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Abstract

Gaussian Embedding of Linked Documents (GELD) is a new method that embeds linked documents
(e.g., citation networks) onto a pretrained semantic space (e.g., a set of word embeddings). We formulate
the problem in such a way that we model each document as a Gaussian distribution in the word vector
space. We design a generative model that combines both words and links in a consistent way. Leveraging
the variance of a document allows us to model the uncertainty related to word and link generation. In most
cases, our method outperforms state-of-the-art methods when using our document vectors as features for
usual downstream tasks. In particular, GELD achieves better accuracy in classification and link predic-
tion on Cora and Dblp. In addition, we demonstrate qualitatively the convenience of several properties
of our method. We provide the implementation of GELD and the evaluation datasets to the community
(https://github.com/AntoineGourru/DNEmbedding).

1 Introduction
Linked documents are everywhere, from web pages to bibliographic networks (e.g., scientific articles with
citations) and social networks (e.g., tweets in a Follower-Followee network). The corpus structure provides
rich additional semantic information. For example, in Scientific articles, page limitation often leads to short
explanations that become clear if we read the linked papers (i.e., citations).

Many recent approaches propose to use low-dimensional document representation as a proxy for solving
downstream tasks Yang et al. [2015]. These methods learn the representations using both textual and network
information. They have many advantages: it accelerates the computation of similarities between documents
and it drastically reduces the storage space needed. Moreover, they can significantly improve accuracy in
information retrieval tasks, such as document classification Yang et al. [2015] and link prediction Bojchevski
and Günnemann [2018]. TADW is the first approach that embeds linked documents Yang et al. [2015].
Subsequent methods are mainly based on matrix factorization Brochier et al. [2019], Huang et al. [2017] and
deep architectures Liu et al. [2018], Tu et al. [2017], Kipf and Welling [2016].

Most of those techniques learn documents as points in the embedding space. However, considering a mea-
sure of dispersion around those vectors brings useful information, as shown on corpus with no link between
documents Nikolentzos et al. [2017]. In Graph2Gauss Bojchevski and Günnemann [2018], each document is
associated with a measure of uncertainty along with its vector representation. However, the objective func-
tion optimizes the uncertainty using the network information and it does not model the dispersion at the word
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Figure 1: A document is represented as a Gaussian distribution (here, the blue circles). The blue squares represent the
means. Words are in red. Doc2 and Doc3 are sharing words. In that case, Doc3 cites Doc2 but Doc2 may not cite Doc3.
Doc1 does not share any word with Doc3 and Doc2 and it does not cite them.

level. Additionnaly, variational methods such as Kipf and Welling [2016], Meng et al. [2019] introduce gaus-
sian posteriors, but the generative process uses the dot product between documents’ mean only to model the
adjacency and attribute matrix entries. Hence it is not clear what the uncertainty obtained from the variational
variance captures.

Finally, none of earlier methods represents both documents and words in the same semantic space, as
opposed to text-based methods such as Le and Mikolov [2014]. LDE Wang et al. [2016] and RLE Gourru
et al. [2020] both build a joint space for embedding words and linked documents. However, these approaches
do not take the uncertainty into account.

In this paper, we propose an original model that learns both a vector representation and a vector of un-
certainty for each document, named GELD for Gaussian Embedding of Linked Documents. The uncertainty
reveals both network and text variance. It will be higher if the document cites very different document sets
and if it uses semantically distant words. In addition, documents and words lie in the same space: one
can compute similarities between documents and words in this semantic space, enhance queries or describe
document clusters by using close words.

After a review of related works in Section 2, we present our model in Section 3. We show that our
representations outperform or match most of the recent methods in classification and link prediction on three
datasets (two citation networks and a corpus of news articles) in Section 4. Additionally, we provide semantic
insights on how to use the variance, and the shared latent space. We conclude and propose extensions of
GELD in Section 5.

2 Related Works
In this section, we present recent approaches for embedding documents organized in a network.

2.1 Document Embedding
Since Word2vec models from Mikolov et al. [2013], representation learning for text has focused attention as
it can improve many downstream tasks. Document embedding followed: many methods propose to represent
documents as vectors. For example, Le and Mikolov [2014] extends the word2vec formulation. More pre-
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cisely, the doc2vec models represent documents and words in the same space. One can therefore compute
similarities between words and documents.

In many real-life problems, documents are organized as a network: the corpus forms an attributed net-
work. Documents are nodes, citations are edges and the textual contents of the documents are the attributes.
In the next section, we present several methods that take this network information into account when learning
document representations.

2.2 Document Network Embedding
TADW is the first approach that embeds linked documents Yang et al. [2015]. It extends DeepWalk Per-
ozzi et al. [2014], originally developed for network embedding, by formulating the problem as a matrix tri-
factorization that includes the textual information. Subsequently, authors of GVNR-t Brochier et al. [2019]
propose to extend Glove Pennington et al. [2014] in a similar way. AANE Huang et al. [2017] applies
Laplacian Eigenmap to attributed network using Alternating Direction Method of Multipliers to accelerate
the learning phase. Recent works mainly use deep architectures: STNE Liu et al. [2018] adapts the seq2seq
architecture, CANE Tu et al. [2017] uses an attention mechanism.

These methods do not learn representations for both documents and words, as opposed to LDE Wang
et al. [2016] and RLE Gourru et al. [2020]. LDE uses an extended formulation of Mikolov et al. [2013].
Nevertheless, it requires labels associated with nodes, which makes it a supervised approach. RLE Gourru
et al. [2020] uses both text and network to build a vector that projects documents onto a pretrained word
embedding space.

All these methods learn a single vector by document. This assumption is limited as documents, especially
long ones, might be semantically rich. To this end, several methods propose to learn a vector of uncertainty
associated to the vector representation.

2.3 Gaussian Document Embedding
Variational methods such as VGAE Kipf and Welling [2016] and CAN Meng et al. [2019] approximate the
posterior of the latent variables (the document embedding) by gaussians. Nevertheless, the generative process
uses the dot product between posterior means (the latent variables) to model the adjacency and attribute
matrix entries. Hence, the variational variance is not an explicit measure of the document semantic and
neighborhood uncertainty. The only method that explicitly model uncertainty is Graph2Gauss Bojchevski
and Günnemann [2018]. A feed-forward neural network embeds the textual content and maps it to a mean
and a variance, following an optimization process based on energy-based learning. The negative Kullback-
Leibler divergence used as energy allows them to model the proximity between nodes. It should be higher
between connected nodes than unconnected nodes. Therefore, Graph2Gauss does not explicitly model the
semantic uncertainty of a document.

Another modeling assumption allows to learn documents as Gaussian Distributions. Documents are re-
garded as bag of word embeddings (see Figure 2), i.e. a multiset of vectors in the latent semantic space.
Starting from this assumption, Das et al. [2015] proposes a new way to extract topics from document sets.
Topics are Gaussian distributions that generate word vectors in a semantic space, and therefore a bag of
word embeddings for each document. In Nikolentzos et al. [2017], authors propose to model documents
as Gaussians that generate bag of word embeddings. With pretrained word embeddings, they show that the
optimal solutions for the means and variances are the empirical means and empirical variances of the vector
representations of documents’ words. Unfortunately, this solution does not hold with linked documents.

None of the above can, in the same time: i) represent documents and words in the same space, ii) learn a
measure of uncertainty associated to the document embedding. We therefore propose a novel method, GELD,
that has these properties.
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Cora Dblp Nyt
Train/Test ratio 10% 50% 10% 50% 10% 50%

DeepWalk 70.6 (2.0) 81.0 (0.7) 52.3 (0.4) 53.5 (0.2) 66.9 (0.7) 68.7 (0.9)
LSA 72.3 (1.9) 80.6 (0.7) 73.5 (0.2) 74.2 (0.2) 71.6 (1.0) 76.7 (0.7)

Concatenation 71.4 (2.1) 84.0 (1.1) 77.5 (0.2) 78.2(0.2) 77.9 (0.3) 81.1 (0.7)
TADW 81.9 (0.8) 87.4 (0.8) 74.8 (0.1) 75.5 (0.1) 75.8 (0.5) 79.4 (0.4)
AANE 79.8 (0.9) 84.4 (0.7) 73.3 (0.1) 74.2 (0.2) 71.7 (0.5) 76.9 (1.1)

GVNR-t 83.7 (1.2) 87.0 (0.8) 69.6 (0.1) 70.2 (0.2) 74.3 (0.4) 76.7 (0.6)
RLE 84.0 (1.3) 87.7 (0.6) 79.8(0.2) 81.2 (0.1) 77.7 (0.7) 80.0 (0.6)

VGAE 72.3 (1.7) 81.1 (0.7) Memory Overflow 68.1 (0.8) 70.1 (0.6)
G2G 79.0 (1.5) 84.8 (0.7) 70.8 (0.1) 71.5 (0.2) 69.0 (0.5) 71.5 (0.8)

STNE 79.4 (1.0) 86.7 (0.8) 73.8 (0.2) 74.5 (0.1) 75.1 (0.7) 78.1 (0.6)
GELD 84.3 (1.1) 88.3 (0.4) 81.63 (0.1) 82.3 (0.1) 78.5 (0.8) 81.2 (0.3)

Table 1: Comparison of Micro-F1 results on a classification task for different train/test ratios. We provide the standard
deviation in parentheses. GELD outperforms most recent methods on every dataset train/test ratio. On Dblp, it outper-
forms TADW by 7 points.

Figure 2: The bag of word embeddings of a document.

3 GELD: Gaussian Embedding of Linked Documents

3.1 Data and Notations
We consider a corpus of n linked documents and a vocabulary of size v. We also consider a fixed represen-
tation in Rr for each word of the vocabulary. We write uk ∈ Rr the vector representation of the k-th word
wk of the vocabulary, uk,r its r-th element. We note f the function that maps the word wk to its pretrained
representation f(wk) = uk ∈ Rr. The user can either learn the word embeddings on the studied corpus with
most recent methods Devlin et al. [2019], Mikolov et al. [2013] or use a pretrained set of word embeddings
built on a broader corpus1 to reduce the computation time.

Each document di is then associated with the bag of word embeddings Dw
i = {f(wi,1), f(wi,2), . . .}. In

our notations, wi,1 is the first word used in the document i.
Our aim is to learn document representations as Gaussian distributions. Each document has two param-

eters: a mean µi in Rr and a diagonal variance σ2
i I , with σ2

i ∈ Rr, that reveals the document uncertainty.
We can use the document mean as vector representation when it is needed, e.g., in classification tasks. We
note g the function that maps the document di to its mean g(di) = µi ∈ Rr. Using the network informa-
tion, we therefore have, for each document, a bag of document embeddings cited by the document di, noted
Dl

i = {g(di,1), g(di,2), . . .}, where di,1 is the first document cited by the document i.
We introduce two notations: ci,k the number of times the i-th document di uses the k-th word of the

vocabulary and ai,l the number of times it cites the l-th document of the corpus.

1e.g., https://fasttext.cc/
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By taking the union of these multisets, the corpus becomes n bags of vectors Di = Dw
i ∪ Dl

i:

Di = {f(wi,1), f(wi,2), . . . , g(di,1), g(di,2), . . .} (1)

whose j-th element is noted Di,j ∈ Rr.

3.2 Model and Optimization
Similarly to Das et al. [2015], Nikolentzos et al. [2017], we posit that the vectors in Di are independently
drawn from an isotropic Gaussian distribution, meaning that

Di,j ∼ N (µi, σ
2
i I) (2)

.
The Gaussian is parametrized by a mean and a diagonal variance characterizing the document embedding

and its uncertainty. The parameters to learn for each document are σ2
i ∈ Rr and µi ∈ Rr.

The log-likelihood of the proposed model is, with |Di| the cardinality of Di:

L(D;µ, σ2) =

n∑
i=1

|Di|∑
j

logN (Di,j ;µi, σ
2
i I) (3)

where D = {Di}ni=1, σ2 = {σ2
i }ni=1 and µ = {µi}ni=1.

We split this log-likelihood between the drawing regarding words (Lw) and documents (Ld).

L(D;µ, σ2) =

n∑
i=1

∑
f(w)∈Dw

i

logN (f(w);µi, σ
2
i I)

+

n∑
i=1

∑
g(d)∈Dl

i

logN (g(d);µi, σ
2
i I)

=

n∑
i=1

v∑
k=1

ci,k logN (uk;µi, σ
2
i I)︸ ︷︷ ︸

Lw

+

n∑
i=1

n∑
l=1

ai,l logN (µl;µi, σ
2
i I)︸ ︷︷ ︸

Ld

(4)

As citation and term frequencies are on different scales, we can observe imbalanced Lw and Ld. This
problem is frequent when modeling heterogeneous data using the same generative process Wang [2001]. We
therefore optimize an alternative weighted likelihood. By defining η ∈ [0, 1] denoting the importance given
to the network information, we write the alternative function to optimize:

L̃ = (1− η)Lw + ηLd (5)

Computing and annealing the gradient, we get the optimal solutions µ∗
i and (σ2

i,r)
∗:

µ∗
i =

η
∑

k
ci,kuk

σ2
i

+ (1− η)
∑

j
ai,jµj

σ2
i

+ (1− η)
∑

j
aj,iµj

σ2
j

η
∑

k
ci,k
σ2
i
+ (1− η)

∑
j

ai,j

σ2
i
+ (1− η)

∑
j

aj,i

σ2
j

(6)

5



Algorithm 1 GELD Algorithm
Input: D, U
Parameters: η, λ, k
Output: µ, σ2

1: for each: document i do
2: initialize µ0

i and (σ2
i )

0 according to Equation 9
3: end for
4: k=1
5: repeat
6: for each: document i do
7: compute µ

∗(k)
i and (σ2

i )
∗(k) using Eq. 6 and 7

8: update µ
(k)
i and (σ2

i )
(k) with Equation 8

9: end for
10: k = k + 1
11: until convergence
12: return µ, σ2

(σ2
i,r)

∗ =
η
∑

k ci,k(µi,r − uk,r)
2 + (1− η)

∑
j ai,j(µi,r − µj,r)

2

η
∑

k ci,k + (1− η)
∑

j ai,j
(7)

We maximize L̃ in each parameter and repeat the process until convergence. The optimization is iterative,
and each parameter update depends on current values of the other parameters. Because of this dependency,
we propose to adopt the Robbins-Monro method Robbins and Monro [1951] to prevent going too fast to a
mediocre local solution. It yields good results in our experiments. The updated value of parameter µi at
epoch k, given the optimal values at epoch k computed using Equation 6 we note µ

∗(k)
i , is:

µ
(k)
i = λ(k)µ

∗(k)
i + (1− λ(k))µ

(k−1)
i (8)

We update σ2
i similarly. We propose to use λ(k) = (δk)−γ , γ ≤ 1 as done in Barkan [2017] to ensure

convergence conditions. δ ∈ [0, 1] is the importance given to the optimal solution at the beginning of the
optimization. In our experiments, we obtain higher results with low values of δ. In other words, we do not
trust the first optimal solutions as the optimization is iterative.

The initial means and variances, noted by µ0
i and (σ2

i )
0, are the empirical means and variances computed

on the bag of word embedding only:

µ0
i =

1

|Dw
i |

∑
f(w)∈Dw

i

f(w)

(σ2
i,r)

0 =
1

|Dw
i |

∑
f(w)∈Dw

i

(f(w)r − µ0
i,r)

2
(9)
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Cora Dblp Nyt
% edges hidden 50% 25% 50% 25% 50% 25%

DeepWalk 73.2 (0.6) 80.9 (1.0) 89.7 (0.0) 93.2 (0.2) 88.1 (0.0) 88.1 (0.0)
LSA 87.4 (0.6) 87.2 (0.8) 54.2 (0.1) 54.8 (0.0) 54.9 (0.0) 54.9 (0.1)

Combination 77.9 (0.3) 83.7 (0.8) 88.8 (0.0) 92.6 (0.3) 88.2 (0.0) 88.3 (0.0)
TADW 90.1 (0.4) 93.3 (0.4) 61.2 (0.1) 65.0 (0.5) 88.5 (0.0) 88.5 (0.0)
AANE 83.1 (0.8) 86.6 (0.8) 67.4 (0.1) 66.5 (0.1) 58.9 (0.2) 61.2 (0.2)

GVNR-t 83.9 (0.9) 91.5 (1.1) 88.1 (0.3) 91.4 (0.1) 61.2 (0.2) 61.3 (0.3)
RLE 94.3 (0.2) 94.8 (0.2) 89.3 (0.1) 91.2 (0.2) 77.5 (0.3) 77.8 (0.2)

VGAE 87.1 (0.4) 88.2 (0.7) Memory Overflow 88.4 (0.0) 88.4 (0.0)
Graph2Gauss 92.0 (0.3) 93.8 (1.0) 88.0 (0.1) 92.1 (0.5) 88.3 (0.0) 88.2 (0.0)

STNE 83.1 (0.5) 90.0 (1.0) 45.6 (0.0) 53.4 (0.1) 88.4 (0.0) 88.4 (0.0)
GELD 95.3 (0.1) 95.8 (0.1) 92.6 (0.2) 94.7 (0.3) 88.3 (0.0) 88.3 (0.0)

Table 2: Comparison of mean AUC on a link prediction task for different percentages of edges hidden. We randomly
remove the edges and repeat this procedure 3 times. We provide the standard deviation in parentheses. GELD outperforms
most recent methods, up to 40 points for STNE on Dblp. On Nyt, it is comparable to TADW that achieves the best
performance.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
network reinforcement posterior pac genetic casebased ilp
networks rl bayesian schapire ga knowledge clause

neural barto gibbs error mutation reasoning kira
feedforward qlearning models queries gp experiences literals
multilayer multiagent model set search design relational

Table 3: Class descriptions on Cora. We show the top 5 words closest to the class centroids.

Title Variance Class
Collective Latent Dirichlet Allocation 545 3

Spatial Latent Dirichlet Allocation 605 1
Distributed Inference for Latent Dirichlet Allocation 590 1

Fast collapsed gibbs sampling for latent dirichlet allocation 513 3
Latent Dirichlet Co-Clustering. 398 3

A perceptual hashing algorithm using latent dirichlet allocation 604 2

Table 4: Six Nearest Neighbors in the embedding for the article ”Latent Dirichlet Allocation” by Blei et al., obtained on
Dblp. We provide the total variance summed by axes.
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Figure 3: Accuracy with 50% test/train ratio by embedding dimension for the four best methods on the classification task
on Dblp and Cora. NC stands for Naive Combination. GELD performs constantly better than competitors, even in low
dimension.
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4 Experiments

4.1 Datasets and Evaluation Tasks
We experiment on three datasets. Cora Tu et al. [2017] and Dblp Tang et al. [2008], Pan et al. [2016] are
two citation networks. Cora contains 2,211 abstracts of tagged scientific documents (7 classes) with 5,001
edges. Dblp has 60,744 documents titles (4 classes) and 52,914 edges between them. Additionally, we use
the Nyt dataset from Gourru et al. [2020] containing press articles from January 2007. It has 4 classes, 5,135
documents and 3,050,513 edges. For each dataset, we filter the vocabulary by withdrawing stop words with
the scikit-learn package2 and we remove common and rare words (i.e., words appearing less than 4 times
and in more than 25% of the documents). We obtain vocabulary size of 4,390 on Cora, 3,763 on Dblp and
6,407 for the Nyt dataset. Our method learns a mean and a variance for each document. In many real-world
scenarios, downstream tasks require a single vector representation for a document. We therefore evaluate
the relevance of using documents’ mean in standard evaluation tasks: classification in Section 4.3 and link
prediction in Section 4.4. We also provide qualitative insights on the variance possible use in Section 4.5.
Besides, we also demonstrate the benefit of embedding documents and words in the same space.

4.2 Parameters Tuning
We compare our approach to recent baselines. We use four matrix factorization-based approaches: TADW,
AANE, GVNR-t and RLE, and three deep neural network models: VGAE, Graph2Gauss and STNE. We
also compare our method to DeepWalk, that considers the network information only, LSA Deerwester et al.
[1990], that embeds the document with regard to the textual information, and a concatenation of embeddings
obtained with those two methods we call “Concatenation” as done by Yang et al. [2015]. We use all the
original implementations provided by the authors.

We use hyper parameters recommended by the authors, for those who use similar datasets, and grid-
search hyper-parameters using the document classification task otherwise. For TADW, we use λ = 0.2 Yang
et al. [2015] and dimension 200 for the reduced representation of documents’ content. For AANE, we use
optimal λ and ρ obtained via grid-search, as xmin for GVNR-t. For RLE we use λ = 0.7 and build the word
vectors as specified by the authors. For VGAE, we use the author architecture, and K = 1 for Graph2Gauss.
VGAE could not handle DBLP on our machine in reasonable time. For STNE, we determine depth using
grid-search. For DeepWalk, we perform 40 walks of length 40 by nodes, and we set the window size to 10.
We run all the experiments in parallel with 20 physical cores (Intel® Xeon® CPU E5-2640 v4 @ 2.40GHz)
and 96GB of RAM. We use r = 160 as embedding dimension for every method following Yang et al. [2015].

Similarly, we report the optimal parameters for GELD obtained via grid-search on the classification task:
δ = 0.1, γ = 0.2, η = 0.99 for Cora, η = 0.8 for Dblp and η = 0.95 for Nyt. To learn word vectors, we
adopt Skip-gram with negative sampling Mikolov et al. [2013] implemented in gensim3. We use window size
of 15 for Cora, 10 for Nyt, 5 for DBLP (depending on documents size), and 5 negative examples for both. It
only takes 46 seconds on Cora, 84 on DBLP and 42 on Nyt.

4.3 Classification Results
We adopt standard evaluation tasks following similar works Yang et al. [2015], Bojchevski and Günnemann
[2018]. We perform classification with a SVM classifier with L2 regularization. The optimal regularization
is fixed, for each method and dataset, using grid search. We run the algorithms 10 times and report the mean
Micro-F1 and standard deviation in Table 1.

2https://scikit-learn.org/
3https://radimrehurek.com/gensim/
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Our method outperforms every competitor on each dataset (Table 1). To the exception of VGAE, linked
document methods demonstrate higher accuracy than Deepwalk and LSA on Cora but they fail to outperform
the Combination on Dblp and Nyt. GELD performs consistently better, possibly due to the impact of the
variance during the learning phase: by inspecting Equation 6, we can see that the optimal value gives less
weight to documents with high variance (i.e. uncertain or too general documents). Interestingly, with optimal
L2 regularization, TADW yields better results than more recent baselines on every dataset with 50% train/test
ratio. Figure 3 presents results with 50% train/test ratio with different dimensions for the four best models.
GELD performs better in each dimension. TADW outperforms RLE in dimension 100, but adding dimension
seems to deteriorate the results until convergence.

4.4 Link Prediction Results
For the link prediction task, we hide a random set of edges to learn the representations. Then, a random set
of unconnected pairs of documents is drawn as negative examples. We compute cosine similarity between
pairs of documents in the hidden edge set and the negative example set. We then report Area Under the Curve
(AUC) in Table 2, obtained with 3 runs and different percentages of hidden edges.

GELD outperforms baselines on Cora and Dblp, but is beaten by TADW on Nyt (Table 2). Nevertheless,
every method except LSA, AANE and GVNR-t obtains AUC between 88.2 and 88.5, for %25 and %50
of edges hidden. This is due to the nature of the network: mean degree is around 500, i.e. 11% of the
network. Even with 50% of edge hidden, the network information is well represented. Furthermore, TADW
fails to produce good representations for link prediction on Dblp which is less dense while GELD performs
constantly for different network topologies.

4.5 Qualitative Insights
As stated earlier, GELD represents words and documents in the same space. To demonstrate the interest of
this property, we compute, for each annotated class of Cora, the average vector of document means µi inside
this class. We present the five closest words to these class centroids in Table 3. It is easy to grasp the class
content by looking at these descriptors. For example, Class 3 contains documents on Bayesian models and
Class 1 on neural networks.

In Table 4, we present the six closest documents to “Latent Dirichlet Allocation”, along with their variance
(the sum of each axis variance). The papers “A perceptual hashing algorithm using latent Dirichlet allocation”
and “Spatial Latent Dirichlet Allocation” both apply LDA to images. Therefore, they have a greater variance
as they must cite papers from different areas. Meanwhile, “Latent Dirichlet Co-clustering” is in the same
class than LDA, and it is more likely to cite documents from this class. Interestingly, papers with lower
variance are all in the same class than “Latent Dirichlet Allocation” (Class 3).

5 Conclusion
We presented Gaussian Embedding of Linked Documents (GELD), a generative model that represents a doc-
ument as a Gaussian Distribution in a word vector space. Learned through maximum likelihood estimation,
it outperforms existing methods on Cora and Dblp, and it matches baselines on a New York Times dataset.
Adding the variance during the learning phase seems to provide better vector representations since it gives
less importance to documents with high variance when updating parameters. In further studies, we will focus
on: 1) integrating the variance in downstream tasks, 2) developing a fully Bayesian version of our model to
add priors on mean and variance.
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