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Abstract
Formal reasoning on model transformation languages allows
users to certify model transformations against contracts. Co-
qTL includes a specification of a transformation engine in the
Coq interactive theorem prover. An executable engine can
be automatically extracted from this specification. Transfor-
mation contracts are proved by the user against the CoqTL
specification and guaranteed to hold on the transformation
running on the extracted implementation of CoqTL. The
design of the transformation engine specification in CoqTL
aims at easing the certification step, but this requirement
harms the execution performance of the extracted engine.

In this paper, we aim at providing a scalable distributed im-
plementation of the CoqTL specification. To achieve this ob-
jective we proceed in two steps. First, we introduce a refined
specification of CoqTL that increases the engine paralleliza-
tion. We present a mechanized proof of the equivalence with
standard CoqTL. Second, we develop a prototype implemen-
tation of the refined specification on top of Spark. Finally, by
evaluating the performance of a simple case study, we assess
the speedup our solution can reach.

CCS Concepts: • Computing methodologies→MapRe-
duce algorithms; • Software and its engineering→ Cor-
rectness; Domain specific languages.

Keywords: Model-Driven Engineering, Model transforma-
tion, Spark, Coq
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1 Introduction
In model-driven engineering (MDE), model management
frameworks propose dedicated languages to transform mod-
els, like the AtlanMod Transformation Language [10] (ATL)
or the Epsilon Transformation Language [12] (ETL). Good
scalability and facilities for formal reasoning are among
the intended benefits for users of model-transformation lan-
guages. On the one hand, researchers have proposed trans-
formation engines designed to effectively perform compu-
tationally or memory-intensive transformations [11]. For
instance, transformation languages have been equipped with
implicit parallel/distributed modes of execution to automati-
cally multiply the number of resources allocated to a transfor-
mation [3, 12]. To achieve this, some engines have been built
on top of distributed programming frameworks (e. g. Apache
Hadoop in [3]). On the other hand, the community has exten-
sively worked at formal reasoning and verification tools for
model transformation languages. Among these solutions, the
CoqTL language [21] allows users to write transformation
rules, define contracts and certify the transformation against
them, within the Coq proof assistant [7].
In this paper, we introduce a transformation engine that

addresses at the same time distribution and certification. This
is not trivial. Distributed programming typically involves
non-deterministic execution order, complicating the proof of
properties on parallel programs. Interactive theorem proving
is already a very costly activity on sequential model transfor-
mations. Certifying transformations by formal reasoning on
the complexities of modern distributed frameworks would
require unmanageable proofs. We propose a solution to allow
users to certify transformations in Coq and execute them
over a modern data-analytics framework. The core of our

https://doi.org/10.1145/3486608.3486901
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Figure 1. Relational and Class diagram metamodels

proposal is SparkTE, a distributed implementation of the
CoqTL specification, built on top of Apache Spark, a widely-
deployed framework. Besides scalability, Spark provides an
ecosystem of libraries, e. g. for connection to heterogenous
data sources. Importantly, the Spark programming interface
mirrors a functional/higher-order model of programming.
This is a key property for our solution, since it enables a
straightforward and high-confidence extraction of parallel
code from functional Coq specifications.
Notice that we designed the parallelizable specification

for a specific data analytic framework, and targeting an-
other back-end solution would necessitate additional manual
changes.

This paper has two main contributions:
• A refinement of the standard CoqTL specification, in-
cluding three major optimizations to increase paral-
lelism opportunities. The refined specification, here
named Parallelizable CoqTL, is written in Coq, and is
validated by formally proving in Coq the input/output
equivalence to the standard CoqTL specification.

• A transformation engine that implements Paralleliz-
able CoqTL on top of Apache Spark, named SparkTE.
By evaluating the performance of a simple case study,
we assess the speedup that SparkTE can reach.

The rest of the paper is organized as follows. We first intro-
duce a running example in Section 2. Our approach overview
is illustrated in Section 3. Section 4 presents the new Paral-
lelizable CoqTL specification and the SparkTE engine. The
performance experiments on SparkTE are presented in Sec-
tion 5. We finally conclude the paper by summarizing related
work in Section 6 and drawing conclusions in Section 7.

2 Motivation and background
2.1 Running example
We choose a simple transformation as a running case to il-
lustrate the approach and perform preliminary performance
assessments. Listing 1 shows an excerpt of the code of a
CoqTL transformation named Relational2Class, which
ideally reverse-engineers class diagrams from given rela-
tional schemas, and Figure 1 shows its source and the target

metamodels. The transformation is a simplified inverse of
the well-known Class2Relational transformation [22], often
used in the community for exemplifying new contributions.
We choose the inverse direction because it is representative
of reverse-engineering transformations, where scalability
problems frequently arise [2].

The transformation is written in CoqTL, an internal DSL
for model transformation within the Coq theorem prover.
The transformation primitives are newly-defined keywords
(by the notation definition mechanism of Coq), while all
expressions are written in Gallina, the functional language
used in Coq. The CoqTL semantics is heavily influenced by
ATL [10] (notably in the distinction between a match/instan-
tiate and an apply function), and its original design choices
focus on simplifying proof development.

In Listing 1, the Relational2Class transformation is de-
fined via four rules, composed of two parts: (i) a matching
section (type and guard condition) and (ii) an output section,
which contains a definition for created target elements and
optional references. To keep a trace of which expression is
used for mapping a source to a target element, each element
of the output section of the rules is named.
The first rule (lines 5–11) maps all relational Types to

class-diagram Datatypes. We specify that a datatype is con-
structed using BuildDataType with the same id and the
same name as the matched type (line 10). The Table2Class
rule (lines 5–11) translates all tables to a corresponding
class, with the exception of tables that persist multivalued at-
tributes. To filter these tables, a guard condition, introduced
by the when keyword, calls a user-defined isClassTable
function (line 14), that we will discuss later. The created
target class is constructed from the id and the name of a
matched table (line 18). The third rule (lines 21–40) gener-
ates Attributes and links them to Classifiers. Columns
are transformed into single-valued Attributes by a call
to BuildAttribute with the last parameter (multivalued)
equal to false (line 27). Again, columns that are contained
by tables that persist multi-valued attributes are not trans-
formed, thanks to a guard isClassTable (line 14). Addition-
ally, two links are defined for the generated Attribute. First,
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1 Definition Relation2Class :=
2 transformation from RelationalMetamodel to
3 ClassMetamodel with m as RelationalModel :=
4

5 rule Type2Datatype
6 from element t class Type
7 to [
8 output "type"
9 element dt class Datatype :=
10 BuildDataType (getTypeId t) (getTypeName t)
11 ];
12

13 rule Table2Class
14 from element t class Table when isClassTable t
15 to [
16 output "class"
17 element c class Class :=
18 BuildClass (getTableId t) (getTableName t)
19 ];
20

21 rule Column2Attribute
22 from element c class Column when
23 isClassTable (getOwner c m)
24 to [
25 output "svattr"
26 element a class Attribute := BuildAttribute
27 (getColumnId c) (getColumnName c) false ;
28 links [
29 reference AttributeType :=
30 ty <- getColumnType c m;
31 dt <- resolve Relational2Class m "type"
32 DataType [[ ty ]];
33 return BuildAttributeType a dt;
34 reference AttributeClass :=
35 ta <- getColumnTable c m;
36 cl <- resolve Relational2Class m "class"
37 Class [[ ta ]];
38 return BuildAttributeClass a cl
39 ]
40 ];
41

42 rule MVAttributeTable2Attribute
43 from
44 element t class Table; element o class Table
45 when isMVAttributeTable t o
46 to [
47 output "mvattr"
48 element a class Attribute := ...
49 ]

Listing 1. Excerpt of the Relational2Class Transformation
in CoqTL

a link from the target Attribute to its type (lines 29–33).
The corresponding type is defined in BuildAttributeType
by resolving the output of the Type of the source Column
(line 32). The second reference, from the Attribute to its
owner (lines 34–38), is defined in the samemanner (i. e., by re-
solving the output of the owner Table of the source Column)
(line 37). MVAttributeTable2Attribute (line 42–49), that
is the last rule of our transformation, matches two tables: a

Lemma tr_r2c_inverse: ∀ ( m : ClassModel),
execute Relational2Class ( execute Class2Relational m)

= m.

Listing 2. The tr_tracePattern_source lemma

table t generated from a multi-valued attribute and the table
o that corresponds to its owner. The two references are built
as in the Column2Attribute rule: one reference to the type
of the attribute and one to its owner.
Once the transformation has been defined in CoqTL, it

is possible to prove that it has a given property, e. g. it re-
spects a given contract. For instance, CoqTL users can in-
teractively prove a properties of Relational2Class and
Class2Relational, by proving the lemma in Listing 2 us-
ing Coq tactics. Several strategies are possible to distinguish
tables that were generated from classes, from tables that
correspond to multivalued attributes. These strategies would
correspond to different implementations of the functions
isClassTable and isMVAttributeTable. In our simple ex-
ample, we assume that Class2Relational translates multival-
ued attributes into tables with a specific name pattern (e.g.,
name of the owner class followed by an underscore and
the name of the multivalued attribute). Under this assump-
tion isClassTable and isMVAttributeTable just contain
a string check, with constant complexity. In the experimenta-
tion (Section 5) wewill introducemore computational time in
these functions to simulate increasing complexity, to better
estimate the potential parallelization of our solution.

2.2 Objective
CoqTL includes an executable semantics for the transfor-
mation engine. An implementation of the engine in OCaml
or Haskell can be automatically obtained by the standard
extraction mechanism of Coq. However, since the executable
semantics is designed to be reasoned about in proof terms,
it is kept very simple (the core semantics is formalized in
196 Coq LOC) and does not include any efficiency optimiza-
tion. This has a significant impact on the performance of the
extracted engine for CoqTL. For instance , the execution of
the Relational2Class transformation on a sequential version
of the CoqTL engine for a model of a thousand of model
elements takes more than 4 hours on a recent laptop (Intel
Core i7-8650U CPU @ 1.90GHz, 32GB of RAM).
Considering the size of realistic code-bases for reverse-

engineering projects, we aim for a solution that allows users
to deploy and run the transformation on a state-of-the-art
distributed data-analytics framework. Such frameworks are
often already deployed in companies that perform large com-
putations, or in their cloud-based services portfolio.
Apache Spark is a data-analytics framework aiming at

querying or manipulating large-scale data. In a local mode,
the computation is run using a single machine, while in a
cluster mode a master dispatches some partitions and tasks
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to several other additional machines: the workers. Such ar-
chitecture allows to use more resources (memory, number
of processors) which lead to the opportunity of running
computations on larger datasets. The data-parallel approach
promoted by Spark consists in using a specific data struc-
ture called RDDs (Resilient Distributed Dataset) that is parti-
tioned by the master. Partitions are distributed among the
workers as well as tasks to execute on RDDs. A task in Spark
is a set of operations performed on a RDD. Spark supports
several programming paradigms. The use of these paradigm
for model-management operations has been investigated
in [19]. In this paper, we use Spark with the MapReduce
paradigm [14].
We aim at designing a solution that executes on Spark a

CoqTL transformation (like Relational2Class), certified
against a contract. On the performance side, we aim at im-
proving two kinds of scalability: 1) The capacity of scaling
with additional computational resources, referred to as ver-
tical scalability; 2) The capacity of dealing with increasing
datasets, referred to as horizontal scalability. On the reliabil-
ity side, while the whole execution stack can not be certified
end-to-end (e. g. the formal semantics of Apache Spark is
not available), we aim nonetheless to produce a solution that
gives users high confidence that the proved contract will
hold on the distributed transformation.

3 Approach overview
Figure 2 shows the global workflow of our approach, sepa-
rating the formal part, written in Coq (left side), from the
executable engine in Scala and Spark (right side). Starting
from the Coq part, the workflow must be interpreted as
follows.

The CoqTL language allows users to definemodel transfor-
mations, theorems on their behavior and machine-checked
proofs of these theorems in Coq. These transformations can
be executed directly on the executable CoqTL specification.
We introduce Parallelizable CoqTL, a refinement of the exe-
cutable CoqTL specification that increases its parallelization
opportunities. We use the Coq theorem prover to prove that
this new specification is a refinement of the original one (see
Section 4.2). This entails that, for a given source model, any
transformation produces the same outputmodel when it runs
on standard CoqTL or Parallelizable CoqTL. The Paralleliz-
able CoqTL specification is written in Gallina, the functional
language used in Coq.

Then we provide an implementation of Parallelizable Co-
qTL in Scala. To obtain the Scala implementation, that we
name ScalaTE, we manually extract the Gallina functions
into corresponding Scala functions. Section 3.1 details this
extraction.

ScalaTE uses data structures that are the direct correspon-
dent of Gallina data structures (e. g. Scala List for Gallina
list). In a final step we replace these data structures with

distributed data structures (RDDs) from the Spark library, as
described in Section 3.2. We name the resulting distributed
engine SparkTE.
To run a transformation on SparkTE, the CoqTL trans-

formation rules (e. g., Listing 1) have to be translated into
their corresponding Scala version. We currently perform this
step manually, but its automatization is possible and left for
future work. Since Spark does not change the functional in-
terface of standard Scala, the obtained Scala transformation
can run on both ScalaTE and SparkTE.

3.1 Coq to Scala
The Coq environment includes an extraction mechanism
targeting ML languages: OCaml, Haskell, or Scheme. Al-
though an automatic extractor to Scala is available [8], it
supports only a subset of Gallina on an outdated version of
Coq. Hence, we opted to perform the extraction manually.
We perform manual extraction at two levels: first to create
the core engine (gallina2scala in Fig. 2), then to obtain Scala
rules representing a CoqTL transformation (coqtl2scala).

Gallina to Scala. The executable CoqTL specification
can be seen as a functional program that interprets the trans-
formation code. We produce a literal translation of this in-
terpreter in Scala.
For extracting Scala code from Parallelizable CoqTL we

translate Gallina types and (pure) functions into their cor-
respondent types and pure functions in Scala. Listings 3
and 4 show an example of CoqTL executable specification
(in Gallina) and its implementation in SparkTE (in Scala). The
example well illustrates the one-to-one translation among
types and functions that we adopt for all the extraction.
We implicitly assume that Scala functions (e. g., flatMap

for Scala List) implement the same semantics than their
Gallina correspondent (e. g., flat_map for Gallina list).

CoqTL to Scala. The CoqTL parser translates the con-
crete syntax of the transformation (e. g., from Listing 1) into
Coq code to construct an abstract syntax tree. Obtaining
the same transformation in Scala requires constructing the
same abstract syntax tree as Scala objects. Note that Scala
constructors for the abstract syntax are the literal translation
of the corresponding Gallina constructors in CoqTL.

Listing 5 shows the translation of the Table2Class rule from
Listing 1. The rule constructor (RuleImpl) requires a name,
a list of types for an input pattern (the types argument), a
guard condition (the from function), a list of output pattern
elements (the to argument). Each output pattern element
has a name, and a function for creating output elements from
input pattern elements. While not shown in this example, it
can be also accompanied by a list of functions for creating
links in the output model.

As illustrated by the example, the only non-trivial part of
this extraction is the translation of the body of expressions
for guards and output element creation (e. g. the body of the
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Figure 2. Global overview of our workflow to execute certified model transformations on Apache Spark.

Fixpoint tuples_of_length_n { A : Type} ( s1: list A)
( n : nat): list ( list A) :=
match n with

| 0 ⇒ nil::nil
| S n ⇒ prod_cons s1 (tuples_of_length_n s1 n)
end.

Listing 3. CoqTL definition for generating all combination
of elements

def tuples_of_length_n[A] ( s1: List[A], n: Int)
: List[List[A]] =

n match {
case 0 =>

List( List())
case n1 =>

prod_cons( s1, tuples_of_length_n( s1, n1−1))
}

Listing 4. Extracted Scala code from the Coq function
tuples_of_length_n

anonymous functions in Listing 5). An automatic compiler
from CoqTL rules to Scala is a part of future work (Section 7).

3.2 Distributed data structures
Spark RDDs are data structures that are automatically parti-
tionned and resulting in the distribution of the computation
operations on a Scala sequence (e. g., List) of serializable el-
ements. From a user point of view, RDDs can be manipulated
as lists, using the same primitive functions, and parallelism
is implicit. The advantage of using such abstraction for paral-
lelism is the semantics preservation of the operations on the
distributed structures. Because of the popularity of Spark and
its support, we assume the correctness of parallel operations
on the data.

An efficient use of RDDs requires an effective partitioning
of data. For instance, to take advantage of the internal multi-
threading mechanism, it is typically recommended in Spark
to assign four data partitions to each core. Each independent
computation of a partition is referred as a task. The Spark

new RuleImpl (
name = "Table2Class",
types = List( RelationalMetamodel. TABLE),
from = ( m, l) => {
val t = l. head
Some( t. isClassTable)

},
to = List (
new OutputPatternElementImpl(

name = "class",
elementExpr = ( i, m, l) =>

if ( l. isEmpty) None else {
val t = l. head. asInstanceOf[RelationalTable]
Some( new ClassClass( t. getId, t. getName,
multivalued=false))}

)))

Listing 5. Scala implementation for the Table2Class rule

task scheduler makes the distribution following a round-
robin approach, optimizing load-balancing: once a task is
ended on a core, a new one can be assigned from the waiting
list. Section 4 gives more detail about how we use RDDs in
SparkTE.

4 Parallelizable semantics for CoqTL
The execute function shown in Listing 6 is the entry point
of the transformation execution in the standard CoqTL se-
mantics.

First, the allTuples function (line 3) produces all the tu-
ples of elements that can be possibly matched by the rules.
allTuples computes a list of

∑𝐴
𝑎=0 𝑛

𝑎 tuples, with𝑛 the num-
ber of elements in the input model, and𝐴 the maximum arity
of the transformation rules.
Then, the instantiatePattern function (line 5) tests

each tuple to find if it matches with any rule and for each
match it constructs the corresponding output pattern ele-
ments. Internally it iterates on each rule, executes their guard
function and if the result is positive, executes the element
creation function for each output pattern element of that
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Definition execute ( tr: Transformation) ( sm: SourceModel)
: TargetModel :=
let tuples := allTuples tr sm in

let elements :=
flat_map ( instantiatePattern tr sm) tuples in

let links := flat_map ( applyPattern tr sm) tuples in

Build_Model elements links.

Listing 6. execute function in the base CoqTL specification

Definition execute ( tr: Transformation) ( sm : SourceModel)
( sm : SourceMetamodel) : TargetModel :=
let tuples := allTuplesByRule tr sm mm in

let ( elements, tls) :=
flat_map ( tracePattern tr sm mm) tuples in

let links :=
flat_map ( fun sp ⇒ applyPatternTraces tr sm sp tls)

( allSourcesPattern tls) in

Build_Model elements links.

Listing 7. execute function in the Parallelizable CoqTL
specification

rule. The resulting elements are gathered by the flat_map
in a single output list.

Finally, the applyPattern (line 6) function is executed on
each tuple to create target links. Similarly to the function
instantiatePattern, the function internally iterates on all
rules and checks if the rule matches the given pattern. In a
positive case, the element creation functions for that rule are
executed and then the link creation functions. The resulting
links are gathered by the flat_map in a single output list.

4.1 Parallelizable CoqTL
Parallelizable CoqTL contains three optimizations to the base
CoqTL specification:

• To increase parallelization, the algorithm is split into
two consecutive phases, instantiate and apply, that are
built on parallelizable functional patterns (flat_map);

• To improve load balancing of the instantiate phase,
only possibly useful tuples are generated and then
distributed;

• To improve load balancing of the apply phase, a set of
trace links is produced by the instantiate phase and
the apply phase iterates only on those trace links.

Note that similar optimizations (among others) are already
implemented in well-known transformation engines, like
ATL [10] or ETL [12]. Differently from previous work, in this
paper we formalize the optimizations, interactively prove
that they do not affect the transformation output and assess
their impact on distributed execution.
The entry point of Parallelizable CoqTL, is presented in

Listing 7. Figure 3 illustrates the global behavior on aminimal
example with one table and one column.

Optimization 1: Two phases. In standard CoqTL the
applyPattern function performs all the computation of the
links generated by a matched input pattern, by the rule that
matches it. However the computation of the links of a rule is
not independent from the computation of other rules. This
dependency is caused by the resolve function (e. g., lines 32
and 37 in Listing 1) that searches for the output of another
rule in order to set the target of the created link. In general,
because of this dependency, two executions of the apply
function can not be run in parallel, without replicating some
matching and instantiation within each call to resolve.1

We refactor the computation to split it in two phases, simi-
larly to ATL [10]. This is visible in Listing 7. In the first phase
(lines 5) we compute the tuples and we run the matching
and instantiation by a new function named tracePattern.
The first phase produces the list of generated elements, and
trace links connecting them to their corresponding source
patterns. Differently from Listing 6, here the second phase

1This is exactly how the standard CoqTL specification computes resolve.
This simple solution keeps the specification compact and has no nega-
tive impact on proofs. However it has a big impact on performance and
parallelization.
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(line 8)) can only start computing output links after the full
first phase has finished computing the trace links, since the
flat_map expects the tls structure as parameter.

In Listing 7 every execution of tracePattern can be run
in parallel. When the first phase is over, every execution of
applyPatternTraces can be run in parallel too, since the
calls to resolve can be computed immediately on the trace-
link structure. This greatly improves the parallelization of
the algorithm.

Optimization 2: Tuple generation by rule. Matching a
pattern to a rule happens in two consecutive steps. First, the
types of the pattern are checked against the types expected
by the rule. Then, if the types are correct, a guard condition
is evaluated. The type checking is very fast, hence it acts as
a first filtering. Instead the evaluation of the guard condition
can potentially be very long, or navigate large parts of the
model. So it is executed only for the few tuples that pass the
type check.
Since the tuples that require an evaluation of the guard

condition are a small subset of all the possible tuples, arbi-
trarily distributing all tuples among the cores can potentially
lead to imbalanced partitions. In particular it would not be
uncommon to have partitions that do not require any guard
evaluation, opposed to partitions that need to evaluate sev-
eral expensive guards. In such cases, idle workers would
wait for the synchronization barrier of Spark to start new
computations. The imbalance impacts the scalability of the
program.
To limit imbalance, in the initial sequential tuple gener-

ation phase, we generate only tuples whose type matches
with at least one rule of the transformation. This is shown
in Listing 7 by the use of the allTuplesByRule for tuple
generation (line 2). allTuplesByRule iterates on rules and
produces only combinations of elements of the types listed
in the rule input pattern. This improves load balancing of
the first phase since all the produced tuples require a guard
evaluation.

Optimization 3: Apply iterates on traces. Executing the
apply phase on the tuples generated by allTuplesByRule
would cause an imbalance among partitions, similar to the
one discussed in Optimization 2. Indeed, among these tuples
only very few have passed the guard condition in the first
step. A partitioning of allTuplesByRule would produce
partitions that do not require any computation, together
with partitions that need to evaluate several expensive link
creation functions. In this optimization we make the apply
phase iterate only over the source patterns that passed the
guard evaluation in the instantiate phase. We retrieve these
patterns by collecting them from the list of trace links. This
is performed by the function allSourcePatterns at line 8
of Listing 7.

Optimization Spec. size Cert. size Proof effort

twoPhases 69 484 10

byRule 42 487 7

iterateTraces 69 520 4
Table 1. Size (in LOC) of new specification and certification
proofs added for each optimization, with proof effort (in
man-days).

4.2 Refinement proof
Besides the executable functional specification, CoqTL

is also described by an axiomatic specification. Certifying
against the axiomatic specification involves providing 10
types, 27 semantics functions and proving 15 theorems. The
specification is fully illustrated in [6], together with a proof
that engines implementing the executable specification cer-
tify against the axiomatic one.
We prove that engines implementing Parallelizable Co-

qTL certify the axiomatic specification, too. For this step, we
naturally reuse the types, functions and certification proofs
of the base executable specification that are not impacted by
the optimization. Each optimization is proved independently.
Table 1 shows the size (in lines of code) of new specifications
and proofs required for describing and certifying each opti-
mization, plus the human effort (in man-days) to complete
the proofs. The refined specifications and their proofs are

Lemma exe_preserv :
∀ ( tr: Transformation) ( sm : SourceModel),
twophases. execute tr sm = execute tr sm.

Lemma In_by_rule :
∀ ( sp: list SourceModelElement) ( tr: Transformation)
( sm: SourceModel),
In sp ( allTuplesByRule tr sm)

→ In sp (allTuples tr sm).

Lemma In_by_rule_instantiate :
∀ ( sp: list SourceModelElement) ( tr: Transformation)
( sm: SourceModel),
In sp ( allTuples tr sm)

∧ instantiatePattern tr sm sp <> nil

→ In sp (allTuplesByRule tr sm).
Lemma In_by_rule_apply : ...

Lemma tr_tracePattern_source:
∀ ( tr: Transformation) ( sm : SourceModel)
( tl : TraceLink) ( sp: list SourceModelElement),
In tl ( tracePattern tr sm sp)

→ sp = TraceLink_getSourcePattern tl.

Listing 8. Certifying optimizations lemmas
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available online2. All the discussed lemmas below can be
found in Listing 8.
The key step for certifying the twoPhases optimization,

is proving that it does not change the output of the full
transformation (exe_preserv). This proof has two parts: 1)
for the instantiation phase, we prove that the additional
computation of the trace, does not have any effect on the
computation of the instantiated elements; 2) for the apply
phase we need to prove that the new apply function is equal
to the old one. Coq is able to prove automatically the second
step, by full unfolding and simplification of the old and new
apply functions. Note that in this proof we use the axiom
of functional extensionality (two functions are equal if their
values are equal at every argument), notably to compare the
body of inner anonymous functions.
The byRule optimization changes the order of the ele-

ment and link creation in the transformation output, hence
a lemma similar to exe_preserv would not hold. We prove
its equivalence in two steps: 1) we prove that tuples com-
puted by rule are a subset of the all tuples (In_by_rule),
2) we prove that tuples computed by rule include all tuples
that produce elements or links (In_by_rule_instantiate).
The second step is the most challenging and is performed
by case analysis on matchPattern: given any pattern, if the
pattern does not match then it cannot produce anything, if it
matches then it is one of the patterns generated by the rule
allTuplesByRule.

The iterateTraces optimization does not change any func-
tion in the instantiate phase, hence we can easily prove a
similar theorem to (exe_preserv), but limited to the result
of instantiate. The apply phase does not change the com-
putation of a single link, but skips some source patterns,
and produces links in a different order w.r.t. the base ver-
sion. To prove that the same links are generated, we pro-
ceed by case analysis on the trace generated for a given
source pattern: 1) if the instantiate phase did not generate
any trace for that pattern, then the standard apply phase
would not have produced any corresponding link; 2) if there
is a trace, then the apply phase applies the same function to
the same source pattern, hence producing the same output
(tr_tracePattern_source).

4.3 Implementation on Spark
Distributed computation of our Spark implementation re-
volves around the use of RDDs. First, the input patterns,
represented as a list of tuples, are distributed with an RDD
among cores. Each core independently applies the instantiate
function to every tuple of its partition. Implicit communi-
cations are operated by Spark to scatter the tuples from the
master process to the workers. After the computation, the
resulting elements and their trace-links are all gathered to
the master process.

2https://github.com/atlanmod/SparkTE_public/

Cluster CPU RAM Netw.

Rennes 2× 8 cores/CPU 128GB 2×
paravance Intel Xeon E5-2620 10Gbps

Nancy 2× 18 cores/CPU 96 GB 2×
gros Intel Xeon Gold 5220 25Gbps

Table 2. Hardware setup of the two clusters used during
experiments. These clusters are part of the Grid’5000 experi-
mental platform for distributed computing.

Dataset D1 D2 D3 D4 D5

model type Relational IMDb DBLP

elements 150 300 600 440 700

links 290 580 1060 1968 1886
Table 3. Description of the three datasets used in the experi-
ments with the number of elements and links.

For the second phase, the trace-links are distributed with
an RDD. Each core is in charge of generating the links for
a partition of output elements and their associated applied
rule. Since this second phase needs a global knowledge of the
trace-links to resolve output elements, we used a broadcast
communication to share the whole set of trace-links to all
cores.

A global view of where RDDs are used and what commu-
nications are operated is illustrated in Figure 3.

4.4 Limitations
SparkTE implements the complete CoqTL specification but
some limitations remain. First, all the translations from Coq
to Scala are manual. In particular, the transformation rules
need to be manually translated by the user. However the
correspondence between the abstract syntax in CoqTL and
ScalaTE/SparkTE makes the translation of the rule structure
trivial. Hence, our solution reduces the complex problem of
translating to Scala a CoqTL transformation, into a simpler
problem: translating to Scala separately each side-effect-free
expression for guards, output pattern elements creation, and
output pattern links creation. While simpler, this task is
still tedious and error prone, hence we aim at making the
translation fully automatic in future work.

5 Experiments
In the previous sections, we have presented the three op-
timizations adopted for Parallelizable CoqTL to increase
the efficiency and propensity to parallelization of the ex-
tracted engine. In this section, we evaluate the performance
of SparkTE and the quality of its speedup compared to the
ideal speedup that divides the execution time by the number

https://github.com/atlanmod/SparkTE_public/
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of cores (relative to a reference version). As none of the con-
tributions of the related work have studied the use of Spark
for parallel transformations, we restrict our comparisons to
this theoretical ideal speedup. All jobs are run with Spark in
a standalone mode.
The first subsection presents the results we get from the

use-case previously described in Section 2.1, i. e. the Rela-
tional2Class transformation , and similar experiments on
two additional cases.
We show that the three optimizations introduced in Sec-

tion 4 improve significantly the performance of the trans-
formation in Spark. The results also show a relatively poor
speedup compared to the ideal one, but that can be improved
when having more complex operations within the trans-
formation. To investigate this result, the second subsection
illustrates that a speedup close to the ideal can be observed
with a high number of cores if the computation time and the
size of the dataset is big enough to offset the overheads of
Spark. Finally, a performance analysis by phase is presented
to show the very good speedup obtained by the parallelized
steps of SparkTE.

All results presented in this section have been executed ten
times on the same hardware configuration, and an average
is presented. The standard deviation of our measurements
are never higher than 10 % of the total execution time, thus
guaranteeing our results to be stable, and the average to be
meaningful. Furthermore, all our experiments have been con-
ducted on the French experimental platform for distributed
computing Grid’5000. Grid’5000 is made of geographically
distributed clusters of machines in France, each one with
its specific hardware setup. This platform also facilitates
the reproducibility of the experiments by offering a way to
build the same environment for any researcher. However,
Grid’5000 makes us dependent on available machines (i. e.
nodes) for provisioning which is why we use two different
clusters of Grid’5000 in our experiments. For each experi-
ment the number of machines and the number of cores are
specified. One can note that the number of machines that
is specified correspond to the number of workers instanti-
ated in Spark and that one additional dedicated machine is
provisioned to host the master of Spark. All our codes, raw
results, and analysis scripts are publicly available online.3

5.1 Evaluation of SparkTE on use-cases
In this section we apply our running example to a first model,
denoted D1 in Table 3. We also consider two additional trans-
formations: the IMDb case [9], aiming at finding couples of
actors who recurrently played together, and queries on a
DBLP model to find active authors who published in spe-
cific journals [1]. We run the two additional transformations
on model instances from the IMDb and DBLP metamodel,
respectively denoted D4 and D5 in Table 3.

3https://github.com/atlanmod/SparkTE_public

The transformations specified in CoqTL, subsequently
translated to Scala and Spark, are always correctly computed
by SparkTE, i. e. with the expected output of the transforma-
tion, for all our experiments.

We have used from 1 to 2machines of the cluster paravance
detailed in Table 2. Table 4 presents the execution times and
speedups of the three transformations from 1 to 8 coreswith 1
and 2machines. The results show a relatively poor speedup.
It is caused by the lack of complexity in the operations used
in the guard condition, the instantiate function and the apply
function.
Spark’s overheads are more particularly observable with

the poor speedup measured with 2 cores. Indeed, in this case
the gain of parallelizing with Spark is completely swallowed
by the overheads, but then an improvement is obtained with
4 cores. Overall the obtained speedup is not satisfying as the
speedup for 8 cores is almost the same as with 4 cores, and far
from the expected ideal speedup of 8. The additional cases
show that the performance of the approach depends on the
computation time of the rules. In the IMDb case, the better
growing speedup is caused both by the rules themselves that
have a high-level of complexity, and the high connectivity
of the input model. On the contrary, in the case of the DBLP
transformation, the rules with a low computational cost lead
to a poor speed-up. We will show in the next subsection that
Spark’s overhead is fully compensated by high computation
time of the transformation and/or large size of the dataset.
One problem with computation on large models is the

lack of memory. Distributed solutions, such as the one we
propose here, allow users to increase the resources allocated
to a transformation. For instance, a fixed allocated memory
for one core is not enough for processing the DBLP example,
causing disk operations which drastically slow the compu-
tation. This phenomenon disappears with 2 cores, and we
observe a hyper speedup.
Finally, we want to show the performance gain obtained

thanks to our three optimizations. To this purpose, we exe-
cute the same naive transformation on the direct implemen-
tation of the CoqTL specification (without optimizations).
On 1 core naive is computed in 27 s by SparkTE and in 52 s
by the CoqTL implementation.

5.2 Performance analysis by complexity and datasets
In the previous subsection, we have shown that the perfor-
mance of SparkTE is enhanced by our three optimizations in
terms of execution time and speedup. However, compared
to the ideal speedup our use-cases are disappointing. In this
subsection, we demonstrate that these results are due to the
small computation time in the transformation and the small
size of the dataset.
Experimental setup. To this purpose, we have built a

version of the transformation with additional fictitious pro-
cessing time in the different phases and steps. More precisely,
we incorporate sleeping functions to different parts of the

https://www.grid5000.fr/w/Grid5000:Home
https://github.com/atlanmod/SparkTE_public
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(b) Relative speedups of SparkTE for D2 up to 128 cores on 8 machines
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(c) Relative speedups of SparkTE for D3 up to 128 cores on 8 machines

Figure 4. Relative speedups of SparkTE with sleeping times

♯ cores (♯ machines) 1 (1) 2 (1) 4 (2) 8 (2)

R2C time (s) 27.02 32.50 13.17 11.91
speedup 1.00 0.84 2.13 2.31

IMDb time (s) 38.35 22.01 18.33 11.61
speedup 1.00 1.74 2.09 3.30

DBLP time (s) 0.83 0.35 0.56 0.84
speedup 1.00 2.37 1.49 0.99

Table 4. Execution times and speedups (relative to 1 core)
for the executions with SparkTE of Relational2Class (R2C),
the IMDb findcouple transformation, and the DBLP case.
Experiments respectively conducted with the dataset D1, D4,
and D5, on the cluster paravance.

rule evaluation: the guard condition to simulate complex
checking functions; the instantiate part to simulate complex
instantiation of element; and the apply function to simulate
a long resolution for links. As we discussed in Section 2, user-
defined functions can have several implementations with
different complexities. Proposing an evaluation based on the
computation time of these functions offers an infinite set of
benchmarks to accurately estimate the speedup of SparkTE.
Furthermore, we additionally vary the size of the dataset in
the obtained benchmarks.

Table 5 summarizes the set of benchmarks explained here-
after. The first benchmark (B1) uses the same data introduced
in the previous subsection on (D1) with 1, 2, and 4 machines,
and up to 8 cores per machine on the paravance cluster of
Grid’5000. We compare the computation time of the transfor-
mation on 2, 4, 8, 16, and 32 cores relative to the execution
time on 1 core. The second and third benchmarks, (B2) and
(B3), illustrate both the horizontal scalability and the vertical
scalability of SparkTE by increasing the size of the dataset
with (D2) and (D3) detailed in Table 3, and the number of
machines (i. e. nodes, workers) and cores detailed in Table 5.
The two benchmarks are evaluated on 1 to 4 machines, up to
16 cores per machine. As increasing the size of the dataset
and the fictitious sleeping time also increases the total execu-
tion time of experiments, we compute our speedup relative
to 4 cores instead of 1. As a result, the ideal speedup for 16
cores, for instance, is 4. Experiments on (B2) and (B3) are
conducted on the gros cluster of Grid’5000. Furthermore, as
indicated in Table 5, the three benchmarks are evaluated on
the following sleeping times: 0, 50, 100, 250, 500, 1000, and
2000ms. Finally, for the three benchmarks the overall execu-
tion time is measured, thus including some small sequential
parts of the code, and the broadcast phase.
Results. Figures 4a, 4b, and 4c show the speedups ob-

served for each benchmark according to the sleeping time
and compared to the theoretical ideal speedup. When in-
creasing the sleeping time, i. e. the execution time of the
transformation, the speedup is enhanced and is closer to
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dataset sleeping ♯ cores ♯ machines ♯ cores per node cluster

B1 D1 {0, 50, 120, 250, 500, 1000, 2000} {1, 2, 4, 8, 16, 32} {1, 2, 4} 4 to 8 paravance

B2 D2 same as B1 {4, 8, 16, 32, 64, 128} {1, 2, 4, 8} 4 to 16 gros

B3 D3 same as B1 same as B2 same as B2 same as B2 gros

Table 5. The set of experiments described in Section 5.2 with different fictitious processing time in the transformation, and
different sizes of datasets. The number of cores used by each benchmark is also indicated, as well as the number of cores per
node (i. e. worker). Finally, the Grid’5000 cluster used for the benchmark is given in the last column.

the ideal one. By increasing the size of the dataset, one can
note a slight increase of the speedup by comparing B2 and
B3 results respectively in Figure 4b and Figure 4c. Indeed,
in Figure 4b, at 128 cores, more than half of the points are
below the 50 % optimal value, while in Figure 4c only two
points are below this theoretical value. In other words, at
128 cores, (D2) needs a sleeping time of 500ms to reach 50 %
from optimal speedup while (D3) only needs a sleeping time
of 120ms.

5.3 Performance analysis by phase
This third subsection aims at analyzing the impact of the
two phases on the global speedup of the program. To do so,
we processed the same benchmark as before (i. e., (B1), (B2)
and (B3)), but with additional counters within the program
to record the computation time of each distinct part: (1) the
tuples generation; (2) the instantiate phase; (3) the broadcast
intermediate step; and (4) the apply phase.

Results. Our results on the three benchmarks show that
the total computation time is mainly driven by the paral-
lel parts. Indeed, in the case of the biggest dataset, with a
sleeping time of 0ms, the sequential part represents only
3.5 % of the total computation time which is the maximum
percentage of the sequential parts. For instance, at the oppo-
site extreme, i. e. in the case of the smallest dataset, with a
sleeping time of 2000ms, the sequential part represents less
than 1 % of the total execution time. Hence, in the following,
we restrict our analysis to the speedup of the parallel parts.

Table 6 illustrates the impact of each phase, by compar-
ing their relative speedup to the optimal one. For reading
convenience, we only show the results for sleeping times
equal to 50ms and 2000ms. Table 6 confirms our previous
assumption about the overhead of Spark that can be offset
by increasing the computation time (i. e. sleeping duration)
or the size of the dataset. Also, one can note that the ap-
ply phase offers better scalability than the instantiate phase.
This result can be explained by the remaining imbalance
on the tuples distribution. Let us remind first that the first
instantiate phase is composed of two steps: (1) a guard con-
dition; (2) the instantiation of the tuples that have satisfied
this condition. Hence, even if the partitions are better bal-
anced by our second optimization (see Section 4.1), not all

the tuples are necessarily computed. As a matter of fact, the
guard condition is always evaluated, but not the instantia-
tion that depends on the result of the guard condition. On
the contrary, in the apply phase apply patterns to all entries
which are nearly perfectly balanced.

6 Related work
Since models are basically typed graphs, several research
efforts rely on graph theory, especially for transformations.
For instance, in their Visual Modeling and Model Transfor-
mation (VMTS) tool, Mezei et al. use graph rewriting opera-
tions based on task-parallelism to apply distribute matching
operations to large models [18]. Recently, the Pregel [17] par-
adigm, a strategy that aims at easing parallel computations
on graphs on top of MapReduce architectures, has been used
as a solution for model transformation. This is the case of
Krause et al., who describe how transformation rules from
the Henshin framework can be partially extracted to Pregel
code [13]. A second use of Pregel in model transformation is
proposed by Thung and Hu [23]. In their approach, graph
transformations specified in a DSL are transformed into exe-
cutable Pregel code.
Benelallam et al. introduce ATL-MR, a tool that uses the

MapReduce paradigm to distribute the execution of ATL
transformation rules [2]. Their data-parallel implementation
follows a similar strategy as our SparkTE implementation:
sub-parts of the model are independently transformed in a
map phase and then dependencies are resolved in a reduc-
ing phase. In addition to distributing computation, authors
have recently highlighted the good impact of their strategy
for data partitioning. For instance, Burgueño et al. propose
LinTra, a prototype for transformations on distributed archi-
tectures that tackles memory issues they face with shared-
memory solutions [4]. They applied different strategies mix-
ing both the a distribution of tasks and data, on a single or
on multiple machines.

Both, ATL-MR and LinTra show better performances than
SparkTE for executing a model transformation. However,
they do not propose a verification counter part for certifying
their distributed transformations.
Interactive mechanized proof for model transformations

properties is an active research area. Calegari et al. encode
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Cores Instantiate phase (50ms) Apply phase (50ms) Instantiate phase (2000ms) Apply phase (2000ms)

B1

1 1 (100%) 1 (100%) 1 (100%) 1 (100%)
2 1.48 (74%) 1.62 (81%) 1.81 (90.5%) 1.87 (93.5%)
4 2.40 (60%) 1.83 (45.75%) 3.21 (80.25%) 3.85 (96.25%)
8 3.40 (42.5%) 4.50 (56.25%) 5.78 (72.25%) 7.15 (89.375%)

B2

4 1 (100%) 1 (100%) 1 (100%) 1 (100%)
8 1.68 (84%) 1.90 (95%) 1.83 (91.5%) 1.99 (99.5%)
16 2.39 (59.75%) 3.18 (79.5%) 3.30 (82.5%) 3.84 (96%)
32 2.74 (34.25%) 4.66 (59.25%) 5.86 (73.25%) 7.07 (88.375%)
64 3.17 (19.813%) 7.34 (45.875%) 10.87 (67.938%) 12.34 (77.125%)
128 3.33 (10.406%) 8.87 (27.719%) 20.92 (65.375%) 24.70 (77.188%)

B2

4 1 (100%) 1 (100%) 1 (100%) 1 (100%)
8 1.75 (87.5%) 1.97 (98.5%) 1.80 (90%) 1.99 (99.5%)
16 3.04 (76%) 3.68 (92%) 3.31 (82.75%) 3.95 (98.75%)
32 4.58 (57.25%) 6.47 (80.875%) 5.97 (74.625%) 7.87 (98.375%)
64 7.00 (43.75%) 11.47 (71.688%) 10.59 (66.188%) 15.04 (94%)
128 8.17 (25.531%) 15.86 (49.563%) 19.94 (62.312%) 30.14 (94.188%)

Table 6. Relative speedups of SparkTE parallel phases on B1, B2 and B3 for sleeping times equals to 50ms and 2000ms. The
percentage of the observed speedup compared to the theoretical ideal speedup is indicated for each result (higher the better).

ATL model transformations and OCL contracts into Coq to
interactively verify whether the transformation is able to pro-
duce target models that satisfy the given OCL contracts [5].
Stenzel et al. propose a Hoare-style calculus, developed in the
KIV prover, to analyze transformations expressed in (a subset
of) QVT Operational [20]. UML-RSDS is a tool-set for devel-
oping correct-by-construction model transformations [15].
It chooses well-accepted concepts in MDE to make their ap-
proach more accessible to model transformation developers.
Once the development is achieved, transformations are ver-
ified against contracts by translating both into interactive
theorem provers. None of these research efforts addresses
proving the equivalence of the sequential and the distributed
executions of a transformation.

Finally, one can argue that we could have chosen any other
back-end language or framework instead of Spark. In particu-
lar, some back-ends automatically extracted from Coq, which
would enhance the automatic certification of our pipeline.
For instance, we could have chosen to extract Haskell code
from CoqTL and then use the Haskell distributed parallel
Haskell (HdpH) language to introduce parallelism and distri-
bution. Similarly, we could have extracted OCaml code from
the CoqTL specifications and then use the BSML [16] library
for parallelization. This is indeed possible and could be the
subject of future work. Note that the three optimizations
introduced in this paper, and proven equivalent to the initial
CoqTL specification, would be useful for any back-end that
introduces parallelism and distribution. However, we want
to highlight that the goal of our work is to bridge the gap
between certified model transformations and data analyt-
ics frameworks, such as Spark. Indeed, as explained in the

introduction, choosing Spark paves the way towards large-
scale model transformations. Furthermore, Spark is broadly
adopted by companies and is available on most Cloud plat-
forms.

7 Conclusion and future work
In this paper, we presented a refinement of the CoqTL spec-
ification, designed for optimizing the parallel execution of
model transformations on Spark. We have illustrated the
benefits and the scalability of our proposed optimizations
through the Relational2Class example.
In future work, we plan to continue experiments with

other use cases (e. g., the IMDB case study). We plan to write
a compiler from CoqTL to Scala, to automatically obtain an
executable transformation from a Coq specification. Finally,
we will study other optimizations, leveraging the vertex-
centric paradigm supported by Spark (i. e., GraphX), and the
integration with persistence solution (e. g., HDFS).

Acknowledgment
This paper disseminates results from the Lowcomote project,
that received funding from the European Union’s Horizon
2020 research and innovation program under the Marie
Skldowska-Curie grant agreement No 813884.
Experiments presented in this paper were carried out us-

ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several universities as well as other organizations (see
https://www.grid5000.fr). These experiments also used the
EnosLib library (see https://gitlab.inria.fr/discovery/enoslib).



Executing Certified Model Transformations on Apache Spark SLE ’21, October 17–18, 2021, Chicago, IL, USA

References
[1] University of Malaga Atenea team. 2018. Lintra. http://atenea.lcc.uma.

es/projects/LinTra.html.
[2] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. 2018.

Distributing relational model transformation on MapReduce. Journal
of Systems and Software 142 (2018), 1–20. https://doi.org/10.1016/j.jss.
2018.04.014

[3] Amine Benelallam, Massimo Tisi, Jesús Sánchez Cuadrado, Juan de
Lara, and Jordi Cabot. 2016. Efficient model partitioning for distributed
model transformations. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, Amster-
dam, The Netherlands, October 31 - November 1, 2016 (SLE 2016), Tijs
van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM, 226–238.
https://doi.org/10.1145/2997364.2997385

[4] Loli Burgueño,ManuelWimmer, and Antonio Vallecillo. 2016. Towards
DistributedModel Transformationswith LinTra. Jornadas de Ingeniería
del Software y Bases de Datos (2016), 1–6. http://hdl.handle.net/10630/
12091

[5] Daniel Calegari, Carlos Luna, Nora Szasz, and Álvaro Tasistro. 2011.
A Type-Theoretic Framework for Certified Model Transformations. In
13th Brazilian Symposium on Formal Methods. Springer, Natal, Brazil,
112–127. https://doi.org/10.1007/978-3-642-19829-8_8

[6] Zheng Cheng, Massimo Tisi, and Joachim Hotonnier. 2020. Certifying
a Rule-Based Model Transformation Engine for Proof Preservation. In
ACM/IEEE 23rd International Conference on Model Driven Engineering
Languages and Systems. Montreal, Canada. https://doi.org/10.1145/
3365438.3410949

[7] The Coq development team. 2004. The Coq proof assistant reference
manual. LogiCal Project. http://coq.inria.fr Version 8.0.

[8] Youssef El Bakouny and Dani Mezher. 2018. Scallina: Translating
Verified Programs from Coq to Scala. In Programming Languages and
Systems, Sukyoung Ryu (Ed.). Springer International Publishing, Cham,
131–145.

[9] Tassilo Horn, Christian Krause, and Matthias Tichy. 2014. The TTC
2014 Movie Database Case.. In TTC@ STAF. Citeseer, 93–97.

[10] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008.
ATL: A model transformation tool. Sci. Comput. Program. 72, 1-2 (2008),
31–39. https://doi.org/10.1016/j.scico.2007.08.002 Special Issue on
Second issue of experimental software and toolkits (EST).

[11] Dimitris S Kolovos, Richard F Paige, and Fiona AC Polack. 2008. Scala-
bility: The holy grail of model driven engineering. In ChaMDE 2008
Workshop Proceedings: International Workshop on Challenges in Model-
Driven Software Engineering. 10–14.

[12] Dimitris S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2006. The
Epsilon Object Language (EOL). In Proceedings of the Second European
Conference on Model Driven Architecture: Foundations and Applications
(Bilbao, Spain) (ECMDA-FA’06). Springer-Verlag, Berlin, Heidelberg,
128–142. https://doi.org/10.1007/11787044_11

[13] Christian Krause, Matthias Tichy, and Holger Giese. 2014. Implement-
ing Graph Transformations in the Bulk Synchronous Parallel Model.

In Fundamental Approaches to Software Engineering, Stefania Gnesi and
Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
325–339. https://doi.org/10.1007/978-3-642-54804-8_23

[14] Ralf Lammel. 2008. Google’s MapReduce programming model -
Revisited. Science of Computer Programming 70, 1 (2008), 1 – 30.
https://doi.org/10.1016/j.scico.2007.07.001

[15] Kevin Lano, T. Clark, and S. Kolahdouz-Rahimi. 2014. A framework
for model transformation verification. Formal Aspects of Computing
27, 1 (2014), 193–235. https://doi.org/10.1007/s00165-014-0313-z

[16] Frédéric Loulergue, Frédéric Gava, and David Billiet. 2005. Bulk Syn-
chronous Parallel ML: Modular Implementation and Performance Pre-
diction. In Computational Science – ICCS 2005, Vaidy S. Sunderam,
Geert Dick van Albada, Peter M. A. Sloot, and Jack J. Dongarra (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1046–1054.

[17] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A
System for Large-scale Graph Processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (In-
dianapolis, Indiana, USA) (SIGMOD ’10). ACM, New York, NY, USA,
135–146. https://doi.org/10.1145/1807167.1807184

[18] Gergely Mezei, Tihamer Levendovszky, Tamás Mészáros, and István
Madari. 2009. Towards truly parallel model transformations : A dis-
tributed pattern matching approach. IEEE EUROCON 2009, EUROCON
2009, 403–410. https://doi.org/10.1109/EURCON.2009.5167663

[19] Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé. 2020.
Towards Transparent Combination of Model Management Execution
Strategies for Low-Code Development Platforms. In Proceedings of
the 23rd ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems: Companion Proceedings (Virtual Event,
Canada) (MODELS ’20). Association for Computing Machinery, New
York, NY, USA, Article 72, 10 pages. https://doi.org/10.1145/3417990.
3420206

[20] Kurt Stenzel, Nina Moebius, and Wolfgang Reif. 2015. Formal verifica-
tion of QVT transformations for code generation. Software & Systems
Modeling 14 (2015), 981–1002.

[21] Massimo Tisi and Zheng Cheng. 2018. CoqTL: an Internal DSL for
Model Transformation in Coq. In ICMT 2018 - 11th International Confer-
ence on Theory and Practice of Model Transformations (LNCS, Vol. 10888).
Springer, Toulouse, France, 142–156. https://doi.org/10.1007/978-3-
319-93317-7_7

[22] Massimo Tisi, Martínez Salvador Perez, and Hassene Choura. 2013.
Parallel Execution of ATL Transformation Rules. In Model-Driven En-
gineering Languages and Systems - 16th International Conference, MOD-
ELS 2013, Miami, FL, USA, September 29 - October 4, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 8107), Ana Moreira, Bernhard
Schätz, Jeff Gray, Antonio Vallecillo, and Peter J. Clarke (Eds.). Springer,
656–672. https://doi.org/10.1007/978-3-642-41533-3_40

[23] Le-Duc Tung and Zhenjiang Hu. 2017. Towards Systematic Paralleliza-
tion of Graph Transformations Over Pregel. Int. J. Parallel Program. 45,
2 (April 2017), 320–339. https://doi.org/10.1007/s10766-016-0418-5

http://atenea.lcc.uma.es/projects/LinTra.html
http://atenea.lcc.uma.es/projects/LinTra.html
https://doi.org/10.1016/j.jss.2018.04.014
https://doi.org/10.1016/j.jss.2018.04.014
https://doi.org/10.1145/2997364.2997385
http://hdl.handle.net/10630/12091
http://hdl.handle.net/10630/12091
https://doi.org/10.1007/978-3-642-19829-8_8
https://doi.org/10.1145/3365438.3410949
https://doi.org/10.1145/3365438.3410949
http://coq.inria.fr
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1016/j.scico.2007.07.001
https://doi.org/10.1007/s00165-014-0313-z
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/EURCON.2009.5167663
https://doi.org/10.1145/3417990.3420206
https://doi.org/10.1145/3417990.3420206
https://doi.org/10.1007/978-3-319-93317-7_7
https://doi.org/10.1007/978-3-319-93317-7_7
https://doi.org/10.1007/978-3-642-41533-3_40
https://doi.org/10.1007/s10766-016-0418-5

	Abstract
	1 Introduction
	2 Motivation and background
	2.1 Running example
	2.2 Objective

	3 Approach overview
	3.1 Coq to Scala
	3.2 Distributed data structures

	4 Parallelizable semantics for CoqTL
	4.1 Parallelizable CoqTL
	4.2 Refinement proof
	4.3 Implementation on Spark
	4.4 Limitations

	5 Experiments
	5.1 Evaluation of SparkTE on use-cases
	5.2 Performance analysis by complexity and datasets
	5.3 Performance analysis by phase

	6 Related work
	7 Conclusion and future work
	References

