Exploring microbial diversity of naturally fermented PDO Nyons table olives
Marine Penland, Stéphanie-Marie Deutsch, Hélène Falentin, Christophe Le Meur, Emmanuel Coton, Jérôme Mounier, Monika Coton

To cite this version:
Marine Penland, Stéphanie-Marie Deutsch, Hélène Falentin, Christophe Le Meur, Emmanuel Coton, et al.. Exploring microbial diversity of naturally fermented PDO Nyons table olives. FEMS – 8th Congress of European Microbiologists, Jul 2019, Glasgow, United Kingdom. hal-03343668

HAL Id: hal-03343668
https://hal.science/hal-03343668
Submitted on 14 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exploring microbial diversity of naturally fermented PDO Nyons table olives

Marine PENLAND1,2, Stéphanie Marie DEUTSCH3, Hélène FALENTIN2, Christophe LE MEUR1, Emmanuel COTON1, Jérôme MOUNIER1 and Monika COTON1

1 Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, EA 3882, F-29280 Plouzané, France
2 Institut National de la Recherche Agronomique, Science et Technologie du Lait et de l’Éau, UMR1253, F-35304 Rennes, France
Email: Marine.Penland@univ-brest.fr

Context & experimental design

Artisanal fermented foods constitute a significant part of the Mediterranean diet and represent a cultural heritage that needs to be preserved and protected. PDO Nyons table olives are produced according to a traditional process by a slow spontaneous fermentation in brine (Figure 1). The manufacture and unique sensorial properties of these olives only rely on autochthonous complex microbiota.

This study aimed at unravelling the microbial ecology and dynamics of Nyons table olives during a yearlong spontaneous fermentation (Figure 2). The core microbial species were determined for potential future directed fermentations.

Microbial populations were stable during the studied fermentations

- Early harvest R1
 - Organic olives
 - Conventional olives
- Late harvest R2
 - Organic olives
 - Conventional olives

Culture-dependent analyses revealed diversified fungal populations and species dynamics...

- Early harvest R1
 - Organic olives
 - Conventional olives
- Late harvest R2
 - Organic olives
 - Conventional olives

...confirmed by preliminary metagenetic analyses

- Day 21
 - Olive Brine
 - Olive Brine
- Day 42
 - Olive Brine
 - Olive Brine

Conclusion & perspectives

Four different Nyons table olive fermentations were monitored using culture-dependent and -independent analyses. Results suggest that yeasts are the key actors of the process with four species consistently found in high abundances. Metabarcoding analyses performed at early days of fermentation were well correlated and provided complementary information about fungal and bacterial communities. To better understand microbial dynamics, metagenetic analyses will be performed on the remaining sampling points. Moreover, volatiles, sugars and organic acids at the same stages of fermentation are currently being analysed to link microbial diversity and dynamics with olive aroma profiles and biochemical changes.

Acknowledgements

We would like to thank our olive producer partner, cooperative VIGNOIS (Nyons, France) for collaborating in this project and providing the samples.

FEMS – 8th Congress of European Microbiologists – 7th -11th July 2019 - Glasgow