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AN INTRINSIC CHARACTERIZATION OF BRUHAT-TITS BUILDINGS

INSIDE ANALYTIC GROUPS

BERTRAND RÉMY, AMAURY THUILLIER AND ANNETTE WERNER

Abstract: Given a semisimple group over a complete non-Archimedean field, it is well known that techniques
from non-Archimedean analytic geometry provide an embedding of the corresponding Bruhat-Tits builidng
into the analytic space associated to the group; by composing the embedding with maps to suitable analytic
proper spaces, this eventually leads to various compactifications of the building. In the present paper, we give
an intrinsic characterization of this embedding.
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INTRODUCTION

Bruhat-Tits theory ([BrT72], [BrT84]) deals with reductive groups over valued fields. Given such
a group G over a complete non-Archimedean field k, the theory provides a certain cell complex
B(G,k), called a Euclidean or affine building, on which the group of rational points G(k) acts in
a very balanced way (see [BrT84, Introduction] for more precise conditions on the ground field).
The space B(G,k) is large enough with respect to the group G(k) in the sense that the group action
is proper (i.e. cell stabilizers are compact subgroups), and the group G(k) is large enough with
respect to the space B(G,k) in the sense that the group action is strongly transitive (i.e. the action is
transitive on the inclusions of a maximal cell – called an alcove – in a maximal flat subspace – called
an apartment).

The latter property implicitly uses the fact that Euclidean buildings are complete metric spaces with
non-positive curvature properties, which makes them relevant to geometric group theory [BH99]: this
is the geometric side of Bruhat-Tits theory. The second aspect of the theory is of arithmetic nature.
Namely, in order to perform the construction of the buildings, F. Bruhat and J. Tits define and study
integral models of the group G: a posteriori, each cell in the building – called a facet – gives rise
to such a model whose group of integral points is, possibly up to finite index, the stabilizer of the
facet. These integral models turned out to be very useful in various mathematical fields, such as
representation theory ([MP94], [MP96]), so that the viewpoint of integral models can be chosen as
main viewpoint for Bruhat-Tits theory, as shown by the upcoming book [KP21].

Bruhat-Tits buildings are singular spaces (from the viewpoint of differential geometry for instance)
since they are products of simplicial complexes. Therefore it was a big surprise when V. Berkovich
noticed that they could be related to non-Archimedean analytic geometry from his perspective [Ber90,
Chapter 5]. We developed this approach and this led us to the construction of families of compact-
ifications by analogy with those associated to Riemannian symmetric spaces ([RTW10], [RTW12],
[RTW17], [Cha20]). For a semisimple group G over a complete non-Archimedean local field k, these
compactifications are defined to be the closures of embedding maps from B(G,k) to analytifications
of proper G-schemes (flag varieties G/P or the wonderful compactification G associated to G). More
precisely, the required maps are obtained by constructing first a canonical G(k)-equivariant embed-
ding ϑ : B(G,k) → Gan, where G(k) acts on the analytification Gan by conjugation, and then by
composing it with the analytication of the maps G → G/P (where P is a suitable parabolic subgroup)
or of the de Concini-Procesi map G →֒ G.

In this paper, we go back to the canonical G(k)-equivariant embedding ϑ : B(G,k)→ Gan itself
and address the following basic problem about the relationship between Bruhat-Tits and Berkovich
theories: give an intrinsic description of the building B(G,k) as a subspace of the analytic group Gan.
Our answer is the content of Theorem 3.4; it is also rephrased in Theorem 4.2. It is intrinsic in the
sense that the information we use from a point z ∈ Gan to decide whether it belongs to the image of ϑ
or not, is its holomorphic envelope in Gan defined as G(z) = {y ∈ Gan ; ∀ f ∈ O(G), | f (y)|6 | f (z)|}.

THEOREM A. — The image of the canonical embedding ϑ : B(G,k) →֒ Gan is the subset of points

z ∈ Gan whose holomorphic envelope G(z) is a k-affinoid subgroup potentially of Chevalley type for

which there exists a maximal torus T of G containing a maximal split torus and such that G(z)∩Tan

is the maximal affinoid subgroup T1 of Tan.

Being potentially of Chevalley type is our first (natural) necessary condition; it is explained in
Section 1. In Section 2, we show why this condition cannot be sufficient: this is related to the fact,
well known when performing descent of the ground field in Bruhat-Tits theory, that Galois fixed
points sets are in general bigger than the expected rational buildings. The second condition deals with
tori, or equivalently with apartments in the building: the existence of a torus intersecting nicely with
G(z) corresponds to the fact that the point z does not belong to the undesirable part of Galois fixed
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point sets. In Section 3 we explain that the combination of these two conditions is a sufficient one
in order to belong to the image of ϑ . In Section 4, we provide a reformulation of the above theorem
according to which the building of G(k) has a natural realization as a space of multiplicative k-norms
on the coordinate ring O(G) of G.

In what follows, we denote by k a field which is complete with respect to a given non-Archimedean
absolute value and we denote by G a semisimple group defined over k. We use the functoriality of
the building B(G,k) with respect to non-Archimedean extensions of k; it is satisfied at least when G
is split or when k is discretely valued with perfect residue field (see [RTW10, 1.3.3]). Each of the
latter two conditions also allow us to use the following fact: for any maximal split torus S in G there
are a maximal torus T containing S and a finite Galois extension k′/k splitting T such that, for the
map given by the previous functoriality, the apartment of T⊗k k′ contains the apartment of S (this
is clear when G is split and it follows from [BrT84, Corollaire 5.1.12] in the second case). At last,
we denote by Gan the analytic space attached to G: it is a k-analytic space in the sense of Berkovich
whose underlying topological space consists of the multiplicative seminorms on the coordinate ring
O(G) inducing the initial absolute value on k.

Acknowledgement: The third author was partially supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) TRR 326 Geometry and Arithmetic of Uniformized

Structures, project number 444845124.

1. AFFINOID SUBGROUPS POTENTIALLY OF CHEVALLEY TYPE

As already mentioned in the introduction, recall [RTW10, Theorem 2.1] that to any point x of
B(G,k) can be attached a k-affinoid subgroup Gx of Gan satisfying the following condition: for
any non-Archimedean extension K/k, the subgroup Gx(K) of G(K) is the stabilizer of x seen in the
building B(G,K). By definition, the point ϑ(x) is the unique element of the Shilov boundary of Gx,
i.e. the only point of Gx such that | f (y)| 6 | f (ϑ(x))| for any y ∈ Gx and any f ∈ O(G). Conversely,
one can recover Gx from ϑ(x) as its holomorphic envelope [RTW10, Proposition 2.4 (ii)], which is
to say:

Gx = {y ∈ Gan ; ∀ f ∈ O(G), | f (y)| 6 | f (ϑ(x))|}.

This can be phrased equivalently in terms of multiplicative norms on O(G) by saying that one recovers
the affinoid algebra of Gx as the completion of the normed k-algebra (O(G), |.|(ϑ(x)).

Let us say that a k-affinoid subgroup H of Gan is of Chevalley type (or a Chevalley k-affinoid

subgroup) if there exists a k◦-Chevalley semi-simple group H [SGA 3, Exposé XXIII §5] with
H ⊗k◦ k ≃ G and such that H is the generic fibre of the formal completion of H along its spe-
cial fibre. More generally, we will say that an affinoid subgroup H of Gan is potentially of Chevalley
type if there exists an affinoid extension K/k such that H⊗̂kK is a Chevalley affinoid subgroup of
Gan⊗̂kK ; by an affinoid extension, we simply mean that K is a non-Archimedean field which is a
k-affinoid algebra (see [RTW10, Appendix A]; this restriction allows to recover k-affinoid algebras
from K-affinoid algebras equipped with a descent datum). By construction, the k-affinoid subgroup
Gx attached to a point x of B(G,k) is always potentially of Chevalley type.

For a point z of Gan, let us define its holomorphic envelope by

G(z) = {y ∈ Gan ; ∀ f ∈ O(G), | f (y)| 6 | f (z)|}.

The above discussion brings out a first condition fulfilled by any point of Gan belonging to the image
of ϑ .

FIRST CONDITION.— The holomorphic envelope of z is a k-affinoid subgroup potentially of Cheval-

ley type.
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It is easily checked that a point satisfying this condition does appear in the image of ϑ over some
non-Archimedean extension of k, as the next Lemma shows.

LEMMA 1.1. — Let z be a point of Gan whose holomorphic envelope is a k-affinoid subgroup poten-

tially of Chevalley type.

(i) For every non-Archimedean extension K/k, the Shilov boundary of the K-affinoid domain

G(z)⊗̂kK is a singleton {zK}.

(ii) There exists a non-Archimedean extension K/k such that the point zK belongs to the image of

ϑK .

Proof.— (i) Let K/k be a non-Archimedean extension. By assumption, there exists an affinoid exten-
sion K0/k such that G(z)⊗̂kK0 is a K0-affinoid subgroup of Chevalley type in Gan⊗̂kK0. We consider
a non-Archimedean extension L/k containing both K0 and K. The set

G(z)⊗̂kL = (G(z)⊗̂kK0)⊗̂K0 L

is a L-affinoid subgroup of Chevalley type in Gan⊗̂kL, hence is the generic fibre of a formal scheme
with geometrically integral special fibre; it implies that the Shilov boundary of G(z)⊗̂kL is a singleton
{zL}. Since the canonical projection map sends the Shilov boundary of G(z) ⊗̂kL onto the Shilov
boundary of G(z)⊗̂kK, the latter is also a singleton.

(ii) We consider again an affinoid extension K/k such that G(z)⊗̂kK is a K-affinoid subgroup of
Chevalley type in Gan⊗̂kK.

The K-affinoid Chevalley subgroup G(z)⊗̂kK is the stabilizer of a unique point x of B(G,K),
hence (GK)x = G(z)⊗̂kK and therefore ϑK(x) = zK . We used the fact that any K-affinoid Chevalley
subgroup of Gan⊗̂kK occurs as the stabilizer of some point in the building. To see this, just pick a
special vertex; its stabilizer is a K-affinoid Chevalley subgroup of Gan⊗̂kK, and any two of them are
G(K)-conjugate. �

2. GALOIS-FIXED POINTS IN BUILDINGS

It is clear that the above condition does not suffice to characterize the image of ϑ . Indeed, consider
a finite Galois extension k′/k and pick a point x′ in B(G,k′) which is fixed under the natural action
of Gal(k′|k) on the building. Let z denote the image of ϑk′(x

′) under the canonical projection of Gan
k′

onto Gan. The k′-affinoid subgroup (Gk′)x′ is equipped with a Galois descent datum, from which one
deduces: (Gk′)x′ = G(z)⊗k k′. It follows that G(z) is a k-affinoid subgroup potentially of Chevalley
type. Now, if the field extension k′/k is wildly ramified, then the inclusion of B(G,k) into the set
of Galois-fixed points in B(G,k′) is strict in general (see example below); therefore, if we pick a
Galois-fixed point x′ outside B(G,k), then z does not belong to the image of ϑ . Therefore we see, up
to illustrating the strict inclusions mentioned above, that this argument shows that we need additional
conditions to describe the image of ϑ in Gan.

We want to illustrate this discussion by looking at an elementary example. Let us consider the
group G = SL2 over some discretely valued field k and pick a finite Galois extension k′ of k. Via its
canonical embedding in P

1,an
k′ , the building B(G,k′) can be identified with the convex hull of P1(k′)

inside P
1,an
k′

with P1(k′) omitted, i.e. with the subset
⋃

a∈k

ηa (R>0) ,

where ηa denotes the map from R>0 to A
1,an
k sending r to the maximal point of the ball of radius r

centered in a. The Galois action on B(G,k′) is induced by the Galois action on P
1,an
k′

, and the sub-
building B(G,k) is the image of paths ηa with a ∈ k. Since the field k is discretely valued – hence
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spherically complete – there exists a well-defined Galois-equivariant retraction

τ : P
1,an
k′

−P1,an(k)−→ B(G,k)

defined by sending a point x to the maximal point of the smallest ball with center in k containing x.

Using this picture, one easily sees how a Galois-fixed point can appear in B(G,k′)−B(G,k). It
suffices to find an element α of k′ such that all the paths ηαg(R>0) issued from conjugates αg of α
intersect at some point distinct form τ(α); since the Galois action permutes these paths, their meeting
point x′ will be fixed. Note that we have

x′ = ηα(r) and τ(α) = ηα(r
′),

where r = max{|αg −α | ; g ∈ Gal(k′|k)} is the diameter of the Galois orbit of α and r′ = min{|α −
a| ; a ∈ k} is the distance from α to k.

Let k′ be any totally ramified finite Galois extension of k. It is well-known that k′ can be realized
as the splitting field of some Eisenstein polynomial P(T) = Te + ae−1Te−1 + . . .+ a1T+ a0, where
|ai| 6 |a0| < 1 for all i and |k×| = |a0|

Z (see for example Chapter 7, Theorem 7.1, in [Cas86]).
The group |k′×| is generated by |α | = |a0|

1/e for any root α of P. We have d(α ,k) = |α | and all
conjugates of α are contained in the closed ball E(α , |α |) = E(0, |α |). The endomorphism of A

1,an
k′

defined by P(T) maps this ball onto the closed ball E(0, |a0|). In order to study the induced map
E(0, |α |)→ E(0, |a0|), set U = T/α and write

Q(U) =
1
a0

P(αU) =
αe

a0
Ue +

ae−1αe−1

a0
Ue−1 + . . .+

a1

a0
αU+1.

Since |ai|.|α |i < |ai|6 |a0| for any i ∈ {1, . . . ,e−1}, the polynomial Q reduces to α̃e

a0
Ue+1 = 1−Ue

in k̃′[U]. It follows that the following four conditions are equivalent:

- all paths ηαg(R>0), for g ∈ Gal(k′|k), intersect outside B(G,k);
- all roots of P are contained in the open ball D(α , |α |);
- all roots of Q are contained in the open ball D(1,1);
- e vanishes in k̃.

αg′αg

η0(|α|)

Case e 6= 0 in k̃

α
αg αg′

α

η0(|α|)

Case e = 0 in k̃

0 0∞ ∞

In particular, for any totally ramified (finite) Galois extension k′/k, the building B(G,k) is strictly
smaller than the set of Galois-fixed points in B(G,k′) if and only if [k′ : k] is divisible by the residue
characteristic. We refer to [Pra20] for a recent contribution to the question of describing fixed-point
sets of finite group actions in Bruhat-Tits theory.

EXAMPLE 2.1. — Let k = Q2 and k′ = Q2(α), where α2 = 2. The two paths ηα(R>0) and

η−α(R>0) intersect B(G,k) along the image of [2−1/2,∞), whereas they meet along the image

of [2−3/2,∞). The whole interval ηα

(
[2−3/2,2−1/2)

)
consists of Galois-fixed points lying outside

B(G,k). In general, Rousseau gave an upper bound for the distance of a Galois-fixed point in

B(G,k′) to B(G,k) in terms of the ramification of k′/k [Rou77, Proposition 5.2.7].
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3. APARTMENTS

As we have just seen, the characterization of the image of the Bruhat-Tits building of G inside
Gan requires an additional condition. The goal of this section is to formulate such a condition which
involves maximal tori of G. We will have to make use of the following fact.

LEMMA 3.1. — Let T be a torus over k.

(i) Its analytification Tan contains a largest bounded subgroup T1. This is an affinoid subgroup,

which coincides with the affinoid domain cut out by the equations |χ | = 1 for all χ ∈ X∗(T) if

T is split.

(ii) The Shilov boundary of T1 is reduced to a single point.

We will write oT for the unique Shilov boundary point of T1.

Proof.— We consider first the case of a split torus. If χ1, . . . ,χn is a basis of characters of T, then the
equations |χ1| = 1, . . . , |χn| = 1 cut out a k-affinoid subgroup T1 of Tan over which |χ | = 1 for any
character χ ∈ X∗(T). Let K/k be a non-Archimedean extension and Γ a bounded subgroup of T(K).
For any character χ of T, both χ(Γ) and (−χ)(Γ) = χ(Γ)−1 are bounded subgroups of K×, hence
|χ(Γ)|= 1 and Γ ⊂ T1(K). The Shilov boundary of T1 is reduced to a point since the reduction of T1,
a torus over k̃, is irreducible.

In general, pick a finite Galois extension k′/k splitting T and set Tk′ = T⊗k k′. The affinoid sub-
group T1

k′ of Tan
k′ is stable under the natural Galois action on Tan

k′ , hence its descends to a k-affinoid
subgroup T1 of T such that T1

k′ = (T1)⊗k k′. Finally, since the Shilov boundary of T1 ⊗k k′ is the
preimage of the Shilov boundary of T1 under the canonical projection, we see that T1 contains a
unique Shilov boundary point. ✷

Let us now go back to our discussion toward a characterization of the building inside Gan. We
assume temporarily that the group G is split. Given a point z in Gan whose holomorphic envelope,
again denoted by G(z), is a k-affinoid subgroup potentially of Chevalley type, let us consider a non-
Archimedean extension K/k such that the canonical lifting zK of z belongs to the image of ϑK and
denote by x its preimage: zK = ϑK(x). Since the group G is split, the embedding B(G,k) →֒B(G,K)
identifies the left-hand side with the union of apartments of all maximal split tori in GK which are
defined over k. Therefore, in order to guarantee that the point z itself belongs to the image of ϑ ,
we should require that x belongs to the apartment of a maximal split torus defined over k. The next
proposition translates this additional condition into appropriate terms.

PROPOSITION 3.2. — Let S be a maximal split torus and let x be a point of B(G,k). The following

conditions are equivalent:

(i) the point x belongs to the apartment A(S,k);
(ii) for every non-Archimedean extension K/k, the point x is fixed by the S1(K)-action on B(G,K);

(iii) the affinoid subgroup Gx of Gan contains S1.

Note that the proof will provide another equivalent statement, namely:

(ii)′ for every finite unramified extension k′/k, the point x is fixed by the S1(k′)-action on B(G,k′).

Proof.— Equivalence of assertions (ii) and (iii) follows immediately from the definition of the affinoid
group Gx.

For any non-Archimedean extension K/k, the action of S(K) on B(G,K) preserves the apartment
A(S,K) and the induced action of the maximal bounded subgroup S1(K) is trivial [RTW15, Proposi-
tion 4.18 (iii)]. Hence (i) implies (ii).

The only non trivial point to prove is that (ii) implies (i). We argue by contraposition: given a
point x of the building which does not belong to the apartment A = A(S,k), we will exhibit a finite
unramified extension k′/k and an element s of S1(k′) such that s · x 6= x in B(G,k′).
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Recall that the building B(G,k) is also a complete metric space satisfying a non-positive curvature
property [BrT72, 2.5 and 3.2], called by now the CAT(0)-property (see [BH99, Part II]). Since the
apartment A is a closed and convex subset, it contains a unique point x′ with

d(x,A) = d(x,x′).

Moreover, there exists a unique geodesic segment [x,x′] between those two points and

[x,x′]∩A = {x′}.

Consider any apartment A′ containing both x and x′; it contains [x,x′] and intersects A along a closed
convex subset C. The point x′ coincides with the projection in A′ of x to C, hence it lies in the
boundary of C since x 6∈ A. Finally, since C is the intersection of a finite number of half-apartments
[Rou09, Proposition 9.1], we conclude that x′ belongs to the wall H in A defined by the vanishing of
some affine root a. Let H+ denote the half-apartment on which a is non-negative and write a = α +λ ,
where the linear part α belongs to the root system R(T,G) and λ is an element of log|k×|.

Recall now that the unipotent root group Uα is endowed with a separated, exhaustive and de-
creasing filtration {Uα ,s}s∈R by affinoid subgroups [RTW15, 4.2.1]. The subgroup Ua = Uα ,λ cor-
responding to the affine root a = α + λ has the following geometric interpretation: for every non-
Archimedean extension K/k, the action of Ua(K) on B(G,K) fixes pointwise the half-apartment H+

and is transitive on the set of apartments which intersect A along H+. Moreover, if we set

U+
α ,λ =

⋃

r>λ

Uα ,r,

then Uα ,λ (K)/U+
α ,λ (K) is in bijection with equivalence classes of apartments in B(G,K) containing

H+, where two such apartment are said to be equivalent they intersect along a neighborhood of H+.

The torus S acts on Uα by conjugation. The bounded subgroup S1 preserves each step of the
filtration and there is a non-canonical bijection

Uα ,λ (K)/U+
α ,λ (K)≃ K̃

such that the action of an element s ∈ S1(K) on the left-hand side corresponds to multiplication by

α̃(s) ∈ K̃× on the right-hand side. Note that this condition implies that the unit element on the left-
hand side corresponds to 0 on the right-hand side.

To conclude the proof, observe that there exists a unique element ξ ∈ k̃ satisfying the following
property: for every u ∈ Uα ,λ (k) whose class modulo U+

α ,λ (k) corresponds to ξ , the apartment u ·A
contains a germ of [x,x′] at x′, i.e. we may write u ·A∩ [x,x′ ] = [x,y] for some y ∈ [x,x′). We have

ξ 6= 0 since x does not belong to A. Now, if x is fixed by S1(k), then α̃(s) · ξ = ξ and therefore

α̃(s) = 1 for any s ∈ S1(k). This means that the character α̃ of the k̃-torus S̃1 is trivial at the level of
k̃-points. Since the character α̃ is non-trivial, there exists a finite separable extension ℓ of k̃ such that
α̃ 6= 1 on S̃(ℓ). Denoting by k′ the corresponding unramified extension of k, we conclude that x is not
fixed by the whole group S1(k′). �

REMARK 3.3. — The arguments above are close to the ones proving that the apartment A(S,k)
coincides with the fixed-point set of S1(k) if k̃ contains at least 4 elements [BrT84, 5.1.37].

In the split case, the discussion above shows precisely which additional condition is required in
order to characterize the image of ϑ in Gan: there exists a maximal split torus S in G such that

G(z)∩S = S1. In general, we impose the following:

SECOND CONDITION.— There exists a maximal torus T in G which contains a maximal split torus

and such that G(z)∩T = T1.

Once this second condition has been introduced naturally, we are in good position to characterize
the image of ϑ in the analytic space Gan of G.
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THEOREM 3.4. — The image of the canonical embedding ϑ : B(G,k) →֒ Gan is the subset of points

z satisfying the following two conditions:

1. the holomorphic envelope G(z) of z is a k-affinoid subgroup potentially of Chevalley type;

2. there exists a maximal torus T of G containing a maximal split torus and such that G(z)∩Tan

is the maximal affinoid subgroup T1 of Tan.

Proof.— We have already seen that the first condition is necessary. The same holds for the second
one. Given a point x ∈B(G,k), there exists a maximal split torus S and a maximal torus T containing
S such that x ∈ A(S,k) ⊂ A(T,k′), where k′ is a finite extension of k which splits T. It follows that
Gx ⊗k k′ contains the bounded torus T1 ⊗k k′, hence T1 ⊂ Gx.

Now, let us show that the two conditions are sufficient. We consider a point z ∈ Gan satisfying
the two conditions and pick a finite Galois extension k′/k spliting the maximal torus T given by the
second condition, as well as a non-Archimedean extension K/k′ and a point w ∈ B(G,K) such that
zK = ϑK(w), where zK denotes the (unique) Shilov boundary point of G(w)⊗̂kK.

Since

Tan
K ∩ (GK)x = Tan

K ∩G(z)K = (Tan ∩G(z))K =
(
T1)

K
= (TK)

1 ,

it follows from Proposition 3.2 that w belongs to the apartment of TK. The canonical embedding of
B(G,k′) into B(G,K) induces a bijection between A(T,k′) and A(T,K), hence w comes from a point
y of B(G,k′) contained in A(T,k′). Moreover (Gk′)y = Hk′ , for both sides coincide with (GK)w after
base change to K. In particular, this shows that y is fixed by Gal(k′|k). Since A(T,k′)Gal(k′|k) is the
image of A(S,k) in B(G,k′), we get a point x in A(S,k) such that

(Gzk′
)⊗k k′ = (Gk′)y = Hk′ ,

hence H = Gx and z = ϑ(x). ✷

4. A REFORMULATION IN TERMS OF NORMS

The above characterization of points of Gan lying inside the building B(G,k) (identified with its
image by the canonical map ϑ ) can be conveniently rephrased in terms of (multiplicative) k-norms
on the coordinate algebra O(G). As we are going to explain, we need here to make the additional
assumption that the group G splits over a tamely ramified extension of k.

Let us start by recalling the notion of a universal point (1). Let z be a point in Gan, seen as a
multiplicative k-seminorm on O(G). For a given non-Archimedean field extension K/k, there is a
natural K-seminorm ||.||= x⊗1 on O(G)⊗k K, defined by

||a|| = inf max
i

|ai(z)| · |λi|

where the infimum is taken over the set of all expressions ∑i ai ⊗λi representing a, with ai ∈ O(G)
and λi ∈ K. The point z is said to be universal if, for any non-Archimedean field extension K/k, the
above K-seminorm on O(G)⊗k K is multiplicative. One then writes zK for the corresponding point
in Gan⊗̂kK.

REMARKS 4.1. — 1. Obviously, points of Gan coming from k-rational points of G are universal.

2. Let x ∈ Gan be universal. For any finite Galois extension k′/k, the canonical extension xk′ of x

to Gan ⊗k k′ is invariant under the action of Gal(k′/k): indeed, the k′-norm x⊗1 on O(G)⊗k k′

is Galois invariant.

(1)This notion was introduced by Berkovich, who used the adjective peaked [Ber90, 5.2]; its study was carried on by
Poineau, who preferred the adjective universal [Poi13].
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3. If G is split, then ϑ(x) is universal for every point x of B(G,k), as follows readily from the

explicit description of ϑ(x) as a norm on the coordinate algebra of a big cell [RTW10, Propo-
sition 2.6]. More generaly, the same is true if G splits over a tamely ramified extension k′/k by

[RTW10, Lemma A.10] and [RTW15, Erratum].
4. Given a torus T over k, we denote by σT the (unique) Shilov boundary point of the maximal

affinoid subtorus T1 of Tan. This point is universal if T splits over a tamely ramified extension

of k, but not in general as checked by Mayeux [May20, Proposition 10.2].

SETTING — As already mentioned, the semisimple group G considered in this last section is assumed

to split over a tamely ramified extension of k, so that all points in the image of ϑ are universal.

Let Gan
u denote the subset of universal points in Gan. Following Berkovich [Ber90, 5.2], there

is a natural monoid structure on Gan
u extending the group structure on G(k). Given any two points

g,h ∈ Gan
u , the seminorm g⊗h on O(G)⊗k O(G) is multiplicative and one defines g∗h as the induced

multiplicative seminorm on O(G) via the comultiplication map ∆ : O(G) → O(G)⊗k O(G). This
binary operation is associative, with unit the element 1∈G(k); moreover, it is obvious that we recover
the group law if g and h belong to G(k).

More generally, given an (analytic) action of Gan on some k-analytic space X, one can define in a
similar way an action of the monoid Gan

u on the topological space underlying X, which extends the
action of G(k). In particular, x∗ y is well-defined for any two points x,y in Gan such that one of them
is universal.

Finally, we also recall that one can define a partial order on the set underlying Gan as follows:

x 4 y if and only if ∀a ∈ O(G), |a(x)| 6 |a(y)|.

We can now give the following description of the building inside Gan.

THEOREM 4.2. — Let x ∈ Gan. Then the point x belongs to the image of the canonical embedding

ϑ : B(G,k) →֒ Gan if, and only if, the following conditions are satisfied:

(i) x is universal;

(ii) x∗ x 4 x and inv(x) 4 x;

(iii) there exists a maximal torus T containing a maximal split torus such that oT 4 x;

(iv) x is maximal with respect to the three conditions above.

REMARKS 4.3. — 1. Conditions (i)-(iv) imply that x is a multiplicative k-norm on O(G).
2. One way to understand condition (ii) is to say that x defines a k-multiplicative norm on the

commutative Hopf algebra O(G) with respect to which commultiplication and the antipode are

bounded. One should observe that (ii) obviously implies 1G 4 x, so that the counit is also

bounded.

3. By Lemma 4.4 below, the condition 1G 4 x (resp. inv(x) 4 x) implies x = 1G ∗ x 4 x ∗ x (resp.

x 4 inv(x)), hence condition (ii) could be replaced by x∗ x = x and inv(x) = x.

LEMMA 4.4. — Let x,y,x′,y′ be four points in Gan such that both sets {x,y} and {x′,y′} contain

at least one universal point (so that x ∗ y and x′ ∗ y′ are well-defined). If x 4 x′ and y 4 y′, then

x∗ y 4 x′ ∗ y′ and inv(x)4 inv(x′).

Proof.— This follows directly from the formulas

∀a ∈ O(G), |a(x∗ y)| = infmax
i

|bi(x)| · |ci(y)| and |a(x′ ∗ y′)|= inf max
i

|bi(x
′)| · |ci(y

′)|,

where the infimum is taken over the set of all expressions ∑i bi ⊗ ci representing ∆(a), and

∀a ∈ O(G), |a(inv(x))| = |inv(a)(x)| 6 |inv(a)(x′)|= |a(inv(x′))|. ✷

LEMMA 4.5. — Let x be a universal point of Gan. We again denote by G(x) = {z ∈ Gan ; z 4 x} its

holomorphic envelope. Then the following conditions are equivalent:
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(i) The envelope G(x) is a subgroup object of Gan, i.e. G(x)(K) is a subgroup of G(K) for any

non-Archimedean extension K/k;

(ii) The point x satisfies: 1G 4 x, inv(x)4 x and x∗ x 4 x.

Moreover, G(x) is bounded in Gan.

Proof.— Assume that G(x) is a subgroup object of Gan. Since G(x)(k) is a subgroup of G(k), it
contains the unit element 1G and therefore 1G 4 x. Now we consider the canonical point x∈G(H (x))
lying over x; we have |a(x)| = |a(x)| for any a ∈ O(G), as well as

|a(x∗ x)| = |a(x · x)| and |a(inv(x))| = |a(x−1)|.

Since x · x and x−1 belong to G(x)(H (x)), it follows that

|a(x∗ x)| 6 |a(x)| and |a(inv(x))| 6 |a(x)|

for all a ∈ O(G), which is to say x∗ x 4 x and inv(x)4 x.

We assume now that x is a universal point of Gan satisfying the conditions of (ii). Obviously,
G(x) contains the k-rational point 1G. Given a non-Archimedean extension K/k and elements g,h ∈
G(x)(K), we have for all a ∈ O(G):

|a(g−1)|= |inv(a)(g)| 6 |inv(a)(x)| = |a(inv(x))|

and

|a(gh)| = |∆(a)(g,h)| 6 infmax
i

|bi(g)| · |ci(h)|6 infmax
i

|bi(x)| · |ci(x)| = |a(x∗ x)|,

where the infimum is taken over the set of all expressions ∑i bi⊗ci representing ∆(a). Since inv(x)4 x

and x∗ x 4 x, we deduce
|a(g−1)|6 |a(x)| and |a(gh)| 6 |a(x)|,

hence g−1,gh ∈ G(x)(K). This proves that G(x) is a subgroup object of Gan.

Finally, boundedness is obvious: if f1, . . . , fn is a finite set generating O(G) as a k-algebra, then
we have | fi(y)|6 maxi | fi(x)| for any point y ∈ G(x). ✷

Proof of Theorem 4.2.— In what follows, we identify the building B(G,k) with its image in Gan by
the embedding ϑ .

If a point x of Gan belongs to B(G,k), then x is universal by Remark 4.1 and G(x) is a k-affinoid
subgroup of Gan, hence x ∗ x 4 and inv(x) 4 x by Lemma 4.5. Moreover, there exists a maximal
torus T containing a maximal split torus and such that G(x)∩Tan = T1, which amounts to saying that
x dominates the distinguished point oT of T. Finally, consider a universal point z ∈ Gan satisfying
condition (ii) and dominating x (which implies that z dominates 1G). For any non-Archimedean
extension K/k, Lemma 4.5 implies that G(z)(K) is a bounded subgroup of G(K) containing G(x)(K);
by maximality of the latter, we deduce G(z)(K) = G(x)(K), hence G(x) = G(z) and z = x. We have
thus checked that x satisfies conditions (i)-(iv).

Conversely, let x be a point in Gan satisfying conditions (i)-(iv). We observe that condition (iv)
implies that x dominates 1G, hence it follows from Lemma 4.5 that G(x)(K) is a bounded subgroup
of G(K) for any non-Archimedean extension K/k. We are going to see that all these subgroups
fix a common point in B(G,k). By condition (iii), there exists a maximal torus T of G containing
a maximal split torus S and such that σT 4 x, hence T1(K) ⊂ G(x)(K) for every non-Archimeden
extension K/k.

We first assume that T is split and that k̃ contains at least 4 elements. For any non-Archimedean
field extension K/k, we identify A(T,k) with A(T,K) in B(G,K), and we let F (K) denote the
fixed-point set of G(x)(K) in B(G,K). This is a non-empty closed subset, which is contained in the
apartment A(T,k) since G(x)(K) contains the group of units T1(K) and there are at least 4 elements
in K̃. Considering in particular the extension H (x)/k, we get a point z ∈ A(T,k) fixed under the
canonical element x ∈ G(H (x)) lifting x. This means that x belongs to G(z)(H (x)), or equivalently
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that x is contained in the k-affinoid subgroup G(z). This amounts to saying that z dominates x, hence
x = z by maximality.

In general, we consider a finite Galois extension k′/k which splits T and such that k̃′ contains
at least four elements. It follows from the argument above that the canonical extension xk′ of x to
Gan⊗k k′ belongs to the apartment of T⊗k k′ in B(G,k′). Since this point is invariant under the action
of Gal(k′/k) by Remark 4.1 2, xk′ belongs to the image of A(S,k) in A(T,k′), and therefore x belongs
to A(S,k). ✷
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