ∗). To determine this resonance frequency in a computationally friendly
way, we will use the following approach. Like the nominal model (2), G(z, θ∗) will be characterized
by two complex poles and one real pole. Let us denote by pnom one of the complex pole of the
nominal model. This pole pnom can be used to initialize a Newton-Raphson scheme aiming at
determining the corresponding complex pole p∗ of G(z, θ∗) (see e.g., [9]). Subsequently, using p∗,
the following expression (approximately15) gives the resonance frequency of G(z, θ∗) i.e., ω̂r,x(t):

ω̂r,x(t) =
1

Ts
arg(p∗(t)) (22)

where arg(p) denotes the argument of the complex number p.

The estimate ω̂r,x(t) obtained in this way can then be used to compute xref (t) by using (15)
with ωref (t) = ω̂r,x(t). As a consequence, the scheme that we propose to tackle the variations
of the resonance frequency of the drive mass system (when this system is operated with a linear
controller) can be summarized by Figure 12.

Remark. Since the sampling time Ts used by the electronic card is small with respect to the
expected variation of the resonance frequency, instead of updating the value of the resonance
frequency at each sample t, one could further reduce the numerical complexity by updating the
value of ω̂r,x(t) only every tw samples i.e., the approach presented in this subsection to derive

ω̂r,x(t) from θ̂(t) will thus only be required once every tw samples. This approach is moreover
particularly interesting in combination with a recursive algorithm that is frequently re-initialized
(see the previous subsection). Indeed, in the instants just after such a re-initialization, the estimate
θ̂(t) of θ0(t) may be less accurate and so would be the estimate ω̂r,x(t) of ωr,x(t) that could be

deduced from that θ̂(t). In the implementation of our algorithm, the recursive algorithm will be
re-inialized every 30 seconds and the estimate ω̂r,x(t) of ωr,x(t) will be determined 15 seconds after
each re-initialization16 and just before the next re-initialization. In other words, the signal ω̂r,x(t)
that will be used to compute xref will have the form of a staircase signal with a (possible) step
every 15 seconds.

4 Experimental results

In the previous section, we have presented our approach to improve the control of the drive mass
system under varying resonance frequency circumstances. The resonance frequency of the drive

15This approximation is very accurate when the damping is very small as in the case considered in this work.
16The estimates θ̂(t) and ω̂r,x(t) are indeed less accurate only for a few seconds.
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mass system is estimated through a recursive identification algorithm and this estimate ω̂r,x(t) is
used as ωref (t) in the expression (15) of the sinusoidal reference signal xref (t) of the controller Kx

(see Figure 12). This algorithm can be implemented in C++ in the electronic card of the platform
AS3125-SDK that is used to instrument the MEMS gyroscope which is under consideration in the
Next4MEMS project. The experimental setup is represented in Figure 13.

Figure 13: Picture of the experimental setup with the electronic card AS3125-SDK and the MEMS
gyroscope.

Let us recall that the ambient temperature is the most important factor influencing the value
of the resonance frequency. Consequently, in order to investigate the performance of our approach,
we have operated the experimental setup presented in Figure 13 in a thermal chamber. Inside this
chamber, the ambient temperature can be controlled and modified. In particular, we have subject
the experimental setup to the temperature profile given in Figure 14. In this figure, we observe
that the temperature, which is initially equal to 26 oC, is modified to a temperature of about 52 oC
in approximately ten minutes and is subsequently kept (approximately) constant for another five
minutes. Recall that the controller Kx has been designed based on a model identified at a nominal
temperature of 30 oC.

Due to the modification of the temperature, the resonance frequency is modified and this fact
is confirmed by the estimate ω̂r,x(t) of this resonance frequency that is computed every 15 seconds
by the algorithm described in Section 3. This estimate is represented in Figure 15 and is compared
to the resonance frequency ωnomr,x of the nominal model. We observe that, starting at17 ωnomr,x , the
estimation algorithm requires approximately 45 seconds to settle. As we will see in the sequel, from
that moment onwards, the control loop (see Figure 12) will have signals εx and ux whose ampli-
tudes are very close to the ones observed in Figure 6 (the so-called nominal performance that we
want to maintain). Consequently, the estimate ω̂r,x(t) can be deemed close to the actual resonance
frequency ωr,x(t) of the drive mass system. Comparing the temperature profile of Figure 14 and

17Recall that the recursive identification algorithm is initialized at the nominal model.

16



0 100 200 300 400 500 600 700 800 900

25

30

35

40

45

50

55

Figure 14: Temperature profile in the thermal chamber.

the resonance frequency profile of Figure 15, it is clear that the dynamics of the dependence of the
resonance frequency on the temperature is rather complex.
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Figure 15: Estimate ω̂r,x(t) of the resonance frequency of the drive mass system (red asterisks)
compared to the resonance frequency ωnomr,x of the nominal model (blue solid line)

The estimate ω̂r,x(t) of Figure 15 is used to compute the sinusoidal reference signal xref of
the controller Kx as shown in Figure 12. Let us now see how this loop behaves by inspecting the
control signal ux(t) and the tracking error signal εx(t). These signals are represented in Figure 16.
During the 45 first seconds where xref is computed with a less accurate estimate of the resonance
frequency (since the estimation algorithm is in its settling phase), we observe a large control effort18

18The control effort in fact hits the saturation during approximately 30 seconds.
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and a large tracking error confirming the observations in Section 2.3 and confirming the need of
constructing xref with a good estimate of the resonance frequency. After this settling phase, the
signals ux(t) and εx(t) present amplitudes that are very close to the ones observed in the nominal
case (see Figure 6). Note that the slight increase of the amplitude of εx (observed in Figure 8) is
not visible here, but we observe a very small increase of the amplitude of ux in the second part
of the experiment. This may be due to the combination of, on the one hand, the very fast de-
crease of the resonance frequency in this part of the experiment (see Figure 15) and, on the other
hand, the fact that ω̂r,x(t) is only updated every 15 seconds (see the remark at the end of Section 3).

The differences between the settling phase (where ω̂r,x(t) is less accurate) and the remaining of
the experiment presented in Figure 16 clearly show the efficiency of our approach to deal with the
adverse consequences of the variations of the resonance frequency when the drive mass system is
controlled using an LTI controller (i.e., the control configuration used in the Next4MEMS project).
In order to illustrate the benefit of our approach even further, let us perform a similar experi-
ment in the thermal chamber without the adaptation of the reference signal xref i.e., xref is kept
during the whole experiment equal to xref (t) = 0.5 sin(ωnomr,x tTs) i.e., a sinusoid at the resonance
frequency ωnomr,x of the nominal model. This leads to the signals εx and ux given in Figure 17. It
is clear that the control signal ux observed in this figure is much larger that what is observed in
Figure 16. This is particularly obvious in the second part of the experiment where the resonance
frequency strongly varies (see Figure 15) and where ux hits its saturation. This saturation of the
control effort has a dramatic effect on the tracking error whose amplitude becomes almost as large
as xref . Comparing Figures 16 and 17 clearly evidences the necessity of adapting xref to tackle
the variations of the resonance frequency when the drive mass system is controlled using a LTI
controller.

Remark. When facing resonance frequency variations such as the ones in Figure 15, the adaptation
of xref proposed in this paper allows to maintain the (maximal) amplitudes of ux and εx close to the
ones observed in the nominal case (see Figure 6). Consequently, in order to tackle such resonance
frequency variations, there seems to be no need of a more complex approach which, besides the
adaptation of xref , would also involve the adaptation of Kx. If this would happen to be necessary
in certain situations, let us however note that our recursive identification scheme would also enable
the adaptation of Kx. The estimate θ̂(t) could indeed be used as scheduling parameter in an Linear
Parameter Varying controller [2, 20, 5]. Alternatively, as proposed in [17], one could also just use
ω̂r,x(t) as scheduling parameter.

5 Conclusion

In a MEMS gyroscope, the proof mass of the drive mode (i.e., the drive mass system) must oscillate
at its resonance frequency. When using a linear time-invariant controller to generate this oscillation,
the variations of the resonance frequency (due e.g., to temperature variations) can severely alter
the performance of the MEMS gyroscope. In this paper, we use recursive identification to estimate
the dynamics of the drive mass system over time. Using this dynamics, we derive an estimate of the
resonance frequency that is used to adapt the frequency of the sinusoidal reference signal that must
be followed by the drive mass system. The experimental results show that the proposed approach
allows to maintain a performance level that is very close to the nominal performance level even if
the resonance frequency varies at a fast rate. By performance, we here mean the amplitudes of the
tracking error and of the control actuation.
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Figure 16: Results of the experiment where the setup is operated in a thermal chamber and where
xref is adapted as shown in Figure 12.
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Figure 17: Results of the experiment where the setup is operated in a thermal chamber and where
xref (t) = 0.5 sin(ωnomr,x tTs).
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