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Abstract
EXplainable Artificial Intelligence (XAI) has re-
cently become a very active domain, mainly due
to the extensive development of black-box mod-
els such as neural networks. Recent XAI objec-
tives have been defined in the state-of-the-art, for
which specific approaches have been proposed. Im-
plicit links can be found between XAI and other
domains, especially related to knowledge and neu-
ral networks. We here aim to highlight these im-
plicit links. We present a narrative review of re-
search works in two domains: (i) Knowledge do-
main with focus on Knowledge Discovery and Rep-
resentation, and (ii) Representation Learning. We
discuss the similarity and joining points between
these domains and XAI. We conclude that, in or-
der to make black-boxes more transparent, XAI ap-
proaches should be more inspired and take advan-
tage of past and recent works in Knowledge and
Representation Learning domains. Through this
paper, we offer an entry point to the domain of XAI
for both multidisciplinary researchers and special-
ists in AI, as well for AI knowledgeable users.

Keywords: XAI, Knowledge Discovery, Knowledge rep-
resentation, Representation learning, State representation
learning, Manifold representation learning, Multi-view rep-
resentation learning, Network representation learning

1 Introduction: XAI
During the last few years, eXplainable Artificial Intelli-
gence (XAI), has become a very active domain1 facing the
high development of black-box models, such as neural net-
works [Guidotti et al., 2018]. A new generation of XAI ap-
proaches have been proposed, for which several new concepts
and terms are specific to application domains, data types or
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1We remind that Artificial Intelligence models with explanation

goals have been questioned and investigated a long time ago such
as in [Shortliffe, 1974]. However, the term XAI has been recently
proposed.

modeling. Application domains of XAI are multiple: ma-
chine learning, robotics, multi-agent systems, computer vi-
sion, Knowledge Representation and Reasoning, etc.

[Barredo Arrieta et al., 2020] defined “Given an audi-
ence, an explainable Artificial Intelligence is the one that
produces details or reasons to make its functioning clear
or easy to understand”. Indeed, XAI aims to make Ar-
tificial Intelligence (AI) models more intelligible and ac-
cessible or to directly design explainable models and re-
sults [Buchanan and Shortliffe, 1984; Guidotti et al., 2018;
Barredo Arrieta et al., 2020]. When the first case arises, XAI
provides an explanation of the internal mechanisms and/or
the reasons behind the AI model behavior i.e. its function-
ing and performance: an explanation is thus an interface be-
tween the AI model to explain and the target audience [Gun-
ning, 2017]. We define an explanation as an information in
a semantically complete format, which is self-sufficient and
chosen according to the target audience regarding its knowl-
edge, its expectations and the context. Hence, the purpose
of an explanation is to clarify the cause, context and con-
sequences of described facts through a set of statements or
information [Van Fraassen, 1988].

It is important to underline that an explanation by its very
nature is contextual: it is specific to a given target audience
and also to a given context [Walton, 2004]. This makes XAI
more challenging as automatic context understanding is still
a very challenging task [Brézillon, 1999; Lim et al., 2009;
Augusto et al., 2017; Hollister et al., 2017] and no unified
way for modelling context in intelligent environments has yet
been proposed in the literature [Brenon et al., 2018]. We em-
phasize that the context (i.e users context, goal context, etc.)
is important to take into account in XAI. However, this point
is not the focus of the paper.

In the state-of-the-art, an explanation can take different for-
mats (e.g. visual, natural language, features relevance ex-
planations, etc.) and combine several representations of the
same information [Barredo Arrieta et al., 2020]. Two main
XAI techniques are proposed: (i) Ante-hoc techniques which
consist in optimizing an already transparent AI model (e.g.
linear regression, decision trees, etc.) by adding constraints
or features in order to increase transparency through met-
rics, data visualisation, etc. (ii) Post-hoc techniques that
aim to explain already built black-box AI models (mainly
deep neural networks). Among famous Post-hoc techniques:



LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
2017], visual explanations, saliency mapping, etc. XAI has
recently been covered by several reviews that reveal its com-
plex and intrinsically multidisciplinary aspects from a tech-
nical, user or Human-Interaction viewpoint [Guidotti et al.,
2018; Gilpin et al., 2018; Barredo Arrieta et al., 2020; Vilone
and Longo, 2020]. As examples, we can note technical-
based reviews, as those related to reinforcement learning
[Puiutta and Veith, 2020; Heuillet et al., 2021], data-based
reviews as those related to time series [Schlegel et al., 2019;
Rojat et al., 2021] and application-based reviews related to
healthcare [Adadi and Berrada, 2020] and banking [Burgt,
2020]. Other reviews are inspired by social science, human
psychology, sociology or cognitive sciences [Miller, 2019;
Capone and Bertolaso, 2020] in order to build ethical and fair
models [Barredo Arrieta et al., 2020].

One key issue that have not been discussed in the above
cited reviews and that we would like to highlight, is the im-
portance of knowledge in XAI. As an interface between an AI
and a target audience, an explanation can be considered as an
interpreter between the AI knowledge and the human target
audience knowledge. Since knowledge domain is historical
in AI, this raises in turn important questions about the impact
of domains such as Knowledge Discovery and Representa-
tion on XAI. Furthermore, regarding black-box models and
especially neural networks, it is important to mention that in
recent papers, concepts like representation learning, knowl-
edge/latent/hidden/abstract representation, latent space, etc.
have been studied in order to tackle issues such as dimen-
sionality, running time, algorithmic complexity, etc. How-
ever, to the best of our knowledge, no explicit relation has
been defined between these concepts and XAI. We consider
that as these concepts are increasingly recurrent in the litera-
ture, with no consensual definitions across fields, it becomes,
in turn, more difficult to apprehend the XAI domain.

To address this issue, we propose a narrative review that,
contrary to the above cited literature reviews, does not re-
view XAI techniques. Our paper is a narrative review across
several domains: a literature-based review that synthesizes
technical research works related to domains that implicitly
inspire XAI works. Our goal is to bring original insights, for-
mulate new research questions and highlight promising future
directions of XAI. More precisely, in this narrative review, we
aim to address three questions. First, to centralize and clar-
ify concepts recurrently used in AI domains but not always
clear for XAI specialists. Second, to bring a new light to XAI
by making explicit the links between XAI and two other do-
mains: (i) Knowledge domain including Knowledge Discov-
ery Process (KDP) and Knowledge Representation (KR), and
(ii) Representation Learning (RL) more associated to deep
learning domain. Third, to offer an entry point to the XAI
domain for multidisciplinary or specialists in these domains.

Actually, these domains are often perceived as discon-
nected as most of the research is currently concentrated on
only one of them [Sallinger et al., 2020]. Despite this, we be-
lieve that it is important to enhance the links and the implicit
relations that can be found between them. We thus consider
that XAI has been indirectly inspired by these domains.

Figure 1 shows our vision as a schematic representation of

XAI domain and both KDP, KR and RL domains. Table 1 lists
the acronyms used. The paper is organized as follows: defi-
nitions are presented in section 2, KDP and KR in section 3,
and RL in section 4. At the end of both last sections, we
discuss the relation between the highlighted points, related
to KDP, KR, RL and XAI. Finally, in section 5, we discuss
future directions and perspectives related to XAI.

Figure 1: A schematic representation of XAI and its positioning at
the crossroads of other domains.

Acronym Research domain
XAI eXplainable Artificial Intelligence
KDP Knowledge Discovery process
KR Knowledge Representation
RL Representation Learning
SRL State Representation Learning

Table 1: Acronyms of research domains discussed in this paper.

2 Definitions
This section is dedicated to the definition of several concepts
related to Knowledge and Representation learning domains.
Several definitions are inspired from state-of-the-art works.

Definition 2.1 The raw material that represents the input
of an algorithm is called data. Data can be noisy, par-
tial/complete, un/structured and of different types [Grazzini
and Pantisano, 2015; Malhotra and Nair, 2015].

Definition 2.2 A data set is a collection of data that describes
real-word objects (such as cars, documents, animal, etc.)
through multiple properties called features [Bishop, 2006].

Definition 2.3 Once data is analyzed and correlated, it rep-
resents information. Information can be reproduced from
data and its importance depends on the context it is generated
from/for [Grazzini and Pantisano, 2015; Malhotra and Nair,
2015].

Definition 2.4 Knowledge is a set of information that is as-
sessed by a human, i.e. human adds a value and semantics
according to his/her own background and context [Grazzini
and Pantisano, 2015; Malhotra and Nair, 2015].

Definition 2.5 In the data mining domain, a “pattern is an
expression in some language describing a subset of the data
or a model applicable to the subset” [Fayyad et al., 1996].
Hence, Pattern extraction designates the process of finding
structures in data, fitting a model to data, or finding a high-
level description of a data set.



Many data modeling approaches have been proposed in the
state-of-the-art. We can cite reinforcement learning, graph-
based approaches, neural networks, etc. We now define some
important concepts related to these approaches.

Definition 2.6 Reinforcement learning is an approach in
which an intelligent agent interacts with its environment
through trial-and-errors actions in order to reach a goal. Each
action leads to a modification of the state of the agent and the
environment and the increase or decrease of a cumulative re-
ward value. Actions are chosen according to a strategy that
is called a policy [Barto and Sutton, 1995].

Definition 2.7 A Manifold is a topological structure of n-
dimensions. For example, a one-dimensional manifold is
a curve, a two-dimensional manifold is a surface, a three-
dimensional manifold is a sphere.

Definition 2.8 A network is a collection of discrete objects
called nodes, which are connected through links: it can be
viewed as a graph with vertices and edges, both with at-
tributes/weights or not [Fletcher et al., 1991].

Definition 2.9 Neural networks are machine learning mod-
els with several architectures, that are usually structured by
one or several layers (input, hidden and output). Each layer
is composed of one or several computational units called ar-
tificial neurons - conceptually derived from biological neu-
rons [McCulloch and Pitts, 1943; Abraham, 2005]. Compu-
tational units can also be a Long Short Term Memory (well
known also as LSTM) [Hochreiter and Schmidhuber, 1997]
or Gated recurrent units [Cho et al., 2014]. A deep neu-
ral network have many hidden layers, units, and edges with
weights. Units of layer n can be all or partially connected to
units of layer n+1. Due to this inner complexity, deep neural
networks are a typical example of black-boxes.

Definition 2.10 In neural networks, an activation pattern
refers to units activation values of one of the layers. An acti-
vation pattern is a numerical vector of the size of the layer it
is associated with. A hidden pattern refers to the activation
pattern of a hidden layer.

In the literature of neural networks, concepts like latent
space and latent representation have been developed and
widely used. However, to the best of our knowledge, no
complete definitions have been clearly proposed for such con-
cepts. Due to the importance of both concepts in the rest of
this paper, we choose to formulate their definition next.

Definition 2.11 Latent space refers to the abstract multi-
dimensional space associated to each layer of a neural net-
work where the representation of the learned data is implicitly
built. Latent space contains the meaningful internal features
(definition 2.2) representations of learned data, which makes
it not directly interpretable. In a deep neural network (defini-
tion 2.9), each hidden layer, whether it has the same number
of units or not, has its own latent space. It is thus possible
to extract several implicit representations from this network.
The latent space can be used to achieve a data dimensional-
ity reduction, when the hidden layer is smaller than the in-
put layer. This is the case for example with autoencoders
and variational autoencoders [Kingma and Welling, 2014],

models that can reduce high-dimensional inputs into efficient
and representative low-dimensional representations [Roberts
et al., 2018b].

Definition 2.12 Latent or hidden representation refers to
the data representation implicitly encoded by a neural net-
work during the learning task and thus is hidden-layer-
dependant [Bengio et al., 2013]. It is a machine-readable
data representation that contains features of the original data
that have been learned by associated hidden layer. One key
property of latent space (definition 2.11) is that real-world
objects (definition 2.2) that are semantically close (e.g. cars
of different brands), will end up grouped together in one la-
tent space: their respective hidden representation in the corre-
sponding layer, will be close to each other compared to other
objects that are not semantically close (e.g. cats) [Roberts et
al., 2018a]. Thus, a latent representation is useful for pattern
analysis (definition 2.5) and for similarity detection between
objects (definition 2.2) using clustering methods.

3 Knowledge: discovery and representation
We now present two active research domains: KDP (sec-
tion 3.1) and KR (section 3.2). Then, we discuss the relation
between them and XAI in section 3.3.

3.1 Knowledge Discovery Process (KDP)
KDP is a human-centered domain that seeks useful knowl-
edge (definition 2.4) through an iterative and interactive pro-
cess that involves humans [Lenca, 2002; Cios et al., 2007].
As the domains KDP, data mining, and Knowledge Discov-
ery in Databases (referred to as KDD) are often used in a
confused way, we consider that it is important to present a
clarification about them, as follows:

• According to [Cios et al., 2007], KDP and KDD des-
ignate the same process. However, KDP can be gen-
eralized to non-databases sources of data, while KDD
emphasizes databases as a primary source of data.

• KDP and data mining are related to each other as well as
to other domains like machine learning and statistics, but
are clearly distinct. Indeed, according to [Fayyad et al.,
1996] and [Cios et al., 2007], KDP is the global process
of discovering useful knowledge from data, whereas
data mining is a particular step within the KDP process
that consists in applying algorithms to extract patterns
(definition 2.5) or to build a model that fits the data.

There is no consensus about the steps of a KDP: nine steps
in [Fayyad et al., 1996], eight steps in [Anand and Büchner,
1998], six steps in [Wirth, 2000; Cios et al., 2007] and five
steps in [Cabena et al., 1998]. However, we emphasize that
globally KDP consists of three common main steps:

1. A pre-processing step for data collection or generation,
data preparation, cleaning, curing, etc.

2. A data processing step where several techniques from
statistics/machine learning/data mining, etc. communi-
ties can be used.

3. A post-processing step for visualisation, evaluation and
validation.



At each step, the extracted information (definition 2.3) is
usually evaluated by the human, given the context, to form
knowledge2 (definition 2.4). Thus, the target audience of
the KDP is the human: application domain experts and de-
cision makers. In addition, it is important to underline that
two mains goals of KDP are usually defined [Fayyad et al.,
1996]: (i) verification of a user hypothesis, and (ii) discov-
ery of valid and useful new knowledge that is understandable
with respect to the data (definition 2.1) from which it is de-
rived. These goals are thoroughly discussed in section 3.3.

3.2 Knowledge Representation (KR)
KR is a crucial question in AI [Malhotra and Nair, 2015].
Also known as “Knowledge Representation and Reasoning”,
KR aims at finding ways to efficiently structure specific do-
main knowledge for automated reasoning. In this way, in-
telligent machines can learn, draw inferences, make decision
and answer questions related to this knowledge [Davis et al.,
1993; Shapiro, 2006; Davis, 2015]. Thus, seen in such a way,
KR can be considered as a machine-oriented domain. The
purpose of KR is neither about storing data, nor making ac-
tions but it is about allowing “thinking by reasoning” [Davis
et al., 1993]. Consequently, KR has been a key component
for the conception of intelligent knowledge-based systems.

KR is also, according to [Malhotra and Nair, 2015], closely
related to the Knowledge retrieval in the shape of ontolo-
gies (concepts for representing, storing and accessing knowl-
edge [Guarino et al., 2009]). KR techniques have also been
widely developed and applied to semantic web [Hagedorn et
al., 2020], semantic networks [Malhotra and Nair, 2015], text
interpretation and cognitive robotics [Davis, 2015]. In addi-
tion, from a user viewpoint, KR is important during the de-
velopment of software systems in order to perform particular
tasks, as well as for broader community of cognitive science
whose goal is to constitute and organize knowledge from hu-
mans and machine perspectives [Das, 2003].

Knowledge Representation Learning (KRL)
KRL is the process of making AI algorithms model and

learn a structured representation of domain-specific knowl-
edge. As a consequence, concepts, relations between
them and their representations can be encoded in a low-
dimensional semantic space [Lin et al., 2018]. For exam-
ple, when knowledge is represented as a graph, the KRL pro-
cess allows graph embedding and preserves semantic simi-
larities [Xie et al., 2018]. Notice that the development of
deep learning algorithms and their performance on distributed
representations (i.e. representations that describe features of
the same data across layers) that reduce the computational
complexity has contributed to the emergence of several KRL
applications such as recommendation system [Zhang et al.,
2016], language modeling [Ahn et al., 2016] and question
answering [Yin et al., 2016]. We consider that KR has re-
cently become a more central domain in AI, and by extension
in XAI. This is mainly due to the development of Represen-
tation Learning in neural networks (introduced in section 4).

2Notice that recent approaches like AutoML tend to perform all
these steps automatically without user intervention [He et al., 2021]

3.3 Discussion: relation between KDP, KR and
XAI

We now discuss and highlight several links and common
points between KDP, KR and XAI. As mentioned in sec-
tions 3.1 and 3.2, KDP is a human-centered domain, whereas
KR is a machine-oriented domain. However, both domains
are complementary: in KDP, the main question is “How to
efficiently discover new or retrieve existing knowledge?”,
whereas in KR the tackled question is “How to represent the
knowledge efficiently to be able to reason on it?”.

It is important to highlight that both KDP and KR ques-
tions are also addressed and are crucial in XAI. Recall that the
objective of XAI is to make the reasons behind AI behavior
simple and accessible to a target audience regarding a given
task and context. We consider that this XAI objective can be
viewed and divided into two sub-objectives: (i) to discover
the reasons behind AI behavior - which is the same as in a
KDP problem -, (ii) to represent these reasons in a way that is
intelligible for the human target audience, but also sometimes
for an artificial one - which is the same as for a KR problem.

Let us first detail the links between KDP and XAI. In XAI,
for black-boxes like deep neural networks [Guidotti et al.,
2018; Gilpin et al., 2018], technical approaches are used to
search the behavior of AI and make it explainable by provid-
ing an explanation that can take several forms and be multi-
modal [Barredo Arrieta et al., 2020]. Explaining an AI model
is therefore very inspired by KDP. The particular point is that
in XAI, the input data (definition 2.1) is related to the black-
box AI model. This input data can be of several types, e.g. ac-
tivation patterns of hidden layers (definition 2.10), features or
representations, and require the same techniques as in KDP.

Figure 2 represents a schematic representation of the trans-
formation of data into knowledge, in KDP and XAI domains.
It clarifies the similarities between both domains regarding
the human intervention, and the role of the technical part, i.e.
data mining and explainable methods.

Let us now go into deep details about knowledge repre-
sentation in XAI. Two cases can be highlighted according to
target audience: (i) human who uses the knowledge represen-
tation to reason and understand the situation, e.g. the decision
maker and the application domain expert, depending on their
expertise, role and goals, (ii) another AI system for which the
input data is provided from a complex AI architecture.

Let us take an example in the domain of computer vision
and especially classification using deep neural networks. Re-
searchers have proposed approaches that exploit different AI
algorithms and their latent representation (definition 2.12) as
an input to the neural networks. The objective of such ap-
proaches is to perform both classification and explainability
tasks through saliency masks applied to images and text gen-
eration [LeCun et al., 2015]. This is one strategy among mul-
tiple others for the representation of knowledge in order to fa-
vor the explainability of the behavior of the initial AI model.

In addition, notice that KRL has been basically associated
with deep learning algorithms, especially with techniques like
graph representation learning [Hamilton, 2020] and concept
learning [Dolgikh, 2018], which are both studied in the XAI
domain [Xu et al., 2018; Fazi, 2020].



Finally, it is important to highlight the importance of the
target audience in both KDP/KR and XAI domains. Actu-
ally, the role of the target audience is decisive: knowledge
is usually retrieved and shaped in order to answer a question
of a target audience related to a given task and context such
as verifying an hypothesis, inference and decision making.
Knowledge representation and content in both KDP/KR and
XAI domains are thus target and context dependant.

As a conclusion, XAI is closely related to both KDP and
KR, and future works in XAI should take advantage of recent
works in both domains, as well as older works.

Figure 2: Two schematic ways for data transformation into knowl-
edge: On the left, within a Knowledge Discovery process, and on
the right within a XAI process.

4 Representation Learning (RL)
We now present the RL domain, its importance in deep neural
networks, and RL sub-domains that are recurrent and popular.

4.1 RL introduction and definition
RL has been discussed as a key challenge related to different
machine learning domains [Dietterich et al., 2008] especially
to neural networks. As first demonstrated by [Rumelhart et
al., 1986], in neural networks, back-propagation algorithms
can generate useful internal representations of data in hidden
layers. Since then, different approaches have been proposed
in order to learn, analyze and visualize latent data represen-
tations [Gilpin et al., 2018; Guidotti et al., 2018]. Thus, RL
has become an active research domain for which the objective
is to study of latent representations in order to improve deep
neural network efficiency [Bengio et al., 2013].

RL - and synonyms like Data RL or Feature Learn-
ing [Zhong et al., 2016] - focuses on “learning representa-
tions of the data that make it easier to extract useful informa-
tion when building classifiers or other predictors” [Bengio et
al., 2013]. In other words, RL is designed to learn abstract
features that characterize data [Lesort et al., 2018].

RL algorithms can be classified into two categories: global
and local RL algorithms. While the first ones tend to pre-

serve the data global information in the learned feature space,
the second ones focus more on preserving local similarity be-
tween data during learning the new representations [Zhong
et al., 2016]. Representations are not task-specific but are
useful to machine learning algorithms to solve tasks, as well
as to humans to comprehend the behavior of these last algo-
rithms [Bengio et al., 2013]. One of the reasons that makes
RL popular is that representations express priors about the
data. The expressed priors can vary within a single learning
algorithm. Consequently, the characteristic of the priors vari-
ations leads to different RL approaches, that we classify into
two categories: problems-oriented RL and data-oriented RL.

In the following section, we first present the concept of hi-
erarchical representation in deep neural networks, a key prop-
erty of RL. Then we present examples of particular cases of
RL that are problems-oriented and data-oriented.

4.2 Hierarchical representations in deep neural
networks

One key property of the RL domain in deep neural networks
is the ability to provide both high level features and low level
features for the same learned data. Recall that a deep neu-
ral network will encode a latent representation at each hidden
layer (definitions 2.9, 2.12). Since the layer n units can be
all or partially connected to the layer n + 1 units, each layer
uses the previous layer as input. If the previous layer is a
hidden layer, then the input is already a latent representation,
i.e. an abstract feature representation that characterizes the
data. Thus, each layer extracts an abstract feature representa-
tion of the previous layer. As a result, a deep neural network
learns multiple levels of abstraction and implicitly encodes a
hierarchy of latent and abstract representations that are
built progressively, layer by layer. The layers that are close
to the input layer will encode a low-level feature representa-
tion, whereas those deeper inside the architecture will encode
a high level feature representation. In other words, the closer
the considered layer is to the output layer, the more the repre-
sentation is abstract [Bengio et al., 2013; Zhong et al., 2016;
Lesort et al., 2018], as represented in Figure 3.

Figure 3: Illustrative and schematic representation of the position of
a low level representation and a high level representation in a deep
neural network. hx refers to the xth hidden layer in the network.

It has also been shown that, in deep learning algorithms,
hidden representations tend to keep dominant information
and propagate them across hidden layers, regardless the width



or depth increase of the deep neural networks [Nguyen et al.,
2021]. This characteristic of RL is also a key one for XAI:
by extracting and comparing the low-level and the high-level
representations of a deep architecture, we consider that it is
possible to explicit the inner mechanism of the architecture by
observing the differences between the representations. This
will be discussed further in section 5.

4.3 Problems-oriented RL approaches
Recall that the objective of RL algorithms is to learn ab-
stract features that characterize data. This objective can be
challenging according the issues that one could face such as
high dimensionnality of data or RL application to another AI
paradigm like reinforcement learning (definition 2.6). In the
following sub-sections, we describe two RL sub-domains:
Manifold RL and State RL, that have recently shown great
performances in deep learning and that deal with our core
questions. The links with XAI are also briefly discussed.

Manifold RL
Manifold RL is particularly suited for dealing with high-
dimensional data sets that are very difficult to visualize and
less intuitive. However, within such data sets, data can lo-
cally belong to a subset that can be represented by a man-
ifold. As stated in definition 2.7, a manifold is a topo-
logical structure of n-dimensions. Thus, Manifold RL cor-
responds to the learning of complex data representation in
several dimensions while preserving the topological prop-
erties of the considered manifold. We consider Manifold
RL as a non-linear dimensionality reduction approach, that
can help to discover similarities in data for which dimen-
sions have been reduced [Cayton, 2005; Bengio, 2009; Zhang
et al., 2011]. The Manifold RL domain aims at discov-
ering manifold structure hidden in high dimensional data.
It seeks to discover the intrinsic structure of a given man-
ifold. Notice that when many manifolds are considered,
we refer to this as multi-manifold RL [Lee et al., 2016;
Torki et al., 2010]. It allows to both preserve the local geo-
metric structure within distinct manifolds while ensuring the
discriminability between them [Wu et al., 2020].

When more neural networks transparency is required, the
visualisation of latent representations is essential: it allows
to develop an intuition about the distance between subsets
of data represented by their associated latent manifold rep-
resentations. Consequently, we consider that this dimension-
reduction characteristic is therefore of great practical interest
for XAI. Indeed, reducing the complexity due to the high di-
mensions can strongly contribute in understanding the inner
mechanisms of models exploiting the data, but also the role
of the data subsets on the models behaviors.

State RL (SRL)
In addition, RL can also concern domains where data are in a
low dimensional space. SRL is “is a particular type of rep-
resentation learning that aims at building a low-dimensional
and meaningful representation of a state space, by processing
high-dimensional raw observation data (e.g., learn a position
(x, y) from raw image pixels).” [Heuillet et al., 2021]. This
domain is thus particularly suited for learning features in re-
inforcement learning, robotics and control scenarios. Thus,

learning in SRL for an artificial agent is rather related to
building a latent model of the environment and the task to per-
form through interactions [Lesort et al., 2018]. In addition, it
has been shown that SRL provides three main advantages for
several research domains [Heuillet et al., 2021]:

• The learned features are of low dimensions which im-
proves speed and generalization of deep learning mod-
els [Lesort et al., 2017].

• SRL helps improving performance in some reinforce-
ment learning steps such as policy learning [Heuillet et
al., 2021].

• Learning representations of states (definition 2.6), ac-
tions or policies provide meaning to explain a reinforce-
ment learning algorithms. Indeed, SRL allows to learn
representations that capture the variation in the environ-
ment generated by the action of the agent [Lesort et al.,
2017; Heuillet et al., 2021].

It has been shown that SRL is particularly suitable to
make the behavior of an artificial agent and the reasons of
this behavior accessible for humans [Lesort et al., 2017;
Lesort et al., 2018; Heuillet et al., 2021]. Consequently, we
can consider SRL as an example of domains used for expla-
nation goals in reinforcement learning.

4.4 Data-oriented RL approaches
In RL, several approaches tackle the problem of increasing
data volumes, their heterogeneity and the multiplicity of their
sources. We can consider them as data-oriented approaches
and present two of them: the Multi-view RL and the Network
RL. We also highlight the link between RL applied to real-
world data-oriented problems and XAI domain.

Multi-view RL
In real-world applications, each object can be described by
multiple features (definition 2.2) [Xu et al., 2013]. It is
thus referred as Multi-view data. These features, also re-
ferred to as views, constitute complementary and diverse
information of the same data [Xu et al., 2018]. For ex-
ample, one information can be obtained through multiple
sources, which is the case in the application where differ-
ent people are talking about the same thing. Another ex-
ample can be an image that is described via a set of visual
features such as color, shape and textures. Multi-view RL
is thus concerned with the problem of the integration of in-
formation from multiple views and uncovers the latent struc-
ture shared by multiple views, while preserving the origi-
nal information and the global meaning [Zhu et al., 2014;
Xu et al., 2018]. It has been shown that Multi-view RL can
facilitate extracting useful information when developing pre-
diction models [Li et al., 2018] and also helps encoding con-
cepts and semantics in deep neural network [Xu et al., 2018].
Recently, Multi-view RL has been used to design an explain-
able recommendation system [Gao et al., 2019], where au-
thors claim that “it is difficult to model the relationships be-
tween high-level and low-level features since they have over-
lapping meaning”. To overcome this issue, a Multi-view
learning approach has been proposed by considering different



levels of features as different views. The learned representa-
tion can then be a representation of different levels of features
of the input data. Accordingly, we consider that Multi-view
RL can be employed for explainability tasks.

Network RL
Network RL is a learning paradigm proposed to analyze net-
works such as graphs, and thus allows users to deeply un-
derstand the hidden features of graphs [Sun et al., 2020].
This domain aims at learning in a low-dimensional space of
network vertices (definition 2.8), while preserving the struc-
ture of the network topology, the content of the vertices and
other information as vertices attributes and links attributes.
Network RL can be considered as a dimensionality reduc-
tion technique and an intermediate step to solve a target
task [Zhang et al., 2020]. Since the information of the orig-
inal network is preserved in a new vector-based representa-
tion, conventional vector-based machine learning algorithms
can be applied. Thus, Network analysis and mining tasks be-
come easier as there is no more need to use complex algo-
rithms directly designed for graphs.

Consequently, Network RL has multiple applications such
as: vertex classification, link prediction, clustering, visualiza-
tion and recommendations [Dong et al., 2020; Zhang et al.,
2020]. Network RL approaches have been widely applied to
information networks [Sun et al., 2020; Zhang et al., 2020]
and are becoming increasingly popular for capturing complex
relationships in various real-world applications [Yang et al.,
2015; Sun et al., 2020; Zhang et al., 2020], such as social net-
works, citation networks, telecommunication networks, bio-
logical networks, recommender systems, etc.

In addition, Network RL is essential in the study of het-
erogeneous information networks (i.e. where vertices are of
different types), in order to capture semantic proximity be-
tween vertices representations [Dong et al., 2020]. Given the
high scale of some networks that can range from hundred to
billions of vertices and the heterogeneity of information, we
believe that Network RL and XAI should be considered to-
gether in order to perform efficient and explainable analytical
tasks. Also, in related applications, an in depth analysis using
XAI techniques and Network RL can help interpreting em-
pirical results and providing a deep understanding of the ap-
plied black-box model. To conclude, Network RL should be
considered as a dimensionality reduction technique whenever
graph-data structure is involved in the design of XAI.

4.5 Discussion: relation between RL and XAI
We have presented several research works in RL (Manifold
RL, State RL, Multi-view RL and Network RL) and we next
highlight common points between RL and XAI.

First, let us discuss the contribution of the hierarchical
RL on XAI modeling. Recall that while RL focuses on learn-
ing a data representation in order to get a better performance
of the AI model [Bengio et al., 2013], XAI is interested in
exploring this representation to explain the performance and
behavior of the model. This representation varies according
to the techniques used in the involved AI models (e.g. an ar-
tificial agent or a neural network). In the case of deep neural
networks models, the hierarchical level of representations is

important for XAI, as it allows to extract different types of
information that can be used in several ways:

• The study of low-level representations can help to detect
important features used by the deep network to make a
prediction. This contributes to the explanation and un-
derstanding of the deep network by determining features
involved in a particular output (i.e. a prediction).

• The study of high-level representations can help to de-
tect groups of features involved in a prediction, and how
and where a deep neural architecture deals with these
groups. This is interesting to explain relevant hidden in-
formation and their location within the architecture.

For example, a hierarchical multi-scale deep recurrent net-
work approach has been proposed for data sequences [Chung
et al., 2016]: in order to discover temporal dependencies in
data, the latent hierarchical structure in the sequences has
been exploited without using explicit boundary information.
Accordingly, we consider that the hierarchical structure of the
latent representations is an important characteristic of deep
networks in order to propose a model-specific XAI modeling.

Second, we focus now on the contribution of problems-
oriented and data-oriented RL approaches discussed above
on the explainability of AI models.

• Recall that for high-dimensional data sets, Manifold
RL allows to perform dimension reduction in the latent
space while preserving the distance or similarities be-
tween data. Consequently, one of the main advantages
is that visualisation of the data representation inside the
latent space allows to get a better intuition and under-
standing of the inner mechanisms of models.

• Recall that in reinforcement learning, SRL allows to ex-
plicit the agent state changes while performing a task in
a given environment. This is similar to the XAI objective
as it makes the behavior of an artificial agent explicit and
more intelligible for a given target audience. Also, re-
cent works have mentioned that State RL can be viewed
as a mean for XAI in reinforcement learning [Heuillet
et al., 2021]. Other works describe State RL as an ap-
proach for robotics and control scenarios that provides
easier interpretation of the variation in the environment
[Lesort et al., 2017]. Consequently, we can consider that
the goals of SRL are in line with those of XAI.

• Through the presentation of Multi-view RL and Net-
work RL in section 4.4, we have shown that real-world
applications of RL techniques that can be more specific
to a particular data type or data organisation, are also
linked to XAI. Indeed, an AI model can learn from mul-
tiple data sets of complex data representation such as
networks (e.g. social network modeling, biological net-
works). The complexity of the learned data can also im-
pact the behavior of the AI model. Consequently, this
allows us to conclude that adopting RL approaches that
take into account the type of learned data, is a way to
make AI models more explicit and explainable.

Figure 4 summarizes the above conclusions and questions
tackled throughout the section 4. Table 2 summarizes RL
domains and some examples of application domains.



Figure 4: Questions addressed throughout the paper in section 4.
Associated reference to each example: (i) [Madumal et al., 2020],
(ii) [Torki et al., 2010], (iii) [Gao et al., 2019], (iv) [Qi et al., 2020]

Approach Non-exhaustive examples of application domain

RL
Speech recognition [Liu et al., 2020]
Object recognition [Wang et al., 2020]
NLP [Mikolov et al., 2013; Bérard et al., 2016]

State RL Robotics [Lesort et al., 2017]
Numerical artificial agent [Madumal et al., 2020]

Manifold RL Data mining [Torki et al., 2010]

Multi-view RL
Concept learning [Xu et al., 2018]
Image processing [Su et al., 2011]
Recommender systems explainability [Gao et al., 2019]

Network RL
Networks of concepts [Yang et al., 2015; Qi et al., 2020]
Identification of genes in biology [Ietswaart et al., 2021]
Community detection in social networks [Tu et al., 2018]

Table 2: A Summary of RL approaches, examples of application
domains (NLP stands for Natural language processing).

5 Discussion and conclusion
We now summarize the highlighted points presented in previ-
ous sections. We also present promising directions related to
the XAI domain. Since our paper is a multidisciplinary one at
the crossroad of several domains, we have first (in section 2)
centralized and clarified definitions of several concepts, that
could indeed seem basic and well-known to involved AI ex-
perts, but are important to bridge the discussed domains. A
special focus has been made on latent space, latent represen-
tation and hierarchical representation which are essential for
knowledge extraction in deep neural networks and thus in
XAI. To the best of our knowledge, no previous work has
established a clear definition of these concepts for XAI com-
munity. This is necessary to allow the collaboration between
the different domains necessary to build XAI. Second, we
analysed and highlighted the existence of relations between
Knowledge domains (KDP, KR), RL and XAI.

As we have shown in section 1, the goal of XAI is to con-
vey the most semantically complete explanation to a target
audience in order to answer a particular question within a
given context. This explanation should take into account two
important points: (i) the prior knowledge of the target au-
dience regarding the application context, and (ii) the techni-
cal aspects of the AI used model that provided solutions to a
specific task, and that thus contributed, due to its complex-
ity/opacity, to the emergence of the question behind the need
of XAI, i.e in short, ”What are the reasons behind the results
and/or how the AI model reaches these results?”.

We consider that XAI is technically at the crossroad of

at least two domains: (i) KDP and KR when viewed from
a human perspective, and (ii) RL that tackles implicitly the
same objectives as XAI, from a technical and algorithmic per-
spectives. KDP, KR, RL domains, while distinct, are over-
lapped. They do and should have an explicit impact on XAI
approaches:

• First, as we have previously mentioned, several XAI
approaches are indirectly inspired by the domain of
Knowledge (KDP, KR and data mining) as both tend to
express information from data. However, it is important
to recall that, in XAI the input data reflects the inter-
nal mechanisms of the AI model, its predictions, and/or
its behavior. The evolution of the Knowledge domain is
therefore an inspiration area for XAI.

• Second, the development of AI approaches and in par-
ticular of deep learning, has blurred the boundaries be-
tween KR and RL, since several KR approaches involve
RL and deep learning. In addition, recall that while RL
is interested in features modeling for algorithmic issues
(performance, dimensionality, etc.), XAI is interested in
features since it contributes to explicit the inner mecha-
nisms behind the results. This implies that KR, RL and
XAI are indeed interested in the data representation in
order to answer different but related questions. We thus
consider that, in order to make a significant progress,
XAI future works should not forget KR and RL past and
recent works as inspirations.

KDP, KR and RL have been extensively confronted with,
first, issues related to providing a data-driven explanation
to different stakeholders according to their expectations and
context, and second, issues related to biases and fairness in AI
[Nelson, 2019]. This highlights the human significant role on
data processing and bias detection in AI towards XAI. We
believe that this review is all the more topical and important
as works about the alliance between symbolic AI and con-
nectionist AI should be more and more important in the next
years3, e.g. injecting a priori knowledge into neural networks
to limit unethical AI [Goebel et al., 2018] and biases [Gor-
don and Desjardins, 1995; Leavy, 2018; Lepri et al., 2018;
Nelson, 2019]. We are convinced that very promising direc-
tions can be taken in XAI future works by taking advantage
of KDP, KR and RL development to help design ethical, un-
biased and human-centered XAI. To conclude, we point out
that other domains, not discussed in this paper, also impact
XAI directions such as cognitive psychology [Le Saux et al.,
2002], cognitive sciences for biases studies [Soleimani et al.,
2021], social sciences [Miller, 2019] and Human Machine In-
teraction field [Le Saux et al., 1999; Mueller et al., 2021;
Ehsan et al., 2021].
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