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Malliavin-Stein method for the multivariate compound Hawkes

process

Mahmoud Khabou∗

September 15, 2021

Abstract

In this paper, we provide upper bounds on the d2 distance between a large class of functionals of a
multivariate compound Hawkes process and a given Gaussian vector. This is proven using Malliavin’s
calculus defined on an underlying Poisson embedding. The upper bound is then used to infer the speed of
convergence of Central Limit Theorems for the multivariate compound Hawkes process with exponential
kernels as the observation time T goes to infinity.

1 Introduction

Hawkes processes have been used to model events that exhibit self-exciting properties. Initially introduced
in 1971 [7] to model seismic activities, Hawkes processes became popular in other fields like credit risk [6]
or micro-structure in finance [2]. In recent years, the need to model systems with interacting components
has been growing, that is how the multivariate Hawkes process emerged. In addition to its self-exciting
properties, the multivariate Hawkes process can model mutually-exciting phenomena and it has been used
in a wide array of fields such that neuro-science [11], [12], social networks [1], cyber-security [4] and financial
econometrics [5].

In this paper, we consider the multivariate compound process (or total loss process) (Lt)t≥0 defined
component-wise at a time t as 

L1
t =

∑H1
t

k=1 Y
1
k , (Y 1

k )k=1,··· are i.i.d,

...

Ldt =
∑Hdt
k=1 Y

d
k , (Y dk )k=1,··· are i.i.d,

(1)

where (Y jk )k∈N∗,j=1,··· ,d are i.i.d random variables and Ht =
(
H1
t , · · · , Hd

t

)
is a family of d point processes

each having an intensity (λ1t , · · · , λdt ) such that

λitdt = E
[
Hi
t+dt −Hi

t |Ft−
]
, i = 1, · · · , d.

The process L is called a multivariate compound Hawkes process if its intensity λ follows the dynamics

λ1t = µ1 +
∫
[0,t)

∑d
k=1 Φ1k(t− s)dLks ,

...

λdt = µd +
∫
[0,t)

∑d
k=1 Φdk(t− s)dLks ,

(2)

∗INSA de Toulouse, IMT UMR CNRS 5219, Université de Toulouse, 135 avenue de Rangueil 31077 Toulouse Cedex 4
France. Email: mahmoud.khabou@insa-toulouse.fr

1



where µ = (µ1, · · · , µd) ∈ Rd+ plays the role of a baseline intensity and Φ = (Φik)i,k=1,··· ,d is a family of
non-negative integrable kernels on R+.
This dynamics can also be expressed under the following matrix form

λt = µ+

∫
[0,t)

Φ(t− s)dLs.

In some applications, the question about the Hawkes process’ longtime behaviour naturally arises. In the
special case Y jk ≡ 1, and under the condition that the spectral radius of the matrix S := ‖Φ‖1 is strictly
less than one (ρ(S) < 1), Bacry et al. [3] proved the following martingale Central Limit Theorem (CLT)
for (Lt)t≥0 = (Ht)t≥0 (

HTv −
∫ Tv
0
λtdt√

T

)
v∈[0,1]

=⇒
T→+∞

(
Σ1/2Wv

)
v∈[0,1]

where the convergence takes place in law for the Skorokhod topology and where Σ is a diagonal matrix that
depends only on µ and S. From this martingale result, they derived the alternative CLT(

HT −
∫ T
0
E[λt]dt√
T

)
v∈[0,1]

=⇒
T→+∞

(
(Id − S)

−1
Σ1/2Wv

)
v∈[0,1]

.

Until very recently, the quantification of the speed of this convergence has not been thoroughly studied. In
the univariate 1-marginal case (v = 1), Hillairet et al. [8] have found a Berry-Esséen type bound on the
Wassestein distance between the normalized one-dimensional Hawkes process and its Gaussian limit

dW

(
HT −

∫ T
0
E[λt]dt√
T

,N (0, σ̃2)

)
= O

(
1√
T

)
, σ̃2 =

µ

(1− ‖φ‖1)3

in case the kernel is an exponential φ(u) = αe−βu (with 0 < α < β) or an Erlang function φ(u) = αue−βu

(with 0 < α < β2). This result has been derived thanks to an approach introduced by Nourdin and Peccati
[9] which combines Malliavin’s calculus with Stein’s method.

In this article we prove a generalization of the quantification result to the multivariate case using a
version of Malliavin’s calculus that is adapted to higher dimensions. Following the lines of [13], we prove
an upper bound on the distance between a vector of divergences with respect to the multivariate Poisson
process and a given centered multivariate Gaussian in the d2 metric. Unlike the Wasserstein metric which re-
mains relevant in the multivariate normal space [9], the d2 metric is more suitable for the multi-dimensional
Poisson space.

After defining compound multivariate Hawkes process as the result of the thinning of Poisson measures
in section 2.3, we introduce the elements of multivariate Malliavin’s calculus on the Hawkes process in
sections 2.4 and 2.5. Finally, in section 3.1, we prove a general bound on a class of multivariate Hawkes
functionals. As a first application in section 3.2 we give a bound on the Wasserstein distance between the
multivariate and multimarginal normalized martingale and its Gaussian limits. Then we use those results
to show that if the kernels take the exponential form

Φij(u) = αije
−βiu,

and under the following assumptions

Assumption 1 (Stability 1). The spectral radius of the matrix B−1A diag(m1, · · · ,md) satisfies

ρ
(
B−1Adiag(m1, · · · ,md)

)
< 1,

with A = (αij)ij , B
−1 = diag( 1

β1
, · · · , 1

βd
) and (m1, · · · ,md) = (E[Y 1], · · · ,E[Y d]).

Assumption 2 (Stability 2). Set V = B −A diag(m1, · · · ,md). The eigenvalues of V are positive.

Assumption 3 (Third moment). The measures ν1, · · · , νd of Y 1
1 , · · · , Y d1 have finite third moments.

the follwoing result holds:
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Theorem 1.1. Let LT be a multivariate compound Hawkes process.

Set Y ′T =
LT−diag(m1,··· ,md)(B−A diag(m1,··· ,md))

−1
BµT

√
T

.

Set C̃ =
(
J
√
C
)(

J
√
C
)>

= JCJ>, where J =
(
Id − diag(m1, · · · ,md)B−1A

)−1
and C = diag(σ2

1 , · · · , σ2
d)

where for any j = 1, · · · , d

σ2
j =

∫
x2νj(dx)

[(
B −Adiag(m1, · · · ,md)

)−1
Bµ
]j
.

Let G̃ ∼ N
(

0, C̃
)

. Then, under the Assumptions 1, 2, 3, there exists a constant K that does not depend

on T such that

d2(Y ′
T , G̃) ≤ K√

T
,

for any T > 0.

Proof. Cf section 3.3.

Remark 1. Assumption 1 is a special case of the assumption

ρ
(
‖Φ‖1 diag(m1, · · · ,md)

)
< 1,

since in the case of an exponential kernel one has

‖Φ‖1 = (‖Φij‖1)ij =
(
‖αijeβi·‖1

)
ij

=

(
αij
βi

)
ij

= B−1A.

In the case of a uni-variate compound Hawkes process (d = 1), this is equivalent to assuming

‖Φ‖1m =
α

β
m < 1.

Remark 2. If the memory parameters (βi)i=1,··· ,d are the same for every particle (i.e Φij(u) = αije
−βu),

Assumptions 1 and 2 become equivalent.

For instance, we take the bivariate compound Hawkes process LT =
(
L1
T , L

2
T

)
where

L1
t =

∑H1
t

k=1 Y
1
k ,

L2
t =

∑H2
t

k=1 Y
2
k ,

with i.i.d claims (Y ik )i=1,2,k∈N with common exponential distribution E(1). The intensities are assumed to
follow the dynamics

λt = µ+

∫
[0,t)

Ae−β(t−s)dLs.

For stability, it is enough to choose the parameters such that ρ(A) < β. For instance, by setting

A =

(
1
2 2
2 1

2

)
,

any β > 5
2 satisfies Assumptions 1 and 2. Assumption 3 is satisfied because the exponential distribution

has moments of every order.
Figure 1 illustrates the convergence of the compensated loss (cf. Theorem 1.1) to its centered Gaussian
limit N (0, C̃) (also defined in Theorem 1.1)
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Figure 1: 2−D histograms of Y ′
T and N (0, C̃) for β = 4, µ = (2, 3)> and T = 1000 for n = 40000 Monte

Carlo samples.

On the other hand, showing the speed of convergence in the d2 metric is a bit more complicated, mainly
for two reasons:

1. We do not know for which function the upper bound is reached for the sake of simulation.

2. Since the quantity E[f(Y ′
T )] cannot be computed directly, is has to be approximated with a Monte

Carlo estimation 1
n

∑n
k=1 f(Y ′k

T ). This means that for large times, the term in 1√
T

can be eclipsed

by the slow decay of the Monte Carlo estimator which is in 1√
n

.

We can still illustrate the behaviour of 1
n

∑n
k=1 f(Y ′k

T ) − E[f(G)] for G ∼ N (0, C̃), where f is a ”well
behaved” function for which E[f(G)] is know explicitly. For instance, the following figure shows the evolution

in time for f(x) = e−
1
4‖x‖

2
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Figure 2: Monte Carlo estimator 1
n

∑n
k=1 f(Y ′k

T ) − E[f(G)] (in blue) for β = 6, T =
[10, 50, 100, 500, 1000, 5000, 10000] and n = 150000. Notice how for large T , the Monte Carlo estimator’s
error becomes stronger.

2 Notations and preliminaries

In this section we generalize the mathematical framework introduced in Section 2 of [8]. We then proceed
to define the multivarite Hawkes loss as the result of a thinning procedure from a Poisson measure. We
finally recall some elements of Stein’s method in

2.1 General notations

1. Let d be an integer. For any two vectors u =
(
ui
)
i=1,··· ,d and v =

(
vi
)
i=1,··· ,d in Rd, the product uv

is defined as the vector of Rd such that uv =
(
uivi

)
i=1,··· ,d

2. Let θ ∈ R and 1θ≤ui be the indicator of the set {θ ≤ ui}. We define 1θ≤u as the element of Rd such
that 1θ≤u =

(
1θ≤ui

)
i=1,··· ,d .

3. Similarly, if ν is a vector of d measures and f is a vector of d functions, we define
∫
f(x)ν(dx) =(∫

f i(x)νi(dx)
)
i=1,··· ,d .

4. The inner product 〈·, ·〉 corresponds to the Euclidian inner product and ‖ · ‖ is its norm.

5. The operator norm of a matrix A ∈Md(R) is

‖A‖op := sup
‖x‖=1

‖Ax‖.

6. For every function g : Rd → R, let

‖g‖Lip := sup
x 6=y

|g(x)− g(y)|
‖x− y‖

.

7. If g ∈ C1(Rd) (continuously differentiable) then we write

M2(g) := sup
x 6=y

‖∇f(x)−∇f(y)‖
‖x− y‖

.

5



8. Similarly, if g ∈ C2(Rd) (twice continuousy differentiable) then

M3(g) := sup
x6=y

‖Hess f(x)−Hess f(y)‖op
‖x− y‖

.

2.2 Elements of stochastic analysis on the multivariate Poisson space

Let d be a positive integer. Let ν1, · · · , νd be a family of integrable probability measures on R+ such that
νi({0}) = 0 for every i = 1, · · · , d, and define mi =

∫
R+
xνi(dx).

In this section, every component of the multivariate compound Hawkes process is obtained through the
thinning of 3−component Poisson measure.
Let the space of configurations Ωd, where

Ω :=

{
ωj =

n∑
i=1

δ(ti,θi,xi), 0 = t0 < t1 < · · · < tn, (θi, xi) ∈ R+ × R, n ∈ N ∪ {+∞}

}
.

Let F be the σ-field associated to the vague topology on Ωd, and P the Poisson measure under which
the family

N =
(
N j
)
j=1,··· ,d

where

N j ([0, t]× [0, b]× (−∞, y]) (ωj) := ωj ([0, t]× [0, b]× (−∞, y]) , (t, b, y) ∈ R3
+, j = 1, · · · , d

is a family of independent homogeneous Poisson processes with intensity measures dt⊗ dθ ⊗ dνj , that is,

P
[
N1([0, t1]× [0, b1]× (−∞, y1]) = n1, · · · , Nd([0, td]× [0, bd]× (−∞, yd]) = nd

]
=

d∏
j=1

(
tjbjνj

(
(−∞, yj ]

))nj
exp

(
− tjbjνj

(
(−∞, yj ]

))
nj !

.

We set FN =
(
FNt

)
t≥0 to be the natural filtration of

(
N j
)
j=1,··· ,d. The expectation with respect to P is

denoted by E[·]. For t ≥ 0, we denote by Et[·] the conditional expectation E[·|FNt ].

Remark 3. It is possible to define all the Poisson measures on the same probability space Ωd by taking

Ñ j ([0, t]× [0, b]× (−∞, y]) (ω) = N j ([0, t]× [0, b]× (−∞, y]) (ωj), (t, b, y) ∈ R3
+,

for any ω =
(
ω1, · · · , ωd

)
∈ Ω.

From now on we confound (Ñ j)j=1,··· ,d with (N j)j=1,··· ,d.

We now generalize the operators defined in [8] for the 1−dimensional setting. We start with the
component-wise shift operator.

Definition 2.1 (Shift operator). Let j ∈ J1, dK. We define for (t, θ, x) in R3
+ the measurable maps

εj+(t,θ,x) : Ω → Ω

(ω1, · · · , ωj , · · · , ωd) 7→
(
ω1, · · · , εj+(t,θ,x)(ω

j), · · · , ωd
)
,

where for any A in B(R2
+ × R)(

εj+(t,θ,x)(ω
j)
)

(A) := ωj (A \ (t, θ, x)) + 1A(t, θ, x),

with

1A(t, θ, x) :=

{
1, if (t, θ, x) ∈ A,
0, else.
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Definition 2.2 (Malliavin’s derivative). For F in L2(Ω,F∞,P), we define DjF the Malliavin’s derivative
of F as

Dj
(t,θ,x)F := F ◦ εj+(t,θ,x) − F, (t, θ, x) ∈ R3

+.

If F = (F 1, · · · , Fn) for some n ≥ 2 where F i ∈ L2(Ω,F∞,P) ∀i = 1, · · · , n,

Dj
(t,θ,x)F := (F i ◦ εj+(t,θ,x) − F

i)i=1,··· ,n, (t, θ, x) ∈ R3
+

Definition 2.3. Let I be the sub-sigma field of B(R3
+)⊗FN of stochastic processes Z := (Z(t,θ,x))(t,θ,x)∈R3

+

in L1(Ω× R3
+,P⊗ dt⊗ dθ ⊗ ν) such that

Dj
(t,θ,x)Z(t,θ,x) = 0, for a.a. (t, θ, x) ∈ R3

+, for all j = 1, · · · , d.

Definition 2.4 (Divergence operator). We set S the set of stochastic processes Z := (Z(t,θ,x))(t,θ,x)∈R3
+

in

I such that for every j ∈ J1, dK:

E

[∫
R3

+

∣∣Z(t,θ,x)

∣∣2 dtdθνj(dx)

]
+ E

(∫
R3

+

Z(t,θ,x)N
j(dt,dθ,dx)

)2
 < +∞,

where
∫
R3

+
Z(t,θ,x)N

j(dt, dθ,dx) is understood in the sense of the Stieltjes integral.

For Z in S, we set the divergence operator with respect to N j as

δj(Z) :=

∫
R3

+

Z(t,θ,x)N
j(dt,dθ,dx)−

∫
R3

+

Z(t,θ,x)dtdθν
j(dx). (3)

For a vector Z ∈ Sd, the divergence operator with respect to N is defined as

δN (Z) =

d∑
i=1

δi(Zi),

and if Z = (Z·1, · · · ,Z·n) ∈ Sd×n, is a matrix, its divergence is defined as

δN (Z) =
(
δN (Z·1), · · · , δN (Z·n)

)
,

=

d∑
i=1

(
δi(Zi1), · · · , δi(Zin)

)
.

2.3 Definition of the multivariate compound Hawkes process

In this subsection we give a definition of the multivariate compound Hawkes process in the Markov frame-
work. Consider the events times τ j1 , τ

j
2 , · · · associated with the j−th component and define the counting

process

Hj
t =

∑
i≥1

1τji ≤t
.

Now assume that each event τ ji corresponds to a random ”loss” Y ji ∼ νj such that the variables (Y ji )i≥1
are independent and identically distributed (i.i.d).
The compound process Ljt of the total loss attributed to the j−th component is defined as

Ljt =
∑
i≥1

1τji ≤t
Y ji .

To (Hj)j=1,··· ,d and (Lj)j=1,··· ,d we associate a predictable intensity vector (λj)j=1,··· ,d such that

P
[
Hj
t+dt −H

j
t = 1|Ft−

]
= λjtdt

7



which tells us how likely it is for Hj to jump between t and t+ dt, right before t.
The process Lt = (L1

t , · · · , Ldt )t≥0 is called a multivariate compound Hawkes process if its intensity vector
λt follows the dynamics

λjt = µj +

∫
[0,t)

d∑
k=1

Φjk(t− s)dLks ,

= µj +

d∑
k=1

∑
τki <t

Φjk(t− τki )Y ki ,

where (µ1, · · · , µd) ∈ Rd+ and
(
Φi,j

)
i,j=1,··· ,d are non-negative integrable functions.

In this article, we restrict ourselves to the case where the kernels Φ are a family of exponential functions

Φjk(u) = αjke
−βju

where (βj)j=1,··· ,d ∈ (R+)d and A = (αij)i,j=1,··· ,d ∈Md(R+). The intensity can be expressed under matrix
form

λt = µ+

∫
[0,t)

e−B(t−s)AdLs, (4)

with B = diag(β1, · · · , βd). Furthermore, we recall Assumptions 1, 2, 3.
We now introduce an equivalent definition of the multivariate compound Hawkes process, presented as

the result of a stochastic differential equation (SDE) with respect to a family of random Poisson measures.

Theorem 2.1. Let N =
(
N1, · · · , Nd

)
be a family of independent Poisson measures as presented in (Section

2.2). Let µ ∈ Rd+ and A ∈ Md(R+) and (β1, · · · , βd) ∈ Rd+ such that the Assumption 1 is verified. The
SDE below admits a unique solution (L,H,λ) with H and L (resp. λ) FN -adapted (resp. FN -predictable)

Ljt =

∫
(0,t]×R+×R

x1{θ≤λjs}N
j(ds,dθ,dx), t ≥ 0, j = 1, · · · , d,

Hj
t =

∫
(0,t]×R+×R

1{θ≤λjs}N
j(ds,dθ,dx), t ≥ 0, j = 1, · · · , d,

λjt = µj +
∫
(0,t)

∑d
k=1 αjke

−βj(t−u)dLku, t ≥ 0 j = 1, · · · , d.

(5)

We set FH := (FHt )t≥0 (respectively FL := (FLt )t≥0) the natural filtration of H (respectively of L) and
FH∞ := limt→+∞ FHt (respectively FL∞ := limt→+∞ FLt ). Obviously FHt ⊂ FLt ⊂ FNt as H is completely
determined by the jump times of H which are exactly those of L.

Proof. This is merely a d−dimensional version of Theorem 2.12 in [8].

Definition 2.5. Let L and λ be the processes defined in Theorem 2.1. The multivariate Hawkes martingale
M is the process defined as

MT = LT − diag
(
m1, · · · ,md

) ∫ T

0

λtdt

for any T ≥ 0.

2.4 Malliavin’s analysis of the multivariate compound Hawkes process

This subsection is a generalization of Section 2.3 of [8] where we examine the impact of the i−th Malliavin’s
derivative on the j−th component of L, H and λ.
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Definition and Proposition 2.1 (Lemma 2.15 in [8]). Let t and v in R+ and (θ, θ0, x) in R3
+. For every

j ∈ J1, dK it holds that :

1{θ≤λjt}
(Lv ◦ εj+(t,θ,x),λv ◦ ε

j+
(t,θ,x))v≥0

= 1{θ0≤λjt}
(Lv ◦ εj+(t,θ0,x),λv ◦ ε

j+
(t,θ0,x)

)v≥0.

which entails that for every -eventually vectorial- FL∞-measurable random variable F

1{θ≤λjt}
Dj

(t,θ,x)F = 1{θ0≤λjt}
Dj

(t,θ0,x)
F , P− a.s.

where the derivative is applied to each component of F . The last equation allows us to define

Dj

(t,λjt ,x)
F := 1{θ≤λjt}

Dj
(t,θ,x)F , ∀(θ, x) ∈ R2

+

as well as its vector version

D(t,λt,x)F =
(
Dj

(t,λjt ,x)
F
)
j=1,··· ,d,

:=
(
1{θ≤λjt}

Dj
(t,θ,x)F

)
j=1,··· ,d, ∀(θ, x) ∈ R2

+.

Proof. For each i ∈ J1, dK and v ≥ t, we have conditionally on θ0 ≤ λjt

Liv ◦ ε
+j
(t,θ0,x)

= Lit− + x1{θ0≤λjt}
1i=j +

∫
(t,v]×R

∫
R+

y1{θ≤λiu◦ε
+j
(t,θ0,x)

}N
i(dθ,du,dy),

and Liv ◦ ε
+j
(t,θ0,x)

= Liv if t > v. Similarly for λ, we have

λiv ◦ ε
+j
(t,θ0,x)

=

(
µi +

∫
(0,t)

d∑
k=1

e−β(v−u)αikdLku +

∫
[t,v)

d∑
k=1

e−β(v−u)αikdLku

)
◦ ε+j(t,θ0,x)

= µi +

∫
(0,t)

d∑
k=1

e−β(v−u)αikdLku + xαije
−β(v−t) +

∫
(t,v)

d∑
k=1

e−β(v−u)αikd(Lku ◦ ε
+j
(t,θ0,x)

).

In other words, (L ◦ ε+j(t,θ0,x)
,λ ◦ ε+j(t,θ0,x)

) solves the same (path-wise and in the SDE sense) equation for any

θ0 such that θ0 ≤ λt.
For the second equality, cf. the proof of Proposition 2.16 in [8].

Remark 4. It is also possible to include the process H in these results. From now on, H will be omitted
and we will focus exclusively on L and λ.

Now we give the Malliavin’s derivative of the multivariate compound Hawkes process as well as its
intensity. To do so we start with introducing some notations. The vector ei is the element of Rd that has
1 in the i−th component and zero elsewhere.

Proposition 2.1. Let t ≥ 0 and x ∈ R. For every j ∈ J1, dK, we have

(Dj

(t,λjt ,x)
Ls, D

j

(t,λjt ,x)
λs) =

 (xej + L̂
j,t,x

s , λ̂
j,t,x

s ), s ≥ t,

(0, 0), s < t

where the equality is understood path-wise and in the SDE sense and where

(L̂
j,t,x

s , λ̂
j,t,x

s )s≥t =
(
(L̂i,j,t,xs , λ̂i,j,t,xs )s≥t

)
i=1,··· ,d is the unique solution to the SDE

L̂i,j,t,xs =

∫
(t,s]×R2

+

y1{λiu≤θ≤λiu+λ̂
i,j,t,x
u }N

i(du,dθ,dy), s ≥ t,

λ̂i,j,t,xs = xαije
−βi(s−t) +

d∑
k=1

∫
(t,s)

αike
−βi(s−u)dL̂k,j,tu , s > t, λ̂i,j,t,xt = xαij ,

(6)
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or under the matrix form
L̂
j,t,x

s =

∫
(t,s]×R2

+

y1{λu≤θ≤λu+λ̂
j,t,x
u }N(du,dθ,dy), s ≥ t,

λ̂
j,t,x

s = xe−B(s−t)A·j +

∫
(t,s)

e−B(s−u)AdL̂
j,t,x

u , s > t, λ̂
j,t,x

t = xA·j ,

(7)

where the first integral is understood as a vector of integrals with respect to each Poisson measure and the
indicator of a vector is understood as a vector of indicators.

The process (L̂
j,t,x

s , λ̂
j,t,x

s )s∈[t,+∞) is a generalized multivariate compound Hawkes process, with an intensity
vector that is not bounded away from 0.

Proof. It is sufficient to apply the same procedure of Proposition 2.19 ’s proof in [8] to each component of
the vectors. Note that in this proposition, the subscript contains x, because in our case the size of the jump
has an impact on the λ̂’s behaviour, since it is an integral with respect to dL̂ and not merely dĤ.

Remark 5. Note that the process
(
L̂
j,t,x

s , λ̂
j,t,x

s

)
s≥t

defined above is equal in distribution to the (generalized)

Hawkes process
(
L̃
j,t,x

s , λ̃
j,t,x

s

)
s≥t

defined as a solution to the SDE
L̃
j,t,x

s =

∫
(t,s]×R2

+

y1{0≤θ≤λ̃j,t,xu }Ñ(du,dθ,dy), s ≥ t,

λ̃
j,t,x

s = xe−B(s−t)A·j +

∫
(t,s)

e−B(s−u)AdL̃
j,t,x

u , s > t, λ̃
j,t,x

t = xA·j ,

(8)

where Ñ is a family of Poisson measures independent from N but have the same distributions.

We conclude this section by stating the multivariate integration by parts (IBP) formula for the compound
Hawkes martingale.

2.5 Multivariate Stein’s method

Stein’s method is based on an alternative characterization of the Gaussian distribution. The combination
of this characterization with elements of Malliavin’s calculus (known as the Nourdin-Peccati approach)
provides us with a way to estimate the distance between a random variable and a Gaussian.

Lemma 2.2. Let C be a d×d real symmetric positive definite matrix and Y an Rd random variable. Then
Y ∼ N (0, C) if and only if for every twice differentiable function f : Rd → R such that E

[
|〈C,Hess f(Y )〉H.S |+

|〈Y ,∇f(Y )〉|
]
< +∞:

E
[
〈C,Hess f(Y )〉H.S − 〈Y ,∇f(Y )〉

]
= 0

where 〈A,B〉H.S = tr(ABT ) =
∑
AijBij is the Hilbert-Schmidt matrix inner product and Hess is the Hessian

operator.

Proof. Cf. [8] for example.

This shows that if for a sufficiently large class of functions f one has

E
[
〈C,Hess f(Y )〉H.S − 〈Y ,∇f(Y )〉

]
' 0

in some sense, then the random variable Y ’s distribution is fairly ”close” to N (0, C).
We now introduce the function classes as well as the metric that we will use to quantify how close the given
distance of a random variable to a Gaussian distribution.

Definition 2.6. 1. The distance d2 between two integrable random variables X and Y is given by

d2(X,Y ) := sup
f∈H
|E[f(X)]− E[f(Y )]|,

where
H := {g ∈ C2(Rd), such that ‖g‖Lip ≤ 1 and M2(g) ≤ 1}.
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2. For a fixed matrix C ∈ S++
d (R) we define FC to be the functional space

FC := {g ∈ C2(Rd), such that M2(g) ≤ ‖C−1‖op‖C‖1/2op , M3(g) ≤
√

2π

4
‖C−1‖3/2op ‖C‖op}.

Combining the definitions with the multivariate Stein’s equation, it is possible to prove (following the
lines of Lemma 2.17 in [13]) the following estimate of the d2 distance between a centered variable F and
G ∼ Nd(0, C):

d2(F ,G) ≤ sup
f∈FC

∣∣E[〈C,Hess f(F )〉H.S − 〈F ,∇f(F )〉
]∣∣.

Remark 6. Unlike for the univariate Poisson space case (cf. [8]) or the multivariate variables on a
Gaussian space [10], the Wasserstein distance dW is not well adapted to our computations. Nevertheless,
if d2(F T ,G) −→ 0 as T goes to infinity implies that F T converges to the Gaussian G in distribution (cf.
Remark 2.16 in [13]) .

3 Main results

3.1 General bound

In this section, we give a bound on the d2 distance between any random variable that can be expressed as
a divergence with respect to the Poisson measure.

Lemma 3.1. Let n be an integer and let F = (F 1, · · · , Fn) be an FL∞ such that E[‖F ‖2] ≤ +∞. For all
φ ∈ C3(Rn) with bounded derivatives, for any k = 1, · · · , n, there exists a random F̄ such that

Dk
(t,θ,x)∂iφ(F ) = 〈∇∂iφ(F ), Dk

(t,θ,x)F 〉+
1

2
〈Dk

(t,θ,x)F ,Hess ∂iφ(F̄ )Dk
(t,θ,x)F 〉, (t, θ, x) ∈ R3

+

where ∣∣〈y,Hess ∂kφ(F̄ )y〉
∣∣ ≤ ‖y‖2M3(φ), y ∈ Rd

.

Proof. The equality is merely an application of the multivariate Taylor-Young Theorem, combined with the
fact that

Dk
(t,θ,x)∂iφ(F ) = ∂iφ(F ◦ εk+(t,θ,x))− ∂iφ(F ),

= ∂iφ(F +Dk
(t,θ,x)F )− ∂iφ(F ).

When it comes to the upper bound on the rest, we have using Cauchy-Schwarz∣∣〈y,Hess ∂iφ(F̄ )y〉
∣∣ ≤ ‖y‖‖Hess ∂iφ(F̄ )y‖,
≤ ‖y‖2‖Hess ∂iφ(F̄ )‖op.

Using Schwarz’s Theorem we have that

Hess ∂iφ(F̄ ) = ∂i Hessφ(F̄ ),

= lim
h→0

Hessφ(F̄ + hei)−Hessφ(F̄ )

h
,

and the result follows using the fact that the norm ‖ · ‖op is continuous.

This lemma will be useful in proving the following result.

Theorem 3.2. Let n ∈ N∗. Let Z =
(
Zki(t,θ,x)

)
(t,θ,x)∈R3

+

be a stochastic process in Sd×n. Set F = δN (Z)

the divergence of Z. Then, letting G ∼ N (0, C) (for C ∈ S++
n (R)) we have

d2(F ,G) ≤‖C−1‖op‖C‖1/2op

n∑
i,j=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖C−1‖3/2op ‖C‖op

n∑
i,j=1

d∑
k=1

E

[∫
R3

+

∣∣∣Zki(t,θ,x)∣∣∣ ∥∥∥Dk
(t,θ,x)F

∥∥∥2 dtdθνk(dx)

]
.
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If in particular Zki(t,θ,x) = 1θ≤λkt U
ki
(t,x), the upper bound takes the form

d2(F ,G) ≤‖C−1‖op‖C‖1/2op

n∑
i,j=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R2

+

λktU
ki
(t,x)D

k
(t,λkt ,x)

F jdtνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖C−1‖3/2op ‖C‖op

n∑
i,j=1

d∑
k=1

E

[∫
R2

+

λkt

∣∣∣Uki(t,x)∣∣∣ ∥∥∥Dk
(t,λkt ,x)

F
∥∥∥2 dtνk(dx)

]
.

Proof. We start by recalling the bound on the d2 distance between F and G

d2(F ,G) ≤ sup
f∈FC

∣∣E[〈C,Hess f(F T )〉H.S − 〈F ,∇f(F )〉
]∣∣.

In [10], the following technique is used. For any f ∈ FC and η > 0 set fη(x) = E[f(x+
√
ηN)] where N is

a centered Gaussian of unit variance. It is easy to see that

1. fη ∈ C∞(Rn).

2. ‖f − fη‖∞ −→ 0 when η goes to zero.

3. M2(fη) ≤M2(f) and M3(fη) ≤M3(f) using Young’s convolution inequality.

Thus we can assume that f ∈ C∞(Rn) and the computations yield

E
[
〈C,Hess f(F )〉H.S − 〈F ,∇f(F )〉

]
=E
[ n∑
i,j=1

Cij∂
2
ijf(F )−

n∑
i=1

F i∂if(F )
]
,

=

n∑
i,j=1

CijE
[
∂2ijf(F )

]
−

n∑
i=1

E
[
F i∂if(F )

]
.

By definition, F is defined as the divergence of the matrix Z, thus for each i ∈ J1, nK

F i =

d∑
k=1

δk(Zki),

which entails that

E
[
F i∂if(F )

]
=

d∑
k=1

E
[
δk(Zki)∂if(F )

]
.

Set E6=k[·] = E[·|N1, · · · , Nk−1, Nk+1, · · · , Nd], which stands for the expected value knowing all the counting
measures except for the k−th one. This notation is introduced in order use the integration by parts formula
in [14] which is available for univariate processes. Hence

E
[
F i∂if(F )

]
=

d∑
k=1

E
[
E6=k[δk(Zki)∂if(F )]

]
,

=

d∑
k=1

E
[
E6=k

[∫ ∫ ∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)∂if(F )dtdθνk(dx)

] ]
,

=

d∑
k=1

E

[∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)∂if(F )dtdθνk(dx)

]
.

Using Lemma 3.1, we have that

Dk
(t,θ,x)∂if(F ) = 〈∇∂if(F ), Dk

(t,θ,x)F 〉+
1

2
〈Dk

(t,θ,x)F ,Hess ∂if(F̄ )Dk
(t,θ,x)F 〉,

=

n∑
j=1

∂2ijf(F )Dk
(t,θ,x)F

j +
1

2
〈Dk

(t,θ,x)F ,Hess ∂if(F̄ )Dk
(t,θ,x)F 〉,
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for some random F̄ . Hence

E
[
F i∂if(F )

]
=

d∑
k=1

E

∫
R3

+

Zki(t,θ,x)

n∑
j=1

∂2ijf(F )Dk
(t,θ,x)F

jdtdθνk(dx)


+

d∑
k=1

1

2
E

[∫
R3

+

Zki(t,θ,x)〈D
k
(t,θ,x)F ,Hess ∂if(F̄ )Dk

(t,θ,x)F 〉dtdθν
k(dx)

]
,

=

n∑
j=1

E

[
∂2ijf(F )

d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

]

+

d∑
k=1

1

2
E

[∫
R3

+

Zki(t,θ,x)〈D
k
(t,θ,x)F ,Hess ∂if(F̄ )Dk

(t,θ,x)F 〉dtdθν
k(dx)

]
.

Then

E
[
〈C,Hess f(F )〉H.S − 〈F ,∇f(F )〉

]
=

n∑
i,j=1

E

[
∂2ijf(F )

(
Cij −

d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

)]

− 1

2

n∑
i=1

d∑
k=1

E

[∫
R3

+

Zki(t,θ,x)〈D
k
(t,θ,x)F ,Hess ∂if(F̄ )Dk

(t,θ,x)F 〉dtdθν
k(dx)

]
.

By taking the absolute value, using the triangular inequality and the fact that for any f ∈ FC and any
(i, j) ∈ J1, dK2 ∥∥∂2ijf∥∥∞ ≤M2(f) ≤ ‖C−1‖op‖C‖1/2op

we obtain the bound

|E
[
〈C,Hess f(F )〉H.S − 〈F ,∇f(F )〉

]
| ≤‖C−1‖op‖C‖1/2op

n∑
i,j=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

∣∣∣∣∣
]

+
1

2

n∑
i,j=1

d∑
k=1

E

[∫
R3

+

|Zki(t,θ,x)|
∣∣∣〈Dk

(t,θ,x)F ,Hess ∂if(F̄ )Dk
(t,θ,x)F 〉

∣∣∣dtdθνk(dx)

]
,

≤‖C−1‖op‖C‖1/2op

n∑
i=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖C−1‖3/2op ‖C‖op

n∑
i=1

d∑
k=1

E

[∫
R3

+

|Zki(t,θ,x)|
∥∥∥Dk

(t,θ,x)F
∥∥∥2 dtdθνk(dx)

]
,

and finally

d2(F ,G) ≤‖C−1‖op‖C‖1/2op

n∑
i,j=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R3

+

Zki(t,θ,x)D
k
(t,θ,x)F

jdtdθνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖C−1‖3/2op ‖C‖op

n∑
i=1

d∑
k=1

E

[∫
R3

+

|Zki(t,θ,x)|
∥∥∥Dk

(t,θ,x)F
∥∥∥2 dtdθνk(dx)

]
.

For the second point, assume that ∀k ∈ J1, dK and ∀i ∈ J1, nK

Zki(t,θ,x) = 1θ≤λkt U
ki
(t,x).

Keeping in mind that according to Definition 2.1, we have

1θ≤λktD
k
(t,θ,x)F

j = Dk
(t,λkt ,x)

F j
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whenever θ is less than λkt , thus

d2(F ,G) ≤‖C−1‖op‖C‖1/2op

n∑
i,j=1

E

[∣∣∣∣∣Cij −
d∑
k=1

∫
R2

+

λktU
ki
(t,x)D

k
(t,λkt ,x)

F jdtνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖C−1‖3/2op ‖C‖op

n∑
i=1

d∑
k=1

E

[∫
R2

+

λkt |Uki(t,x)|
∥∥∥Dk

(t,λkt ,x)
F
∥∥∥2 dtνk(dx)

]
.

3.2 Bounds on the CLTs

The following theorem is our first main result where we give the bound on the d2 distance between a vector
formed by the normalized Hawkes martingale

F T =
MT√
T

=
LT − diag(m1, · · · ,md)

∫ T
0
λtdt√

T

and its Gaussian limit as T goes to infinity.

Theorem 3.3. Fix p and d in N∗. Let (Lt)t≥0 be a compound multivariate Hawkes process whose intensity
λ follows the dynamics 4 and let 0 < v1 < · · · < vp ≤ 1 be p distinct positive numbers. Set

ΓT =
(
F 1
v1T , · · · , F

1
vpT , · · · , F

d
v1T , · · · , F

d
vpT

)
∈ Rp·d,

and
Ĉ = diag(C1, · · · , Cd) ∈ Sp·d(R)

the block diagonal matrix such that ∀n ∈ J1, dK

Cnij = Cnji =

∫
x2νn(dx)

√
vi
vj

[(
B −Adiag(m1, · · · ,md)

)−1
Bµ
]n
, ∀1 ≤ i ≤ j ≤ p.

Let G ∼ N (0, Ĉ). Then there is a constant K > 0 independent from T such that

d2(ΓT ,G) ≤ K√
T
.

Proof. Throughout this proof, K is a positive constant that does not depend on T and that is susceptible
to change from one line to the other. We also set v0 = vp.
For each i ∈ J1, p · dK and k ∈ J1, dK, we define the matrix process

Zk,i(t,θ,x) = 1θ≤λkt 1k=i÷p+11t≤vi%pT
x√
vi%pT

,

where i%p (respectively i÷p) is the remainder (respectively the quotient) after dividing i by p. It is possible
to write the set of integers from 1 to p · d as a partition of d disjoint intervals S1 ∪ · · · ∪ Sd each of cardinal
p. Thus for any n = 1, · · · , d, n = i÷ p+ 1 if and only if i ∈ Sn.
We assume i ∈ Sn and compute the i−th component of the divergence of Z

(δ(Z))
i

=

d∑
k=1

δk(Zik),

= δn(Zni),

=

∫
R3

+

Zni(t,θ,x) (Nn(dt, dθ,dx)− dtdθνn(dx)) ,

=
1√
vi%pT

∫ vi%pT

0

∫
R2

+

x1θ≤λnt (Nn(dt, dθ,dx)− dtdθνn(dx)) ,

= ΓiT .
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Using the second equality of Theorem 3.2, the d2 distance is bounded by

d2(ΓT ,G) ≤‖Ĉ−1‖op‖Ĉ‖1/2op

pd∑
i,j=1

E

[∣∣∣∣∣Ĉij −
d∑
k=1

∫
R2

+

λkt 1t≤vi%pT1k=i÷p+1
x√
vi%pT

Dk
(t,λkt ,x)

ΓjTdtνk(dx)

∣∣∣∣∣
]

+

√
2π

8
‖Ĉ−1‖3/2op ‖Ĉ‖op

pd∑
i=1

d∑
k=1

E

[∫
R2

+

λkt 1t≤vi%pT1k=i÷p+1
x√
vi%pT

∥∥∥Dk
(t,λkt ,x)

ΓT

∥∥∥2 dtνk(dx)

]
,

≤‖Ĉ−1‖op‖Ĉ‖1/2op

d∑
n1,n2=1

∑
i∈Sn1

∑
j∈Sn2

E

[∣∣∣∣∣Ĉij −
∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

Dn1

(t,λ
n1
t ,x)

ΓjTdtνn1(dx)

∣∣∣∣∣
]

+

√
2π

8
‖Ĉ−1‖3/2op ‖Ĉ‖op

d∑
n1=1

∑
i∈Sn1

E

[∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

∥∥∥Dn1

(t,λ
n1
t ,x)

ΓT

∥∥∥2 dtνn1(dx)

]
,

≤‖Ĉ−1‖op‖Ĉ‖1/2op

d∑
n1,n2=1

∑
i∈Sn1

∑
j∈Sn2

E

[∣∣∣∣∣Ĉij −
∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

Dn1

(t,λ
n1
t ,x)

ΓjTdtνn1(dx)

∣∣∣∣∣
]

+

√
2π

8
‖Ĉ−1‖3/2op ‖Ĉ‖op

d∑
n1,n2=1

∑
i∈Sn1

∑
j∈Sn2

E

[∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

∣∣∣Dn1

(t,λ
n1
t ,x)

ΓjT

∣∣∣2 dtνn1(dx)

]
,

≤K
d∑

n1,n2=1

∑
i∈Sn1

∑
j∈Sn2

(
Ai,j1 +Ai,j2

)
,

where

Ai,j1 = E

[∣∣∣∣∣Ĉij −
∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

Dn1

(t,λ
n1
t ,x)

ΓjTdtνn1(dx)

∣∣∣∣∣
]
,

and

Ai,j2 = E

[∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

∣∣∣Dn1

(t,λ
n1
t ,x)

ΓjT

∣∣∣2 dtνn1(dx)

]
.

In both terms we have dependence on n1 and n2 which are respectively functions of i and j. For i, j =
1, · · · , d. we will treat each term separately.
Term Ai,j1

First we start by computing the Malliavin’s derivative in the i−th direction of ΓjT . By linearity of the
derivative operator

Dn1

(t,λ
n1
t ,x)

ΓjT = Dn1

(t,λ
n1
t ,x)

Fn2

vj%pT
,

=
1√
vj%pT

Dn1

(t,λ
n1
t ,x)

(
Ln2

vj%pT
−mj%p

∫ vj%pT

0

λn2
s ds

)
,

which yields using Proposition 2.1

Dn1

(t,λ
n1
t ,x)

ΓjT =
1t≤vj%pT√
vj%pT

(
x1n1=n2

+ L̂n2,n1,t,x
vj%pT

−mj%p

∫ vj%pT

t

λ̂n2,n1,t,x
s ds

)
,

=
1t≤vj%pT√
vj%pT

(
x1n1=n2

+ M̂n2,n1,t,x
vj%pT

)
.
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Thus

Ai,j1 =E

[∣∣∣∣∣Ĉij −
∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

1t≤vj%pT√
vj%pT

(
x1n1=n2

+ M̂n2,n1,t,x
vj%pT

)
dtνn1(dx)

∣∣∣∣∣
]
,

=E

[∣∣∣∣∣Ĉij − 1
√
vi%pvj%pT

∫
R+

∫ (vi%p∧vj%p)T

0

xλn1
t

(
x1n1=n2

+ M̂n2,n1,t,x
vj%pT

)
dtνn1(dx)

∣∣∣∣∣
]
,

≤E

[∣∣∣∣∣Ĉij − 1n1=n2√
vi%pvj%pT

∫
R+

∫ (vi%p∧vj%p)T

0

x2λn1
t dtνn1(dx)

∣∣∣∣∣
]

+
1

√
vi%pvj%pT

E

[∣∣∣∣∣
∫
R+

∫ (vi%p∧vj%p)T

0

xλn1
t M̂

n2,n1,t,x
vj%pT

dtνn1(dx)

∣∣∣∣∣
]
,

≤E

[∣∣∣∣∣Ĉij − 1n1=n2√
vi%pvj%pT

∫
R+

∫ (vi%p∧vj%p)T

0

x2E[λn1
t ]dtνn1(dx)

∣∣∣∣∣
]

+
1n1=n2√
vi%pvj%pT

∫
R+

x2νn1(dx)E

[∣∣∣∣∣
∫ (vi%p∧vj%p)T

0

λn1
t − E[λn1

t ]dt

∣∣∣∣∣
]

+
1

√
vi%pvj%pT

E

[∣∣∣∣∣
∫
R+

∫ (vi%p∧vj%p)T

0

xλn1
t M̂

n2,n1,t,x
vj%pT

dtνn1(dx)

∣∣∣∣∣
]
,

≤Ai,j1,1 + 1n1=n2
Ai,j1,2 +Ai,j1,3.

We start with the term Ai,j1,1. If i and j are not in the same interval Sn1
(i.e. n1 = n2), Ĉij = 0, thus

Ai,j1,1 = 0. Note that due to symmetry arguments i and j are exchangeable, which allows us to assume that
i and j are in the same interval and that i ≤ j which is equivalent to i%p ≤ j%p. In this case, we have

Ĉij = Cn1

i%pj%p =

∫
R+

x2νn1(dx)

√
vi%p
vj%p

[(
B −Adiag(m1, · · · ,md)

)−1
Bµ
]n1

.

According to Lemma 4.2 it is possible to put the intensity’s expectation under the form

E[λt] =
(
B −Adiag(m1, · · · ,md)

)−1
Bµ+Qe−tV µ,

where Q and V are matrices such that all the eigen-values of V are positive. Thus

1
√
vi%pvj%pT

∫ vi%pT

0

E[λt]dt =

√
vi%p
vj%p

(
B −Adiag(m1, · · · ,md)

)−1
Bµ+

1
√
vi%pvj%pT

Q

∫ vi%pT

0

e−V tdtµ,

=

√
vi%p
vj%p

(
B −Adiag(m1, · · · ,md)

)−1
Bµ+

1
√
vi%pvj%pT

QV −1
(
Id − e−V Tvi%p

)
µ,

which means that

Ai,j1,1 =E

[∣∣∣∣∣Ĉij − 1
√
vi%pvj%pT

∫
R+

x2νn1(dx)

∫ vi%pT

0

E[λn1
t ]dt

∣∣∣∣∣
]
,

≤E

[∣∣∣∣∣Ĉij −
∫
R+

x2νn1(dx)
[(
B −Adiag(m1, · · · ,md)

)−1
Bµ
]n1

∣∣∣∣∣
]

+ E

[∣∣∣∣∣
∫
R+

x2νn1(dx)
1

√
vi%pvj%pT

[
QV −1

(
Id − e−V Tvi%p

)
µ
]n1

∣∣∣∣∣
]
,

=

∫
R+

x2νn1(dx)
1

√
vi%pvj%pT

E
[∣∣∣[QV −1 (Id − e−V Tvi%p)µ]n1

∣∣∣] ,
=O

(
1

T

)
because e−V Tvi%p −→ 0.
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For the term Ai,j1,2 we use the second equality of Lemma 4.3 and the fact that for a given vector x, ‖x‖∞ ≤ ‖x‖
where ‖.‖ is the euclidean norm.

E

[∥∥∥∥∥
∫ vi%pT

0

λt − E[λt]dt

∥∥∥∥∥
]

= E

[∥∥∥∥∥
∫ vi%pT

0

e−
(
B−A diag(m1,··· ,md)

)
(vi%pT−s)AM sds

∥∥∥∥∥
]
,

≤ E

[∫ vi%pT

0

∥∥∥∥e−(B−A diag(m1,··· ,md)
)
(vi%pT−s)AM s

∥∥∥∥ds

]
,

≤
∫ vi%pT

0

∥∥∥∥e−(B−A diag(m1,··· ,md)
)
(vi%pT−s)A

∥∥∥∥
op

E [‖M s‖] ds,

≤
∫ vi%pT

0

∥∥∥∥e−(B−A diag(m1,··· ,md)
)
(vi%pT−s)A

∥∥∥∥
op

E
[
‖M s‖2

]1/2
ds,

where the last inequality comes from Cauchy-Schwarz.
Keeping in mind Ito’s isometry we have

E
[
‖M s‖2

]
= E

[
d∑
i=1

∣∣M i
s

∣∣2] ,
=

d∑
i=1

E
[∣∣M i

s

∣∣2] ,
=

d∑
i=1

E
[[
M i
]
s

]
, where

[
M i
]
s

is the quadratic variation

=

d∑
i=1

∫
R+

x2νi(dx)

∫ s

0

E
[
λiu
]

du,

≤ K(s+ 1),

which implies that E
[
‖M s‖2

]1/2 ≤ K(
√
s+ 1).

Using the fact that the operator norm is sub-multiplicative and Lemma 4.1 we have that∥∥∥∥e−(B−A diag(m1,··· ,md)
)
(vi%pT−s)A

∥∥∥∥
op

≤
∥∥∥∥e−(B−A diag(m1,··· ,md)

)
(vi%pT−s)

∥∥∥∥
op

‖A‖op ,

≤K
(
1 + (vi%pT − s)d−1

)
e−ρd(vi%pT−s).

Combining these inequalities yields

Ai,j1,2 =
1

√
vi%pvj%pT

E

[∣∣∣∣∣
∫ vi%pT

0

λit − E[λit]dt

∣∣∣∣∣
]
,

≤ 1
√
vi%pvj%pT

E

[∥∥∥∥∥
∫ vi%pT

0

λt − E[λt]dt

∥∥∥∥∥
]
,

≤ K
√
vi%pvj%pT

∫ vi%pT

0

e−ρd(vi%pT−s)
(
1 + (vi%pT − s)d−1

)
(
√
s+ 1)ds,

≤ O
(

1√
T

)
, cf. the bound on A1,2 in [8].

For the term Ai,j1,3 we start by noticing that the integral with respect to νi(dx) is equivalent to taking the
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expectation of a random variable X of law νi. Hence

Ai,j1,3 = E

[∣∣∣∣∣ 1
√
vi%pvj%pT

∫ vi%pT

0

∫
R+

xλn1
t M̂

n2,n1,t,x
vj%pT

νi(dx)dt

∣∣∣∣∣
]
,

=
1

√
vi%pvj%pT

E

[∣∣∣∣∣EX
[∫ vi%pT

0

Xλn1
t M̂

n2,n1,t,x
vj%pT

dt

]∣∣∣∣∣
]
,

≤ 1
√
vi%pvj%pT

E

EX [∫ vi%pT

0

Xλn1
t M̂

n2,n1,t,x
vj%pT

dt

]21/2

,

and by Jensen’s inequality

Ai,j1,3 ≤
1

√
vi%pvj%pT

E

EX
(∫ vi%pT

0

Xλn1
t M̂

n2,n1,t,X
vj%pT

dt

)2
1/2

,

≤ 1√
vi%pvj%pT

(
1

T
IT

)1/2

,

where

IT := E

EX
(∫ vi%pT

0

Xλn1
t M̂

n2,n1,t,X
vj%pT

dt

)2
 . (9)

Using lemma 4.5 we have that
IT ≤ KT,

and therefore

Ai,j1,3 ≤ O
(

1√
T

)
.

This shows that

Ai,j1 = O

(
1√
T

)
. (10)

Term Ai,j2

Keeping in mind that

Ai,j2 = E

[∫
R+

∫ vi%pT

0

λn1
t

x√
vi%pT

∣∣∣Dn1

(t,λ
n1
t ,x)

ΓjT

∣∣∣2 dtνn1(dx)

]
,

and that

Dn1

(t,λ
n1
t ,x)

ΓjT =
1t≤vj%pT√
vj%pT

(
x1n1=n2

+ M̂n2,n1,t,x
vj%pT

)
,

we have

Ai,j2 =
1

√
vi%pvj%pT 3/2

E

[∫ vi%pT∧vj%pT

0

∫
R+

xλn1
t

(
x1n1=n2

+ M̂n2,n1,t,x
vj%pT

)2
νn1(dx)dt

]
,

≤ 2
√
vi%pvj%pT 3/2

E

[∫ vi%pT

0

∫
R+

x3λn1
t 1n1=n2

+ xλn1
t

∣∣∣M̂n2,n1,t,x
vj%pT

∣∣∣2 νn1(dx)dt

]
,

=
2K · 1n1=n2

T 3/2

∫
R+

x3νn1(dx)

∫ vi%pT

0

E[λn1
t ]dt+

2K

T 3/2

∫ vi%pT

0

∫
R+

xE
[
λn1
t

∣∣∣M̂n2,n1,t,x
vj%pT

∣∣∣2] νn1(dx)dt,

:= Ai2,1 +Ai,j2,2.
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According to Lemma 4.2 and to the fact that
(
B − Adiag(m1, · · · ,md)

)
has only positive eigenvalues we

have that
∫ vi%pT
0

E[λit]dt ≤ KT and hence

Ai2,1 = O

(
1√
T

)
.

For the final term it holds that

Ai,j2,2 =
2K

T 3/2

∫ vi%pT

0

∫
R+

xE
[
λn1
t

∣∣∣M̂n2,n1,t,x
vj%pT

∣∣∣2] νn1(dx)dt,

=
K

T 3/2

∫ vi%pT

0

∫
R+

xE
[
λn1
t Et

[∣∣∣M̂n2,n1,t,x
vj%pT

∣∣∣2]] νn1(dx)dt,

=
K

T 3/2

∫ vi%pT

0

∫
R+

xE

[
λn1
t Et

[∫ vj%pT

t

λ̂n2,n1,t,x
s ds

]]
νn1(dx)dt.

Solving the SDE 14 with initial condition Et
[
λ̃
n1,t,x

t

]
= xA·i we have that

Et
[
λ̃n2,n1,t,x
s

]
= x

(
e−
(
B−A diag(m1,··· ,md)

)
(s−t)A·n1

)n2

,

which is integrable. It follows that

Ai,j2,2 ≤
K

T 3/2

∫ vi%pT

0

∫
R+

x2E [λn1
t ] νn1(dx)dt,

≤ K

T 3/2

∫
R+

x2νn1(dx)Kvi%pT,

≤ O
(

1√
T

)
.

And finally

Ai,j2 = O

(
1√
T

)
. (11)

Combining 10 and 11 we conclude that

d2(ΓT ,G) = O

(
1√
T

)
.

Corollary 3.3.1. Fix d ∈ N∗. Let (Lt)t≥0 be a compound multivariate Hawkes process whose intensity λ
follows the dynamics 4. Assume Assumptions 1, 2 and 3 are in force.
Set C = diag(σ2

1 , · · · , σ2
d) where for any j = 1, · · · , d

σ2
j =

∫
x2νj(dx)

[(
B −Adiag(m1, · · · ,md)

)−1
Bµ
]j

and let G ∼ N (0, C).
Then there exists a constant K > 0 independent from T such that

d2(F T ,G) ≤ K√
T
.

Proof. This is merely an application of Theorem 3.3 for p = 1 and v1 = 1.

Remark 7. The specific bounds ‖g‖Lip ≤ 1 and M2(g) ≤ 1 could have been relaxed to ‖g‖Lip ≤ K1 and
M2(g) ≤ K2 where K1 and K2 are two arbitrary positive constants.
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As a final result in this section, we consider the slightly modified process

Y T =
LT − diag(m1, · · · ,md)

∫ T
0
E[λs]ds√

T

and we study its behaviour as T goes to infinity.

Theorem 3.4. Set C̃ =
(
J
√
C
)

t
(
J
√
C
)

= JC tJ , where J =
(
Id − diag(m1, · · · ,md)B−1A

)−1
and C

is defined in Corollary 3.3.1.

Let G̃ ∼ N
(

0, C̃
)

. There exists a constant K that does not depend on T such that

d2(Y T , G̃) ≤ K√
T
,

for any T > 0.

Proof. Thanks to Lemma 4.6 we have that

J−1Y T = F T + J−1RT .

Let f ∈ H and set fJ : x 7→ f(Jx)
‖J‖op , this function is clearly in C2(Rd) and ‖fJ‖Lip ≤ 1 and M2(fJ) ≤ ‖J‖op.

Let G̃ ∼ N (0, C̃). We have∣∣∣E [f(Y T )]− E[f(G̃)]
∣∣∣ = ‖J‖op

∣∣∣E [fJ(J−1Y T )
]
− E

[
fJ(J−1G̃)

]∣∣∣ ,
= ‖J‖op

∣∣E [fJ(F T + J−1RT )
]
− E [fJ(G)]

∣∣ ,
where G = J−1G̃ ∼ N (0, C).
Using a Taylor expansion, there exists a random Y ∗ such that

fJ(F T + J−1RT ) = fJ(F T ) +
〈
∇fJ(Y ∗), J−1RT

〉
,

hence ∣∣∣E [f(Y T )]− E[f(G̃)]
∣∣∣ = ‖J‖op

∣∣E [fJ(F T )]− E [fJ(G)] + E
[〈
∇fJ(Y ∗), J−1RT

〉]∣∣ ,
≤ ‖J‖op |E [fJ(F T )]− E [fJ(G)]|+ ‖J‖op

∣∣E [〈∇fJ(Y ∗), J−1RT

〉]∣∣ ,
≤ ‖J‖op sup

g∈HJ
|E [g(F T )]− E [g(G)]|+ ‖J‖op

∣∣E [〈∇fJ(Y ∗), J−1RT

〉]∣∣ ,
where HJ = {f ∈ C2(Rd) such that ‖f‖Lip ≤ 1 and M2(f) ≤ ‖J‖op}. Using Cauchy-Schwarz’s inequality
(twice) the second term is bounded as follows∣∣E [〈∇fJ(Y ∗), J−1RT

〉]∣∣ ≤ ∣∣E [‖∇fJ(Y ∗)‖
∥∥J−1RT

∥∥]∣∣ ,
≤
∣∣∣∣E [‖∇fJ(Y ∗)‖2

]1/2
E
[∥∥J−1RT

∥∥2]1/2∣∣∣∣ ,
≤
∣∣∣∣E [‖fJ‖2Lip]1/2 E [∥∥J−1∥∥2op ‖RT ‖2

]1/2∣∣∣∣ ,
=
∥∥J−1∥∥

op
E
[
‖RT ‖2

]1/2
.

Thanks to Corollary 3.3.1 and Remark 7 there exists a positive constant K (independent from f and T and
that can change from one line to another) such that∣∣∣E [f(Y T )]− E[f(G̃)]

∣∣∣ ≤ K ( 1√
T

+ E
[
‖RT ‖2

]1/2)
.
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And using Lemma 4.4 we have that

E
[
‖RT ‖2

]
= E

[∥∥∥∥diag(m1, · · · ,md)
(
B −A diag(m1, · · · ,md)

)−1 E[λT ]− λT√
T

∥∥∥∥2
]
,

≤
∥∥∥diag(m1, · · · ,md)

(
B −A diag(m1, · · · ,md)

)−1∥∥∥2
op

1

T
E
[
‖E[λT ]− λT ‖2

]
,

≤ K

T

d∑
i=1

E
[(
λiT − E[λiT ]

)2]
, and by virtue of Lemma 4.4,

≤ K

T
.

And finally ∣∣∣E [f(Y T )]− E[f(G̃)]
∣∣∣ = O

(
1√
T

)
,

hence the result.

3.3 Proof of Theorem 1.1

We start by recalling that

Y T =
LT − diag(m1, · · · ,md)

∫ T
0
E[λs]ds√

T
,

and that

Y ′T =
LT − diag(m1, · · · ,md)

(
B −A diag(m1, · · · ,md)

)−1
BµT

√
T

,

=
LT − diag(m1, · · · ,md)V −1BµT√

T
,

where V = B −A diag(m1, · · · ,md).
Using Lemma 4.2, we have that

E[λt] = V −1Bµ+ e−V t
(
Id − V −1B

)
µ,

hence ∫ T

0

E[λt]dt = V −1BµT +

∫ T

0

e−V tdt
(
Id − V −1B

)
µ,

= V −1BµT +
(
Id − e−V T

)
V −1

(
Id − V −1B

)
µ.

We deduce that
Y ′

T = Y T −R′
T ,

with R′
T =

diag(m1,··· ,md)(Id−e−V T )(V −1−V −2B)µ√
T

.

Let G̃ ∼ N
(

0, C̃
)

as defined in Theorem 1.1 and let f ∈ H. Using a Taylor expansion, we have for some

X
f(Y ′

T )− f(G̃) = f(Y T )− f(G̃)− 〈∇f(X),R′
T 〉 .

Since supx∈Rd ‖∇f(x)‖2 ≤ 1 and Y ′
T = O

(
1√
T

)
, we deduce that

d2(Y ′
T , G̃) ≤ d2(Y T , G̃) +O

(
1√
T

)
,

which yields using Theorem 3.4

d2(Y ′
T , G̃) = O

(
1√
T

)
.
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4 Lemmata

Lemma 4.1. Set V = B − Adiag(m1, · · · ,md). Assume that Assumption 2 is in force. Then there are
positive constants K and ρd such that ∥∥e−tV ∥∥

op
≤ K(1 + td−1)e−ρdt

for any t ≥ 0.

Proof. First, we call V ’s eigenvalues ρ1 ≥ · · · ≥ ρd and we recall that they are positive. Using Jordan-
Chevalley’s decomposition we can write

V = P diag(ρ1, · · · , ρd)P−1 + Vnil

where Vnil is a nilpotent matrix that commutes with P diag(ρ1, · · · , ρd)P−1. Let t ≥ 0, taking the expo-
nential yields

e−tV = e−tP diag(ρ1,··· ,ρd)P−1−tVnil ,

= e−tP diag(ρ1,··· ,ρd)P−1

e−tVnil ,

= P diag(e−ρ1t, · · · , e−ρdt)P−1
d−1∑
j=1

tj
(−Vnil)j

j!
.

Since the operator norm is sub-multiplicative and using the triangular inequality

∥∥e−tV ∥∥
op
≤ ‖P‖op‖P−1‖op

∥∥diag(e−ρ1t, · · · , e−ρdt)
∥∥
op

d−1∑
j=1

tj
‖Vnil‖jop

j!
,

≤ K
∥∥diag(e−ρ1t, · · · , e−ρdt)

∥∥
op

(
1 + td−1

)
,

≤ K
∥∥diag(e−ρ1t, · · · , e−ρdt)

∥∥
∞

(
1 + td−1

)
,

where the last inequality comes from the fact that all norms are equivalent in finite dimension.

Lemma 4.2. If λ follows the dynamics 4 then for each t

E[λt] =
(
B −Adiag(m1, · · · ,md)

)−1
Bµ+e−

(
B−A diag(m1,··· ,md)

)
t
(
Id −

(
B −Adiag(m1, · · · ,md)

)−1
B
)
µ.

Proof. First we prove that if the kernels are exponential, then λ is a Markov process that follows an SDE.
By multiplying 4 by eBt we get

eBtλt = eBtµ+

∫
[0,t)

eBsAdLs, and by differentiating,

eBt (dλt +Bλtdt) = eBtBµdt+ eBtAdLt.

Hence the SDE
dλt = B (µ− λt) dt+AdLt. (12)

By taking the expected value of 12 and keepind in mind that dE[Ls] = diag(m1, · · · ,md)E[λs]ds, the
intensity’s expectation is the solution of the multivariate ODE

dE[λt] = Bµdt−
(
B −A diag(m1, · · · ,md)

)
E[λt]dt, (13)

with initial condition E[λ0] = µ. Assumption 2 guarantees that all the eigenvalues of
(
B −Adiag(m1, · · · ,md)

)
are positive, thus the matrix is invertible and we get the result.

Lemma 4.3. The difference between the intensity and its expected value is

λt − E[λt] =

∫
[0,t)

e−
(
B−A diag(m1,··· ,md)

)
(t−s)AdM s,
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where

M t = Lt −
∫ t

0

diag(m1, · · · ,md)λsds.

Its integral with respect to time is∫ T

0

λt − E[λt]dt =

∫ T

0

e−
(
B−A diag(m1,··· ,md)

)
(T−s)AM sds.

Proof. By taking the difference between 12 and 13 we can verify that λ− E[λ] is a solution of the SDE

d (λt − E[λt]) = −
(
B −Adiag(m1, · · · ,md)

)
(λt − E[λt]) +AdM t

with the initial condition λ0 − E[λ0] = 0. Solving the SDE (using variation of parameters) yields

λt − E[λt] =

∫
[0,t)

e−
(
B−A diag(m1,··· ,md)

)
(t−s)AdM s.

For the second equality, we start by taking the integral with respect to time until the instant T∫ T

0

λt − E[λt]dt =

∫ T

0

∫
[0,t)

e−
(
B−A diag(m1,··· ,md)

)
(t−s)AdM sdt,

=

∫ T

0

∫ T

0

1s<te
−
(
B−A diag(m1,··· ,md)

)
(t−s)AdM sdt, and using Fubini’s identity

=

∫ T

0

∫ T

s

e−
(
B−A diag(m1,··· ,md)

)
(t−s)dtAdM s,

=

∫ T

0

∫ T−s

0

e−
(
B−A diag(m1,··· ,md)

)
uduAdM s, using a change of variables

=

∫ T

0

Φ(T − s)AdM s,

where Φ is the anti-derivative of u→ e−
(
B−A diag(m1,··· ,md)

)
u that vanishes at zero. In absence of common

jumps, the integration by parts formula is

0 = Φ(0)AMT − Φ(T )AM0 =

∫ T

0

d (Φ(T − s))AM s + Φ(T − s)AdM s,

hence ∫ T

0

λt − E[λt]dt =

∫ T

0

e−
(
B−A diag(m1,··· ,md)

)
(T−s)AM sds.

Lemma 4.4. For any fixed n,m in J1, dK we have for any T ≥ 0

E [(λnT − E[λnT ]) (λmT − E[λmT ])] ≤ K

where K is a positive constant independent from T .

Proof. Using the first equality of Lemma 4.3 we have

(λT − E[λT ]) (λT − E[λT ])
>

=

∫
[0,T )

e−
(
B−A diag(m1,··· ,md)

)
(T−s)AdM s

∫
[0,T )

dM>
s A
>e−

(
B−A diag(m1,··· ,md)

)>
(T−s),

which yields using the multivariate Ito isometry

E
[
(λT − E[λT ]) (λT − E[λT ])

>
]

=

∫
[0,T )

e−
(
B−A diag(m1,··· ,md)

)
(T−s)AdE [[M ]s]A

>e−
(
B−A diag(m1,··· ,md)

)>
(T−s),
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where d [M ] is the quadratic variation matrix infinitesimal growth

d
(

[M ]s
)
ij

= d
[
M i,M j

]
s
,

= 1i6=jd
[
M i
]
s
,

= 1i 6=jE
[
λis
]

ds.

Since the expected value of λis is bounded by a constant independent from T and since all of
(
B −

Adiag(m1, · · · ,md)
)
’s eigen-values are positive we obtain the result.

Lemma 4.5. Assume that Assumptions 3 and 1 are is force. For i, j ∈ J1, dK let IT be the quantity defined
in 9, then we have

1

T
IT ≤ K.

Proof. Let m ≤ n be two integers in J1, pK and i, j in J1, dK. We start by expanding 9

IT = E

EX
(∫ vmT

0

XλitM̂
j,i,t,X
vnT

dt

)2
 ,

= 2E

[
EX

[∫ vmT

0

∫ t

0

X2λitM̂
j,i,t,X
vnT

λisM̂
j,i,s,X
vnT

dsdt

]]
,

= 2

∫
R+

∫ vmT

0

∫ t

0

x2E
[
λitλ

i
sEt

[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
vnT

]]
dsdtνidx,

where we recall that M̂ j,i,t,x
vnT

= L̂j,i,t,xvnT
−mj

∫ vnT
t

λ̂j,i,t,xs ds is a martingale. Thus the product’s expectation
is

Et
[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
vnT

]
= Et

[
M̂ j,i,t,x
vnT

(
M̂ j,i,s,x
vnT

− M̂ j,i,s,x
t

)]
+ Et

[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
t

]
,

the last term vanishes since for any t ≤ vmT ≤ vnT , Et
[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
t

]
= M̂ j,i,s,x

t Et
[
M̂ j,i,t,x
vnT

]
= 0. Thus

Et
[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
vnT

]
= Et

[∫ vnT

t

∫
R+

∫
R+

y21θ≤λ̂j,i,t,xu
1θ≤λ̂j,i,s,xu

dθνj(dy)du

]
,

= Et

[∫ vnT

t

∫
R+

∫
R+

y21θ≤min(λ̂j,i,t,xu ,λ̂j,i,s,xu )dθν
j(dy)du

]
,

=

∫
R+

y2dνj(y)

∫ vnT

t

Et
[
min(λ̂j,i,t,xu , λ̂j,i,s,xu )

]
du,

≤ K
∫ vnT

t

Et
[
λ̂j,i,s,xu

]
du.

As shown in remark 5, λ̂
i,s,x

u has the same dynamics as a Hawkes process λ̃
i,s,x

u that satisfies -if we follow
the lines of the proof of Lemma 4.2- the SDE

dλ̃
i,s,x

u = −Bλ̃
i,s,x

u du+AdL̃
i,s,x

u (14)

whose solution yields

Et
[
λ̃
i,s,x

u

]
= e−V (u−t)λ̃

i,s,x

t ,
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where V = B −A diag(m1, · · · ,md) whose eigen-values ρ1, · · · , ρd are positive. Hence

Et
[
M̂ j,i,t,x
vnT

M̂ j,i,s,x
vnT

]
≤ K

[∫ vnT

t

e−V (u−t)λ̃
i,s,x

t du

]j
,

= K
[
V −1

(
Id − e−V (vnT−t)

)
λ̃
i,s,x

t

]j
.

By plugging this inequality in IT ’s expression we get

I1 ≤ K
∫
R+

∫ vmT

0

∫ t

0

x2E
[
λitλ

i
s

[
V −1

(
Id − e−V (vnT−t)

)
λ̃
i,s,x

t

]j]
dsdtνi(dx),

= K

∫
R+

∫ vmT

0

∫ t

0

x2
[
V −1

(
Id − e−V (vnT−t)

)
E
[
λitλ

i
sλ̃

i,s,x

t

]]j
dsdtνi(dx),

= K

∫
R+

∫ vmT

0

∫ t

0

x2
[
V −1

(
Id − e−V (vnT−t)

)
E
[
λisEs

[
λitλ̃

i,s,x

t

]]]j
dsdtνi(dx),

= K

∫
R+

∫ vmT

0

∫ t

0

x2
[
V −1

(
Id − e−V (vnT−t)

)
E
[
λisEs

[
λitλ̃

i,s,x

t

]]]j
dsdtνi(dx),

since λ̃
i,s,x

t starts at s, Es
[
λitλ̃

i,s,x

t

]
= Es

[
λit
]
E
[
λ̃
i,s,x

t

]
. By solving the expectation value of the SDE 14

with the initial condition E
[
λ̃
i,s,x

s

]
= A.ix we get

E
[
λ̃
i,s,x

t

]
= e−V (t−s)A.ix,

which yields after being plugged in the last inequality

IT ≤K
∫
R+

∫ vmT

0

∫ t

0

x2
[
V −1

(
Id − e−V (vnT−t)

)
e−V (t−s)A.ix

]j
E
[
λisEs

[
λit
]]

dsdtνi(dx),

≤K
∫
R+

∫ vmT

0

∫ t

0

x3
[
V −1

(
Id − e−V (vnT−t)

)
e−V (t−s)A.i

]j
E
[
λisλ

i
t

]
dsdtνi(dx).

By combining Cauchy-Schwarz’s inequality and Lemma 4.4 we have that

E
[
λisλ

i
t

]
≤ E

[
|λis|2

]1/2 E [|λit|2]1/2 ≤ K,
thus

IT ≤K
∫
R+

x3νi(dx)

∫ vmT

0

[
V −1

(
Id − e−V (vnT−t)

)∫ t

0

e−V (t−s)dsA.i

]j
dt,

≤K
∫
R+

x3νi(dx)

∫ vmT

0

[
V −1

(
Id − e−V (vnT−t)

)
V −1

(
Id − e−V t

)
A.i

]j
dt,

≤K
∫ vmT

0

[
V −2

(
Id − e−V (vnT−t)

) (
Id − e−V t

)
A.i

]j
dt, because V commutes with its exponential,

=K

∫ vmT

0

[
V −2

(
Id − e−V (vnT−t) − e−V t + e−V vnT

)
A.i

]j
dt,
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and since vmT ≤ vnT ,

IT ≤K
∫ vnT

0

‖Id‖op +
∥∥∥e−V (vnT−t)

∥∥∥
op

+
∥∥e−V t∥∥

op
+
∥∥e−V T∥∥

op
dt,

≤K
∫ vnT

0

1 + (1 + (vnT − t)d−1)e−(β−ρd)(vnT−t) + (1 + td−1)e−(β−ρd)t + (1 + vnT
d−1)e−(β−ρd)vnTdt,

≤KT.

Lemma 4.6. Set F T =
LT−diag(m1,··· ,md)

∫ T
0
λtdt√

T
and Y T =

LT−diag(m1,··· ,md)
∫ T
0

E[λt]dt√
T

. Then we have the

equality
Y T = JF T +RT , (15)

where
J =

(
Id − diag(m1, · · · ,md)B−1A

)−1
and

RT = diag(m1, · · · ,md)
(
B −A diag(m1, · · · ,md)

)−1 E[λT ]− λT√
T

.

Proof. By taking the expected value of SDE 12 we have the system dλt = B(µ− λt)dt+AdLt,

dE [λt] = B(µ− E[λt])dt+Adiag(m1, · · · ,md)E[λt]dt,

which yields after integrating with respect to time λT − µ = BµT −B
∫ T
0
λtdt+ALT ,

E [λT ]− µ = BµT −
(
B −A diag(m1, · · · ,md)

) ∫ T
0
E[λt]dt.

In order to involve the quantities of interest F T and Y T , we state the fact that diag(m1, · · · ,md) is invertible
(since ν1, · · · , νd are suppoted by R∗+), hence λT − µ = BµT −B diag(m1, · · · ,md)−1 diag(m1, · · · ,md)

∫ T
0
λtdt+AdLT ,

E [λT ]− µ = BµT −
(
B diag(m1, · · · ,md)−1 −A

)
diag(m1, · · · ,md)

∫ T
0
E[λt]dt,

which yields by adding and subtracting LT
λT − µ = BµT +B diag(m1, · · · ,md)−1

(√
TF T −LT

)
+AdLT ,

E [λT ]− µ = BµT +
(
B diag(m1, · · · ,md)−1 −A

) (√
TY T −LT

)
.

Subtracting the first equation from the second yields

E [λT ]− λT =
(
B diag(m1, · · · ,md)−1 −A

)√
TY T −B diag(m1, · · · ,md)−1

√
TF T ,

=
(
B −A diag(m1, · · · ,md)

)
diag(m1, · · · ,md)−1

√
TY T −B diag(m1, · · · ,md)−1

√
TF T .

Since
(
B − diag(m1, · · · ,md)A

)
is invertible, we have

(
B −A diag(m1, · · · ,md)

)−1 E [λT ]− λT√
T

= diag(m1, · · · ,md)−1Y T

−
(
B −A diag(m1, · · · ,md)

)−1
B diag(m1, · · · ,md)−1F T ,

= diag(m1, · · · ,md)−1Y T

−
(
diag(m1, · · · ,md)− diag(m1, · · · ,md)B−1A diag(m1, · · · ,md)

)−1
F T .
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Multiplying to the left by diag(m1, · · · ,md) we get

diag(m1, · · · ,md)
(
B −A diag(m1, · · · ,md)

)−1 E [λT ]− λT√
T

= Y T −
(
Id − diag(m1, · · · ,md)B−1A

)−1
F T .
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stein’s method and malliavin calculus. In Annales de l’IHP Probabilités et statistiques, volume 46,
pages 45–58, 2010.
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