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Figure 1: Examples of geographical iconographic heritage contents (images from IGN, French national Archives and Internet)1

ABSTRACT
This article is dedicated to the spatialization of image contents,
with a focus on geographical iconographic heritage, i.e. digitized
or born-digital image collections, acquired at variable temporal
periods and showing the territory and its human-made and natural
visual landmarks. We present a panorama of the current solutions
(manual, semi-automatic and fully automatic alternatives) that exist
to spatialize a visual content, with respect to the data available
and the level of spatialization targeted. In particular, we highlight
the characteristics of the approaches dedicated to geographical
iconographic heritage, and in some cases, we present tests and
practical feedbacks that we had the opportunity to conduct for old
photographic contents in oblique aerial and terrestrial imagery.
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1 INTRODUCTION
This article is interested in the geographical iconographic heritage,
i.e. digitized or born-digital image collections, acquired at variable
temporal periods and showing the territory and its human-made
and natural visual landmarks. This category of contents is extremely
widespread because accounting for a large portion of what people

1From top to bottom and left to right: Internet, CC-BY-NC 2.0 ; IGN, Stéréopolis ;
Internet, CC-BY-NC-SA 2.0 ; Internet, CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; Internet,
CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; Internet, CC-BY-NC 2.0 ; IGN, Photothèque ;
Archives Nationales, LAPIE ; Internet, CC-BY-SA 2.0 ; Internet, CC-BY-NC 2.0
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have liked to capture through drawings or amateur or professional
photographs (see Figure 1), leading to a huge visual testimony of
our environment that can benefit use cases and applications, rang-
ing from historical and sociological studies up to mobile mapping
scenarios, through digital tourism, landscape ecology or remote
sensing. The visual representations associated with these objects
of interest are extremely diverse given the various acquisition con-
ditions (different sources, dates, viewpoints) and the evolution of
landmarks over time, making their analysis still challenging today;
Figure 2 illustrates the variety of such representations.

Figure 2: Sacré-Cœur Basilica, at different times, from differ-
ent perspectives using various media2

By nature, these contents are linked to a spatial information,
which can be known according to the associated acquisition sys-
tem (e.g. GPS position capture) or post-processing (e.g. manual
annotation), or on the contrary unknown or not precise enough
for the targeted application. The older the contents, the more this
spatial information may be poorly documented, or insufficiently
documented for today’s applications that aim at their valorization
through 4D modelling applications for example. The growing in-
terest for the valorization of heritage data and the availability of
efficient digitization systems also give rise to the emergence of in-
creasingly large volumes of digitized contents, where spatialization
is an attribute that can bring structure.

The notion of "spatialization" of images can cover a wide spec-
trum of definitions and levels of precision - which we redefine and
attempt to address in this article - from attaching to the image a
simple name up to a precise position and orientation in the 3D
scene. The approaches are also very numerous, as well as the data
available on which it is possible to rely on. The objective of this
article is to put on the table a panorama of the current solutions
(manual, semi-automatic and fully automatic) that exist to spatialize
a visual content, with respect to the data available and the level
of spatialization targeted. When possible, we will highlight the
characteristics of the approaches dedicated to geographical icono-
graphic heritage. In some cases, we will be able to present tests and

2Rights from top to bottom and left to right: Musée Nicéphore Niepce, Internet ;
Internet, CC-BY-NC 2.0 ; Musée Nicéphore Niepce, Internet ; Musée Nicéphore Niepce,
Internet ; IGN, Photothèque ; Musée Nicéphore Niepce, Internet ; Internet, CC-BY-NC-
SA 2.0 ; Ville de Paris, Edouard Desprez / DHAAP / Roger-Viollet

practical feedbacks that we had the opportunity to conduct for old
photographic contents in oblique aerial and terrestrial imagery.

The paper is organized as follows: first, Section 2 introduces the
main notions: the levels of spatialization that are usually expected,
a big picture of the different methodologies of the literature and the
data associated. Then Sections 3, 4 and 5 focus on the existing trends
and approaches, while Section 6 concludes by providing a general
synthesis and discussion on the solutions for image spatialization.

2 OVERVIEW ON METHODS AND DATA
This section is a preamble that has the objectives of clarifying what
kind of spatial information can be associated with an image (Sec-
tion 2.1), of proposing a classification of the existing spatialization
solutions, which are numerous and multidisciplinary (Section 2.2),
and finally of revisiting the data sources available to assist the
spatialization process (Section 2.3).

2.1 Levels of spatialization
Depending on the method and application, the spatialization of an
image may refer to finding an information of geolocalization either
of the content imaged or of the sensor at the origin of the image.
More precisely, this information can be:

• A textual annotation, providing an information of geolo-
calization with toponyms: department, city, locality, name
of a monument, etc. It is often the case with collections
from preservation institutions which are documented with
standardized descriptive metadata (standardized with vo-
cabularies and reference databases (e.g. CIDOC-CRM), or
AI learning algorithms dealing with the "place recognition"
problem which provides a semantic label.

• A 2D or 3D position, which can be relative (determined in
a particular coordinate system, e.g. a map, a 3D model) or
absolute (on Earth, associated with as standardized reference
system, e.g.WGS84). Such information on images is natively
provided by national mapping agencies, based on regular
surveys, as well as by recent cameras equipped with GPS. It
can also be provided with geocoding techniques that consist
in assigning geographic coordinates to a toponym by using
reference datasets (e.g. GeoNames geographical database)
and API (e.g. Google’s Geocoding API or OSM’s API Nom-
inatim), and also estimated by vision-based computational
tools.

• A 6-DoF pose (i.e. the position and orientation of the cam-
era with 6 Degrees of Freedom), either available with profes-
sional systems (national mapping agencies, mobile mapping
systems) or estimated with computational tools dedicated to
vision-based localization. Depending on the specifications of
the application, the algorithmic choices can go as far as the
calibration of the acquisition system (e.g. the estimation of
the focal length for rectification or dedicated visualization
of the spatialized content).

In the rest of the article, we will use the term "localization" to
refer to one of these types of spatialization output.



2.2 Spatialization techniques at a glance
Different research communities, including Social Sciences and Hu-
manities, Digital Humanities, Computer Vision, Photogrammetry,
Content-Based Image Retrieval, Machine Learning and Human-
Computer Interaction, address the image spatialization task. De-
pending on the application, the objective targeted and the data
available, the spectrum of existing approaches is thus very large.
To classify them, a key criterion that can be tackled is the size of
the search area which has to be visited in order to determine a
localization, that drastically drives the methodology to adopt:

• When the area of search is undetermined or large (in terms
of spatial footprint or size of the reference data), a majority
of the solutions rely on Content-Based Image Retrieval
(CBIR) where the objective is to circumscribe the search area
by efficiently determining a small set of similar images in a
reference dataset of images potentially large. Depending on
the targeted spatialization and research communities, nowa-
days there exist several variants of this problem focusing
on landmark datasets, namely place recognition or land-
mark retrieval which perform fine-grained instance image
retrieval with learning on training landmark datasets. We
revisit these approaches funded on the description of the
image content in Section 3.

• If an initial localization is already known (from CBIR, sensors
such as GPS, metadata, experts or context, etc.) and requires
to be refined, traditional solutions rely on geometrical tools
from Computer Vision and Photogrammetry, with the es-
timation of the pose of the camera (i.e. its position and
orientation) from 2D and 3D data. The most recent solutions,
based on dedicated training datasets, also exploit machine
learning relying on the direct pose regression from the data.
These approaches are revisited in Section 4. Note that they
are compatible with the CBIR ones which bring an initial
localization, and both can be integrated in an end-to-end
framework of precise localization at large scale.

The classes of techniques listed above belong to ICT and AI
communities, they are computational with the capability of dealing
with large volumes of data and of determining localization auto-
matically. However, in addition to the question of their robustness
when considering geographical iconographic contents, they require
a human qualification of the output and remain manipulable by
experts of the field, in such a way that in practice these quantita-
tive approaches have not yet supplanted the more qualitative ones
generally found in the Social Sciences and Humanities field or for
general public applications, which rely on manual or sometimes
semi-automatic spatialization, with the natural disadvantage of not
being scalable; we revisit them in Section 5.

2.3 Available data as spatialized reference
Whatever the approach employed, spatializing an input image sup-
poses that the involved space is already known, in other words that
we have at our disposal a spatialized representation of this area
on which we can rely on to infer the localization of the image in-
put. This reference can take various forms, from simple descriptive
metadata or labels up to a 3D model of the scene, through different

kinds of maps and image datasets, which we briefly revisit in this
section.

2.3.1 Spatialized image datasets. In the Computer Vision and Ma-
chine Learning communities, there exist several annotated datasets
dedicated to landmarks, which can apply for spatialization; let’s
mention Google Landmarks [47], which is one of the best known
(version GLDv2 is the largest with over 5M images and 200k distinct
spatial instance labels). It is relevant as training and test dataset
for the CBIR and place recognition tasks mentioned in Section 2.2,
assuming in practice that the localization to determine is indexed
there.

For more specific or dedicated purposes and contents (neither
mapped nor perennial landmarks), annotated training datasets and
benchmarks are usually not available, but the CBIR task is able
to address spatialized image collections that may exist in GLAM
(Galleries, Libraries, Archives and Museums) which cover various
iconographic contents, or in public and private mapping agencies
which image territories at large scale. Here, the metadata associ-
ated with iconographic heritage are very heterogeneous, depending
on the objectives and standards of the holding organizations ; for
instance semantic descriptions of the content for preservation in-
stitutions and multimodal geographic descriptions for mapping
agencies.

Note that maps are by definition a rich source of referencing,
with an unequaled spatial (and sometimes temporal) coverage, but
if there exist some automatic solutions to align a vertical airborne
viewwith amap [19, 23], usually airborne imagery is more exploited
as reference; and additionally it is more difficult to establish a link
between a map and a free viewpoint image. One alternative is to
rely on semantic landmark extraction (through pattern detection
tasks) and to search on maps by exploiting spatial reasoning, such
as in [46] where the semantic objects seen in the street-view image
serve as anchors for spatialization within OpenStreetMap.

2.3.2 3D models. To gain in robustness and precision when the
objective is to estimate a 3D position or a 6-DoF pose (see Section
2.2), the most recent and efficient spatialization approaches exploit
all the geometrical 3D information available. Many approaches
exploit 3D point clouds obtained with Structure-from-Motion (SfM)
techniques, as in [50], [31] and [34], built especially on a given
area for a spatialization in this area. There exist other alternatives,
such as simple or sophisticated 3D building models, as well as
LiDAR or RGB-D data belonging from recent scanning systems that
respectively provide a 3D sparse geometrical information and a 3D
depth.

Since 20 years, with the purpose of autonomous driving, the
Robotics community has provided a large variety of vision-based
public benchmarks, involving image datasets spatialized with a
very rich information (GPS, LiDAR, RGB-D, 3D models, etc.). Their
benchmarks are far from the iconographic heritage spatialization
problem, but it is interesting to point out that recently they have
been enriched with multi-date data to tackle the problem of long-
termmapping, which to some extent bring them closer to the variety
found in heritage contents.

Interestingly, thanks to public or private mapping agencies, some
3D models exist at large scale and are then usable on a much less



Figure 3: Examples of scalable 3D models (data from IGN).
1st row: CityGML LoD1 buildings (French "Ref3DNat" refer-
ence), available on the whole territory ; 2nd row: Superpo-
sition with terrestrial LiDAR points cloud acquired on de-
mand at the scale of the city.

narrowed footprint than dedicated SfM clouds or public bench-
marks, such as those displayed in Figure 3. Currently, their spatial
coverage tends to be inversely proportional to their precision (in
terms of levels of detail and localization), but this ratio is reducing
with the implementation of massive and sophisticated acquisition
protocols (e.g. aerial HD LiDAR will be available on the whole
French territory in 2025).

Note that such kind of information is very rich and has proven
its relevance to improve spatialization tasks (especially considering
detailed models such as 3D point clouds), but these recent acquisi-
tions raise the question of their adequacy facing old iconographic
contents potentially associated with landmarks that have evolved.

To conclude this section, several public image datasets dedicated
to landmarks are presented in Table 1, with a focus on the spatial
coverage addressed, the type of localization data available as well
as the time period covered to have an insight on their match with
old contents. Whether the objective is to employ them to learn a
description or as reference to spatialize a content, these datasets
are numerous, but most of them are not dedicated to geographical
iconographic heritage. They do not reflect correctly the heterogene-
ity representative of heritage contents as experimented with the
Alegoria dataset [15], in which are highlighted the difficulties en-
countered by state-of-the-art deep features in the context of cultural
heritage content retrieval.

3 SPATIALIZATION BASED ON IMAGE
CONTENT DESCRIPTION

The first family of approaches, introduced in Section 2.2, relies on
Content-Based Image Retrieval, which enables the possibility of
retrieving images similar to a query one in a dataset, according to

Table 1: Overviewonpublic image datasets dedicated to land-
marks, exploited for training purposes or as spatialization
reference (MMS stands for Mobile Mapping System).

Dataset Number of
images

Viewpoint and
spatial coverage

Localization
type Time gap

Large Time
Lags Locations [10] 500

Street-level
25 cities of

Europe and Asia
Label 150 years

Google Landmarks
Dataset v2 [47] Over 5M Street-level and aerial

246 countries Label Unspecified

ROxford [32] Over 5k
Mostly street-level
and some aerial

Oxford
Label Unspecified

Aachen Day-Night [35] 7712 Street-Level
city of Aachen (Germany) Label, GPS, 3D 2 years

Extended
CMU-Seasons [35] Over 110k Street-level MMS camera

areas of Pittsburgh (USA) Label, GPS, 3D 1 year

RobotCar Seasons [35] [25] Over 35k Street-level MMS camera
city of Oxford (UK) Label, GPS, 3D 1 year

Kitti Vision Bench. [14] 389
Street-level MMS camera
Greater Karlsruhe (city,

rural areas and highways)
Label, GPS, 3D 2012

SILDa Weather
and Time of Day [1] Over 14k Street-level and aerial

London Label 1 year

HistAerial [33] 4.9M Vertical aerial
France (sparse) GPS 1970-1990

Alegoria [15] 13175
Street-level
and aerial

France (sparse)
Label 1920’s-today

criteria based on the description of the image contents. When con-
sidering visual landmarks datasets, The use of descriptors adapted
to fine-grained instance retrieval allows to retrieve images of the
same landmark; Figure 4 illustrates this idea on aerial iconographic
heritage, with here the objective of retrieving images of the same
scene for spatialization with annotation. By querying a reference
dataset of spatialized images, it is then possible to establish a link
between the query and content-based similar spatialized contents
that can be exploited to determine its localization. The popularity
of such family of approaches for spatialization relies on the fact that
1/ CBIR manages image datasets at large scale, making the search
area potentially very large depending on the spatial coverage of the
reference, and 2/ the process being entirely unsupervised, it makes
it possible to search for a landmark in a large variety of landmarks,
expressed in the query (and not learned with a classification task)
on public or dedicated datasets [22].

3.1 CBIR techniques
CBIR approaches share common representations based on com-
pact image-level descriptors, especially with the help of machine
learning since deep learning has given birth to powerful image
descriptors. Surveys on image descriptors have been numerous,
we refer the reader to [8, 13, 24, 29, 51] for hand-crafted features
and more recent deep learning-based methods, as well as other
modalities to help in the description of the content. [27] describes
in detail CBIR approaches developed over the years, from the evolu-
tion of image representations to the specific applications (robotics
or aerial imagery) via multiple techniques to improve the descrip-
tors’ robustness and discriminative power. It also points out the
challenges that appearance changes raise for CBIR (i.e., when the
dataset considered combines multiple variations like domain, color,
viewpoint, illumination, etc.). To alleviate those issues, several re-
search avenues should be pursued. First, as in [15], focusing on
image descriptors robust to multiple appearance changes. Second,



Figure 4: Example of retrieval by content, in a specialized
dataset of 40 576 images, from a query showing "Le vieux
port" in Marseille city (France). The images are described
with the local image descriptor HOW [15, 42] and the 5most
similar responses are provided here, all showing the same
area at different dates and viewpoints. The image query be-
longs to the collection "Lapie" from the French national
Archives, while the dataset queried is distributed over dif-
ferent sources (French national Archives, Niépce Museum,
IGN, internet) and collections in these sources (Lapie, MRU,
Durandeau, Photothèque, Combier).

[30] shows that using scene geometry information during training
improves the localisation accuracy in the end, which could open
opportunities for CBIR focusing on heritage content. Third, [10]
explores domain adaptation for CBIR dedicated to heritage con-
tent, meaning using prior learning based on common datasets and
transfering it to another domain of representation via statistical
representations; this strategy also exists for deep learning-based
methods as described in [43]. Finally, as observed in Table 1, her-
itage iconography datasets are obviously under-represented, and
most of the time with few representations of the same landmark.
To alleviate this issue, a recent branch of research, namely few-shot
learning, is investigating how to learn using a limited number of
annotated data, or more broadly how to learn more efficiently (learn
to learn); [44] gives a general overview of the relevant methods.
It has been experimented for classical image retrieval in [45] and
could be considered for heritage iconography, which indicates that
there is still room for improvement.

On the specificity of landmark contents. CBIR relies on im-
age description, but depending on the final exploitation of the
retrieved images, it can be implemented differently, as it is stated in
study [31]: for instance, do we want to retrieve all images showing
the same landmark, as in Figure 4? Or do we want to find images
in a footprint close to the one of the query, in order to estimate pre-
cisely its localization later? First, the landmark retrieval task aims at
retrieving all images depicting the same landmark; it supposes for
the descriptor to be very robust to viewpoint changes and occlusion
such as proposed by [15]. Second, visual localization has the goal
of estimating a precise camera pose, it requires similar images and
limited viewpoint or illumination variations to be efficient. Hence,
[31, 35] evaluate CBIR descriptors while focusing on the resulting

6-Dof pose as an evaluation metric. Finally, place recognition aims
at obtaining a coarse camera position (for instance when the dataset
by nature will not be suitable for visual localization), hence visual
similarity needs to be balanced with approximate camera position
to make sure that the retrieved camera pose are similar to the query
one (for instance depicting the same side of a building); [51] gives
a panorama of descriptors dedicated to place recognition.

In the following section, we go deeper in the spatialization prob-
lem by explaining how the links built with CBIR can be exploited
to determine a localization.

3.2 From CBIR to spatialization
The links thus created between query and similar images can then
be exploited in different ways in order to exhibit a localization,
according to the data available and the objectives. We present main
trends in Sections 3.2.1 and 3.2.2.

3.2.1 Metadata propagation. Propagating localization (and more
generally descriptive metadata) through the built links can be seen
as a label propagation problem in a network, where there exist
many simple solutions, or more sophisticated ones which take the
quality of the links and data into account [2].

Another alternative takes inspiration from the web of linked data
[3], where information is not propagated, but data is linked in a
unique and sustainable way: to each item in the collection, a unique
URI (Uniform Resource Identifier) is assigned, and associated with
a label and a date along the RDF (Resource Description Framework)
data model. The triples formed can be extended with the Web
Ontology Language (OWL), and for instance linked with property
"owl:sameAs", making thus easily reachable all metadata associated
with different versions of the same data (here, different iconographic
representations of the same landmark), without presupposing the
quality of the metadata.

3.2.2 Refinement of the localization. The small set of similar im-
ages returned by the content-based retrieval system drastically
circumscribes the search area and therefore the localization prior.
Exploiting the similar images’ localization information allows for
a first estimation or a refinement of the query’s localization. De-
pending on the type of application, the image retrieval strategy
is used either for landmark retrieval, place recognition or visual
localization. The localization can be first estimated or refined using
a simple position interpolation or a pose approximation [31]. How-
ever when the retrieved images are adapted for visual localization it
is also possible to go deeper by exploiting geometrical approaches
of pose estimation, which rely on an initial localization, such as
those of Section 4. This is howmany current end-to-end approaches
of spatialization in the literature integrate such a retrieval step up-
stream, thus allowing the coverage of a large search area while
targeting a precise pose estimation [30, 31, 34, 41].

4 SPATIALIZATION BASED ON AUTOMATIC
POSE ESTIMATION

Once similar images have been retrieved, if their 3D pose is known,
multiple methods for estimating the query image’s pose are avail-
able. These methods also heavily rely on local features detected in
images, and there exist two main trends of methods for estimating



the 6-DoF pose of an image once other similar images with a known
pose are retrieved [31].

The first category of methods only uses similar images and their
poses. A simple interpolation of the pose using similar images’ poses
can be a solution. This interpolation can be weighted depending
on image similarity (using the image retrieval results for instance).
Similarly, [41] estimates possible candidate poses by estimating the
relative pose between the query image and each similar image and
then fuse those candidate poses to find the best solution, (Figure 5).

Figure 5: Pose estimation by fusing relative poses as pro-
posed by [41] (figure from [41])

As a recent promising trend, CNN-based methods, trained on
images and associated poses, directly regress the 6-DoF pose of the
query image: [17] first but many after like [6] regresses the 6-DoF
pose using a set of image and pose pairs. [9] and [20] train for the
image retrieval step and the 6-DoF pose estimation simultaneously.
From another angle, RANSAC-Flow [40] is a method that aligns
two images depicting a similar view. The relative pose between
points of view may eventually allow to find the absolute pose.

A second category of methods rely on 3D information, tradition-
ally to regress the image pose solving a PnP (Perspective-n-Point)
problem. This strategy implies matching 2D and 3D features be-
tween the query image and the 3D map. Those solutions often use
a 3D SfM (Structure-from-Motion) model that can be constructed
globally beforehand (offline) or locally on-the-fly (online) using the
similar images retrieved but other input data like LiDAR or depth
maps can be exploited. Today, SfM reconstruction can be performed
by various softwares or libraries, for instance COLMAP [38, 39],
OpenMVG [28] or VisualSfM [48, 49].

On one hand, classical methods based on a geometric (or alge-
braic) approach of the problem can compute the pose once the
2D-3D matches are obtained. A major difference between two sets
of approaches is the previous knowledge (or not) of the camera’s
calibration (its intrinsic and extrinsic parameters). Hence, with a
calibrated camera and 2D-3D matches (at least 3), several solvers
of the PnP problem have been developed such as an efficient P3P
[18] or a method accepting more than 3 matches such as EPnP [21]
or PPnP [12]. An intermediary solution when the focal length of
the camera is unknown is the P3Pf solver [36]. When the camera’s

intrinsic parameters are unknown, using the Direct Linear Trans-
formation (DLT) [16] allows using a minimum of six matches to
calibrate the camera, i.e. estimating its 6-DoF pose plus its intrin-
sic parameters (focal length, principal point, skew); this method is
known as P6P. These methods also benefit greatly from the addition
of a RANSAC loop [11] to select the strongest 2D-3D matches and
limit the matching errors which is a common issue when dealing
with very diverse content like heritage iconographic collections.

On the other hand, various CNN-based architectures have been
devised to solve this problem. Some of them regress the pose by
using RGB-D images taken by calibrated cameras [7]. [50] exploit
images and the corresponding 3D point cloud to estimate the cam-
era pose, creating and exploiting a "scene pyramid" containing
both features and corresponding 3D coordinates, allowing for their
method to be scene agnostic. Recently, [34] use a 3D model and
images jointly in their network to determine the pose of the im-
age (with a known camera calibration), camera localisation being
considered as metric learning. This method appears promising as
it is trained to focus on parts of the images that are important for
long-term localisation. Indeed, the main issue when dealing with
iconographic heritage is the matching process between keypoints
as the scene may have changed, the image may be very different
in color, illumination, etc. Hence devising a method able to focus
on perennial objects allows for a greater certainty of the matches.
Adapting this method for iconographic heritage contents could be
an interesting research avenue, the main purpose being to ensure
that matches are looked for in most perennial parts of the scene.

However, most methods require the knowledge of the intrinsic
parameters of the camera and it may be a problemwhen considering
iconographic heritage where the characteristics of the camera at the
origin of the image may be unknown or nonexistent (e.g. a painting).
This information is however sensitive in regard to positioning the
image precisely in a 3D scene, as illustrated in Figure 6.

Evaluating the accuracy of the pose estimationmethods supposes
exploiting benchmark datasets where camera parameters and poses
are known.Multiple datasets have been devised for this purpose and
some can be found in Table 1 such as Aachen Day-Night, Extended
CMU-Seasons or RobotCar Seasons. Several metrics can be used
to assess a methods accuracy. From a single image perspective,
position and orientation errors relative to the ground truth can be
computed, as well as the mean reprojection error when matches
between the image and a 3D model are available. Globally on a
whole dataset, the efficiency of the method can be evaluated by
applying thresholds to the position and orientation errors and thus
determine howmany images are correctly located. Those evaluation
methods however are used on modern images for which a ground
truth exist and thus hard to transfer onto heritage images.

5 MANUAL AND SEMI-AUTOMATIC
SPATIALIZATION

The spatialization tools previously described represent a powerful
avenue for spatialization at large scale, allowing to manage large
datasets in a quantitative way. Historically, manual approaches of
spatialization are naturally predominant. We revisit them briefly in
Section 5.1, before considering semi-automatic solutions in Section
5.2 which can assist manual tools as well as full automatic ones.



(a) (b)

(c)

Figure 6: Illustration of the influence of the intrinsic pa-
rameters on the pose estimation : (a) Calibration estimated
with DLT vs. 6-DoF pose estimated with PPnP and intrinsic
parameters correctly chosen empirically (the two localiza-
tions are similar and correct) ; (b) Same estimations with
different intrinsic parameters for PPnP (localization with
PPnP is damaged) and (c) Same estimations as (a) on another
more difficult example (localizationwithDLT is damaged by
noisy input points while PPnP’s one remains correct) (im-
ages from IGN).

5.1 Manual spatialization
Manual image spatialization is mostly done through interactive
web interfaces, which are certainly the oldest and most widespread
tools since the development of digital humanities, as they are the
most inclusive regardless of user profile and represent an excellent
medium for web valorization. The last decade has given birth to
the crowdsourcing paradigm via collaborative platforms and some
of them exploit historical data and can even be used by researchers,
to create datasets suited to their needs. Some platforms have no
moderation or expert control and a limited visualisation capability
(HistoryPin3, Navilium4). Other solutions are dedicated to specialist
users (like researchers) working on a common platform and a com-
mon dataset, but with a certainty in regard to the results displayed
(UrbanHistory4D5 [26] or Aioli6).

5.2 Semi-automatic 6-DoF pose estimation
Today’s full automatic 6-DoF pose estimation methods have made
tremendous progress with the exploitation of deep learning and var-
ious modalities, but their maturity and scalability facing practical

3https://www.historypin.org/
4https://www.navilium.com/
5http://4dbrowser.urbanhistory4d.org
6http://www.aioli.cloud/

usage remain still questionable. To improve the camera pose preci-
sion from an automatic estimation, as well as to validate it, using a
semi-automatic method is still a relevant alternative, in particular
during the step of local features (points) detection and matching
in 2D and 3D, which is particularly sensitive to the content. It is
especially the case when considering iconographic heritage where
the variability of the content can be high; in particular, the manual
determination of the points may ensure the selection of perennial
points consistent between the old image data and the more recent
3D model, as illustrated in Figure 7. The process is then divided
between the manual selection and matching of 2D and 3D fea-
tures, followed by the automatic estimation of the pose. This is for
example the solution chosen by Smapshot, the Swiss web-based
participatory platform [4] and iTowns, the French 3D geoportal [5].

Figure 7: Interactive selection of 2D-3D pairs of points (col-
ored bullets) in the photograph and in the 3D scenemodeled
with LiDAR points, as input of a 6-DoF pose estimation tool
(iTowns web application [5]). In this example, we observe
differences between the old photograph and the recent ver-
sion of the scene (disappearance of the bridge, new build-
ings, roadwaymodification), which highlights the challenge
of the points selection for the pose estimation (images from
Musée Nicéphore Niepce and IGN).

By relying on a HCI system, semi-automatic methods also offer
the possibility to immediately visualise the result of the pose es-
timation, with the possibility to evaluate it visually in its virtual
environment, and potentially to refine or adjust it in a interactive
loop process. When trying to develop immersive visualisation plat-
forms, it is essential for the coherence between the estimated pose
and the supposed pose to be preserved, otherwise leading to a much
less pleasant experience in terms of immersiveness and interactions.

6 SYNTHESIS AND CONCLUSIONS
In this article, we have reviewed all the methods and data that seem
to allow to associate a spatial information to an image, by studying
more specifically the characteristics of geographical iconographic
7https://arpenteur.bnf.fr/
8https://developers.google.com/maps/documentation/geocoding/overview
9https://nominatim.org/
10https://geoservices.ign.fr/documentation/services/api-et-services-ogc/geocodage-
ogc

https://www.historypin.org/
https://www.navilium.com/
http://4dbrowser.urbanhistory4d.org
http://www.aioli.cloud/
https://arpenteur.bnf.fr/
https://developers.google.com/maps/documentation/geocoding/overview
https://nominatim.org/
https://geoservices.ign.fr/documentation/services/api-et-services-ogc/geocodage-ogc
https://geoservices.ign.fr/documentation/services/api-et-services-ogc/geocodage-ogc


Table 2: Comparison of spatialization methods.

Type of
methods

Category
of method Output Data

required Specificities Example

Manual Position
estimation 2D position Images +

map
The position is estimated by the

user, without real visual verification Arpenteur7

Image
overlaying

Relative pseudo
6-DoF pose

Images +
Google StreetView

The image is overlayed, the pose is relative
to a specific StreetView camera pose HistoryPin2

Pose estimation
with

model creation

6-DoF pose
in a relative
3D model

Images The 3D model is created as the images’ poses
are estimated. Exploits heritage content. [37]

Semi-
Automatic

Spatial resection
within immersive

platforms
6-DoF pose Images +

virtual 3D model Time consuming [5], [4],
[26]

Automatic Geocoding 2D position Metadata Require clean metadata, difficult
to check results

Google8,
Nominatim9,
Geoportail10

Pose fusion 6-DoF pose Images +
6-DoF poses

Require the pose of the images, difficult to
adapt to heritage content [41]

CNN pose
regression 6-DoF pose Images +

6-DoF poses
Require the pose of the images, difficult

to adapt to heritage content
[17], [6],
[9], [20]

CNN pose
regression
with 3D

6-DoF pose
Images +

6-DoF poses +
3D model

Require the pose of the images, require
3D model, difficult to adapt to heritage content [50], [34]

heritage, whether it is by diving into the literature and tools coming
from computer science or from digital humanities. Table 2 makes
a synthesis of the various spatialization strategies, the outputs
obtained and the specificities they may have. We resume below
what we can learn from this study.

The main difference between the methods relies on the size of
the spatial footprint to visit and naturally on the level of spatializa-
tion targeted. Quantitative (computational) and qualitative (with
a strong human involvement) strategies are not in opposition, but
rather complementary: while the former offer the possibility to
process large volumes of data upstream, the latter allow to ob-
tain precise and especially qualified results. Going further than the
amount of images to process, the difference between quantitative
and qualitative scenarios can also be found in the reference data
required to spatialize the image. Indeed, a 3D model is essential
to estimate a 6-DoF pose but this model can be of various types
(LiDAR, 3D mesh, SfM point cloud, etc.). The precision of the pose
estimated is correlated with the richness of the model (in terms of
level of detail and localization precision). Currently, their spatial
coverage tends to be inversely proportional to their richness, but
this ratio is reducing with the implementation of massive and so-
phisticated national or private acquisition protocols. For the time
being, compromises must be made: [5] for instance use in their plat-
form a simplified 3D building model with a precision of about one
meter but available on all of France (similarly to the one presented
in first row of Figure 3). If more detailed models are available, their
coverage is still limited (small areas for SfM point clouds and at
the scale of the city and on demand for LiDAR ones), and their

exploitation at large scale is far from being easy because of the
volume and structure of such contents.

We have also seen that several levels of spatialization get along
with each other. When considering iconographic heritage, the most
widespread are probably the annotations and 2D positions directly
linked with the historical manual spatialization approaches. Es-
timating a 6-DoF pose of an heritage iconographic content is a
more recent target, which takes sense with the advent of modern
4D modelling approaches that are developing in the digital twins
movement and the valorization of the big data of the past. There is
still room for improvement in terms of maturity of the scientific
proposals, but solutions like the semi-automatic pose estimation
already provide relevant concrete results directly usable, even by
non experts. Further pushing the crowdsourcing paradigm via plat-
forms for semi-automatic pose estimation could also benefit from
more multimodality. Simultaneously combining and visualizing
even more data types (metadata, similar images, etc.) at one glance
may lead to a more efficient use of those platforms, leading in turn
toward the creation of datasets for automatic methods.
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