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SUMMARY5

Seismic coda waves are commonly used in estimation of subsurface Q values and6

monitoring subsurface changes. Coda waves mainly consist of multiply scattered7

body and surface waves. These two types of waves interact with each other in the8

multiple scattering process, which thus leads to a spatiotemporal evolution of the9

body- and surface-wave energies. One cannot characterize the evolution because one10

has not fully understood the multiple scattering of the two types of waves. Thus one11

commonly assumes only one type of waves exists or ignores their interaction while12

studying the coda waves. However, neglecting the interaction leads to an incorrect13

energy evolution of the two types of waves and consequently biases the Q estima-14

tion or interpretation of coda-wave changes for monitoring. To better understand15

the interaction between these waves during multiple scattering and to model the en-16

ergy evolution correctly, we propose a Monte Carlo algorithm to model the multiple17

scattering process. We describe the physics of the scattering for the two types of18

waves and derive scattering properties like cross sections for perturbations in elas-19

tic properties (e.g. density, shear modulus and Lamé parameters). Our algorithm20
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incorporates this knowledge and thus physically models the body- and surface-wave21

energy evolution in space and time. The energy partitioning ratios between sur-22

face and body waves provided by our algorithm match the theoretical prediction23

based on equipartition theory. In the equipartition state, our simulation results also24

match Lambert’s cosine law for body waves on the free surface. We discuss how the25

Rayleigh-to-body-wave scattering affects the energy partitioning ratios. Our algo-26

rithm provides a new tool to study multiple scattering and coda waves in elastic27

media with a free surface.28

Key words: Wave scattering and diffraction; Coda waves; Computational seismol-29

ogy; Surface waves and free oscillations.30

1 INTRODUCTION31

Coda waves are arrivals after direct waves in seismic recordings or seismic crosscorrelations.32

One commonly uses coda waves to investigate and monitor the subsurface. By studying coda33

waves from an earthquake event, one can estimate subsurface Q values (e.g. Aki & Chouet34

1975). One can also compare the coda waves in two event recordings and estimate differences35

in the coda-wave arrival times (e.g. Poupinet et al. 1984; Snieder et al. 2002; Mikesell et al.36

2015) or waveforms (e.g. Larose et al. 2010). This method is called coda wave interferometry37

(CWI) monitoring. By assuming the two events share a similar source location and focal mech-38

anism, one can qualitatively conclude that these differences are due to small changes of seismic39

properties (e.g. density) in the subsurface (e.g. Snieder 2006). This monitoring method has40

been applied to repeated event data in nature (e.g. Grêt et al. 2005) and in the lab (e.g. Larose41

et al. 2010). This method is also commonly applied to the coda waves in seismic crosscorre-42

lations to monitor things such as the seasonal subsurface variations (e.g. Sens-Schönfelder &43

Wegler 2006; Wang et al. 2017), volcanic eruptions (e.g. Brenguier et al. 2007, 2008), ice sheet44

melting (e.g. Mordret et al. 2016) or the groundwater transport (e.g. Clements & Denolle45

2018). One can further quantitatively image small changes in the subsurface from the CWI46

monitoring results (i.e. coda-wave differences) using the physics of coda waves (e.g. Pacheco47

& Snieder 2005; Planès et al. 2015; Margerin et al. 2016).48

One routinely utilizes multiply scattered waves in the coda waves in both attenuation49

and CWI monitoring studies. Multiply scattered implies that these waves have scattered more50

than once in the subsurface while propagating from a (virtual) source to a receiver. In mod-51
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elling multiply scattered waves, one rarely uses wave equation solvers because the simulation52

requires so many simulation steps that both the computation cost and simulation result stor-53

age are prohibitively expensive. An alternative to the full-wavefield simulation is radiative54

transfer theory, which can be used to model the spatiotemporal evolution of the seismic wave55

energy/envelope (e.g. Wu 1985; Weaver 1990; Ryzhik et al. 1996). In the case of coupled elas-56

tic P and S waves, there exist semi-analytical solutions for the radiative transfer equations57

in homogeneous media (e.g. Zeng 1993; Sato 1994), given the scattered-wave amplitudes are58

isotropic. For inhomogeneous media and/or anisotropic scattering, one can adopt a Monte59

Carlo simulation approach to solve the radiative transfer equations numerically (e.g. Gusev60

& Abubakirov 1987; Hoshiba 1995, 1997). Furthermore, when using this approach, one only61

needs to know the properties of scattering (e.g. scattered-wave amplitudes and mean free62

paths) without explicitly referring to the radiative transfer equations (e.g. Margerin et al.63

1998; Sanborn et al. 2017).64

Most research on the radiative transfer theory so far has focused on either body or surface65

waves, but neglected the interaction between the two. However, both body and surface waves66

are present during the scattering process and they convert to one another via scattering (e.g.67

Maeda et al. 2008). Thus the energy ratio between the two types of waves evolves in time68

and space. Furthermore, Obermann et al. (2013) and Obermann et al. (2016) reveal that69

these two waves possess different sensitivities to subsurface elastic parameters through full70

wavefield simulations. Therefore, it is necessary to characterize the spatiotemporal evolution71

of the energy partitioning ratio between body and surface waves, so that one can estimate72

Q accurately or physically interpret the monitoring results (i.e. coda-wave differences). In73

current practice, one empirically assumes the energy ratios (e.g. Obermann et al. 2019) or74

ignores one of the two types of waves (e.g. Sens-Schönfelder & Wegler 2006; Mainsant et al.75

2012; Obermann et al. 2015).76

There have been previous attempts to incorporate the coupling between surface and body77

waves within a radiative transfer framework. To incorporate this coupling into the radiative78

transfer equations, Tregoures & Van Tiggelen (2002) considered body, Rayleigh, and Lamb79

waves in an elastic plate with a free surface boundary condition on each surface (top and80

bottom), where Rayleigh and Lamb waves are both a mixture of elastic body (P and S) waves;81

Borcea et al. (2021) approximated surface waves with acoustic waves trapped in a thin layer82

of an acoustic two-layer plate bounded by reflecting surfaces at the top and bottom. In both83

approaches the body waves cannot leak away at depth, which is not realistic for most Earth84

applications. Zeng (2006) introduced radiative transfer equations for coupled surface and body85
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waves by simplifying the coupling. However, these approximations and the simplification are86

hard to justify entirely from first principles. Margerin et al. (2019) extended the conventional87

radiative transfer equation by incorporating the coupling between surface and body waves88

in the context of the Helmholtz equation with an impedance-type boundary condition. As89

Margerin et al. (2019) used the scalar Helmholtz equation, only one type of body wave exists90

in their treatment. Based on the Born approximation, Margerin et al. (2019) derived the91

scattering mean free times for surface and body waves in a homogeneous velocity model with92

uniformly distributed point scatterers. Margerin et al. (2019) demonstrated that the surface-93

wave scattering properties (e.g. mean free time) depend on depth, and they used a Monte94

Carlo simulation to model the energy coupling between surface and body waves. However, a95

significant shortcoming is that different types of body (P and S) waves can not be incorporated96

into the simulation, because the simulation is based on the scalar equation. To overcome that97

limitation, we take advantage of Maeda et al. (2008) who theoretically described the scattering98

process between body and surface waves in detail. Based on these results, we derive key99

scattering properties (e.g. cross sections and mean free time/path, Section 2), and then we use100

these properties to develop a Monte Care simulation algorithm (e.g. Hoshiba 1991; Margerin101

et al. 2000) to model the body- and Rayleigh-wave multiple scattering process (Section 3).102

We focus on perturbations in density (ρ), where these perturbations (δρ) act as scatterers in103

the media. One could extend our simulation algorithm to perturbations of P-wave and S-wave104

velocities using Birch’s Law. We conduct the simulation with and without a P-S coupling105

free-surface boundary condition and then estimate the temporal energy ratios from multiply-106

scattered Rayleigh and body waves (Section 4). The temporal energy ratios eventually reach107

steady values, i.e. equipartition ratios. We verify the simulation by comparing the equipartition108

ratios to theoretical equipartition predictions. We finally discuss how to improve this algorithm109

(Section 5). Our algorithm can improve coda-wave studies about attenuation and the use of110

CWI for monitoring.111

2 THE SCATTERING PROCESS112

Knowledge of body- and Rayleigh-wave scattering processes is central for the radiative transfer113

theory and Monte Carlo simulations. For example, in an elastic medium, there is body wave114

to Rayleigh wave scattering denoted here as BR scattering. We consider three types of body115

waves: P, Sv and Sh waves. Thus we have three types of BR scattering: PR, SvR and ShR.116

Following the same logic, there is also Rayleigh wave to body wave (RB: RP/RSv/RSh),117

Rayleigh wave to Rayleigh wave (RR) and body wave to body wave (BB such as PP, PSv118
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and PSh) scattering. For all of these scattering cases, we present the single scattering cross119

sections (i.e. the ratio of scattered wave energy to the incident wave energy flux) and the120

multiply scattering mean free path/time (which indicates how efficiently the incident wave121

energy will be scattered). All the equations in this study are presented in the frequency domain.122

Different Fourier transform conventions do not affect our equations, because the conventions123

mainly impact the sign of phase while we focus on energy transport in this study.124

2.1 Wave intensity125

Wave intensity is normally used to measure the energy flux density of a wave, and the intensity126

is the base for calculating the wave scattering properties known as cross section and mean127

free path/time. The intensity of an incident P wave in a homogeneous medium is128

IP (ω) = ρ0α0ω
2|A0P |2, (1)

where ρ0 is the medium density, α0 is the P-wave velocity, ω is the angular frequency and129

A0P is the incident P-wave displacement amplitude (Aki & Richards 2002). The P-wave130

displacement amplitude is a function of frequency and we only focus on one frequency (i.e. ω)131

here. Similarly, the intensity of a S wave is132

IS(ω) = ρ0β0ω
2|A0S |2, (2)

where the S wave can be either Sv or Sh and β0 is the S-wave velocity. We set the polarization133

direction for the incident Sh wave (eSh) as the y-axis direction ([0,1,0]) in the following exam-134

ples for simplicity (Figure 1). The units of IP and IS are both J/(m2s), where J represents135

the unit of energy, Joule.136

The intensity of a Rayleigh wave is different from a body wave because a Rayleigh wave137

propagates along the surface with depth-dependent displacements. Thus the intensity of a138

Rayleigh wave is defined with a depth integral as (Aki & Richards 2002)139

IR(ω) = ρ0URω
2(A0R)2

∫ ∞
0

[r21(z, ω) + r22(z, ω)]dz, (3)

where UR is the Rayleigh-wave group velocity at the frequency ω, A0R is the Rayleigh-wave140

amplitude, and r1 and r2 are the horizontal and vertical displacement eigenfunctions of the141

Rayleigh wave (Appendix A). The eigenfunctions vary with the depth and frequency. For142

brevity, we write this integral as
∫

(r21 + r22)dz. Notice that the units of IP (IS) and IR are143

J/(m2s) and J/(ms), respectively. The unit difference is due to the depth integral. We demon-144

strate how this difference affects our analysis of Rayleigh-wave scattering in the following145

section.146
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Figure 1. An illustration of single scattering process. The block is the scatterer. The thin black

arrows represent local coordinate system. The thick black arrows are body waves. The gray arrows are

Rayleigh waves. The gray shapes below the gray arrows represent the Rayleigh-wave eigenfunctions

which decrease with depth increasing.

2.2 Single scattering147

The scattering cross section is defined for a single scattering, in which an incoming wave148

encounters a scatterer, as the ratio between the energy radiated by the scatterer in all out-149

going propagation directions and the energy flux of the incoming wave. This ratio measures150

the efficacy of the single scattering process. In elastic media, we need to calculate the cross151

section for four types of single scattering: BR, RB, RR and BB. Calculation of each cross152

section requires the corresponding scattering amplitude (e.g. Margerin et al. 2000). We use153

the scattering amplitudes derived by Maeda et al. (2008) based on the Born approximation.154

We consider scattering related to Rayleigh waves as an example in this section.155
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2.2.1 BR scattering156

The ShR indicates a scattered Rayleigh wave from an incident Sh wave and is an example of BR157

scattering. The m-component amplitude of a scattered Rayleigh wave due to a perturbation158

of density (δρ) at xs is159

AShRm,ρ (x, ω) =

∫
V

∑
n

Gmn(x,xs, ω)ω2δρA0SheShn dxs. (4)

eShn is the n-component of incident Sh wave polarization vector, [0,1,0] (Figure 1). Based on160

the Born approximation, the incident Sh wave scattering at δρ acts like a seismic source and161

generates scattered Rayleigh waves (e.g. Snieder 1986a; Maeda et al. 2008). Thus Equation 4162

is a convolution between the Rayleigh-wave Green’s function and a source term (ω2A0Sh
n δρ).163

The amplitude of the far-field Rayleigh-wave Green’s function is164

Gmn(x,xs, ω) =
pm(z, ω)p∗n(zs, ω)

4cRUR
∫
ρ0(r21 + r22)dz

√
2

πkR∆
, (5)

where kR = ω/cR and cR is Rayleigh-wave phase velocity at frequency ω. pm is a projection165

of the Rayleigh-wave eigenfunction (r1 or r2) in the m direction, like [r1 cos ξ1, r1 sin ξ1, ir2],166

where ξ1 (Figure 1) is the scattered Rayleigh-wave propagation azimuth taken from the in-167

cident wave azimuth (Snieder 1986a; Maeda et al. 2008). ∆ is the scattered Rayleigh-wave168

travel distance from xs to x along Earth’s surface. zs is the depth of perturbation δρ and ρ0 is169

the unperturbed/background density of the medium. The units of δρ and ρ0 are both kg/m3.170

The scalar product between the polarization vectors in Equation 4 (
∑
n
p∗ne

0Sh
n ) determines171

the coupling between the incident Sh and scattered Rayleigh waves. As the incident Sh wave172

only possesses a horizontal component in the y direction (n = 2),
∑
n
p∗ne

0Sh
n becomes p∗2, i.e.173

r1 sin ξ1. We then rewrite Equation 4 as174

AShRm,ρ (x, ω) = A0Sh ω2pm(z, ω)

4cRUR
∫

(r21 + r22)dz

√
2

πkR∆

∫
V
r1(zs, ω) sin ξ1

δρ

ρ0
dxs. (6)

In Equation 6, we remark that the scattered Rayleigh-wave amplitude does not depend on the175

incident Sh wave angle (ψ0). Instead, we observe that the Rayleigh-wave amplitude depends176

on the Rayleigh-wave propagation azimuth (ξ1), and this observation offers physical insights177

into the scattering process. For example, if the scattered Rayleigh wave follows the same178

azimuth as the incident wave (ξ1 = 0), we have sin ξ1 = 0 and as a consequence, the scattered179

amplitude is 0, which implies the absence of the ShR conversion in the forward direction. This180

result, sometimes termed as selection rule, fits our physical intuition. An incident Sh wave181

with particle motion in y direction does not excite a Rayleigh-wave propagating in x direction182
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because the two directions are orthogonal; furthermore, among all azimuths, the strongest183

excitation of Rayleigh waves occurs in the Sh wave polarization direction, i.e. the y direction.184

We next assume that the size of the density perturbation is negligible compared to the185

Rayleigh-wave wavelength and further simplify Equation 6. Thus, we are in the so-called186

Rayleigh scattering regime (e.g. Wu & Aki 1985) and can rewrite Equation 6 as187

AShRm,ρ (x, ω) = A0Sh ω2pm(z, ω)

4cRUR
∫

(r21 + r22)dz

√
2

πkR∆
r1(zs, ω) sin ξ1V

δρ

ρ0
, (7)

where we define V =
∫
V dxs, the volume of a single scatterer. We then calculate the total188

energy of all the scattered Rayleigh waves by integrating the intensity over all azimuths using189

a cylindrical surface (S) integral:190

EShRρ (zs, ω) = ρ0URω
2

∫
S

∑
m

|AShRm,ρ |2∆dξ1dz, (8)

= ρ0ω
5 [A0Shr1(zs, ω)]2

8cRUR
∫

(r21 + r22)dz
V 2

(
δρ

ρ0

)2

, (9)

where AShRm,ρ is from Equation 7 and
∫ ∑

m |pm|2dz/
∫

(r21 + r22)dz = 1. We observe that the191

total energy depends on the scatterer depth, zs. Based on the definition of the scattering cross192

section, we write the ShR cross section as193

σShRρ (zs, ω) =
EShRρ

ISh
=

ω3

8β0cRUR
∫

(r21 + r22)dz
r21(zs, ω)V 2

(
δρ

ρ0

)2

. (10)

The unit for this cross section is m2. Notice this cross section depends explicitly on the194

scatterer depth (zs) through the Rayleigh-wave eigenfunction, r1. Following the same logic,195

we write cross sections for the remaining BR and BB scattering in Appendix B. In contrast196

to the BR scattering, the BB cross sections are independent of the scatterer depth.197

2.2.2 RB scattering198

We next calculate the cross sections for incident Rayleigh waves. Following the same steps as199

above, for example, we can write the RSh cross section due to δρ as200

σRShρ (zs, ω) =
ERShρ

IR
=

ω4r21(zs, ω)

8πβ30UR
∫

(r21 + r22)dz
V 2

(
δρ

ρ0

)2

. (11)

Notice the unit for σRShρ is m, instead of m2 like σShRρ . This is because of the unit difference201

between IR and ISh (Section 2.1). For future reference, we introduce the following depth202

integrated cross section:203

σRShρ (ω) =

∫ ∞
0

σRShρ dzs =
ω4
∫
r21(zs, ω)dzs

8πβ30UR
∫

(r21 + r22)dz
V 2

(
δρ

ρ0

)2

, (12)
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where the cross section unit ism2. The definition is valid for a uniform and random distribution204

of point scatterers, where the scattering of Rayleigh waves is directly proportional to the205

depth integrated cross section. Following the same logic, we write the other RB and RR cross206

sections (Appendix B). Notice that, the averaged RB and averaged RR cross sections are both207

independent of the scatterer depth.208

2.3 Isotropic incident angle assumption209

Some cross sections are dependent on the incident angle, ψ0 (Figure 1). For example, for a P210

wave scattered to a Rayleigh wave, the incident P-wave particle motion projects on both the211

x and z directions unless the P wave propagates purely vertically or horizontally. Thus σPRρ212

depends on the incident angle (ψ0), and we derive the cross section by following the same213

steps as in Section 2.2:214

σPRρ =
ω3

8α0cRUR
∫

(r21 + r22)dz
(r21 sin2 ψ0 + 2r22 cos2 ψ0)V

2

(
δρ

ρ0

)2

. (13)

We observe that ω3

8α0cRUR

∫
(r21+r

2
2)dz

is very similar to ω3

8β0cRUR

∫
(r21+r

2
2)dz

in ShR scattering215

(Equation 10) except the different incident wave velocities. We write C = r21 sin2 ψ0+2r22 cos2 ψ0216

and note that this term, similar to r21 in Equation 10, determines the coupling between the217

incident P and scattered Rayleigh waves. For example, ψ0 = 0 (a vertically incident P-wave)218

and ψ0 = π/2 (a horizontally incident P-wave) lead to purely vertical (C = 2r22) and horizon-219

tal (C = r21) coupling, respectively. Therefore the PR cross section dependence on ψ0 makes220

intuitive sense. This phenomenon also exists in the SvR scattering (Appendix B).221

Equation 13 explicitly indicates that the BR scattering involves the body-wave incident an-222

gle. This involvement significantly complicates any simulation, especially the following Monte223

Carlo simulation, because we need to calculate the BR cross section for a given incident angle224

(ψ0) and use the new cross section to determine scattering Rayleigh-wave azimuths (ξ1). Fur-225

thermore, numerical simulations (e.g. Paul et al. 2005) demonstrate that the incident angles226

become evenly distributed on the unit sphere (i.e. isotropic) after a sufficiently large number of227

scattering events. Thus, we can eliminate the incident angle dependence of the BR scattering228

cross sections (e.g. σPRρ ) by averaging the cross sections over the incident angles (ψ0):229

σ̃PRρ =
1∫ π

0 sinψ0dψ0

∫ π

0
σPRρ sinψ0dψ0 =

ω3

12α0cRUR
∫

(r21 + r22)dz
(r21 + r22)V 2

(
δρ

ρ0

)2

. (14)

Following the same process, we average other incident-angle dependent cross sections and230

present the results in Appendix B.231
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2.4 Multiple scattering232

The knowledge of single scattering is the building block for multiple scattering, since multiple233

scattering can be modeled as a series of single scattering events in wave propagation from a234

(virtual) source to a receiver. This connection between multiple scattering and single scattering235

is known as the independent scattering approximation (e.g. Lagendijk & Van Tiggelen 1996).236

In the approximation, we define a volume density of point scatterers (n, unit: m−3) and write237

the mean free path (lw) for an incident wave as238

lw =
1

nσw
, (15)

where σw is the sum of all the possible single-scattering cross sections for the incident wave239

(e.g. Margerin et al. 2000), such as σShρ (z, ω) = σShRρ (z, ω) + σShPρ (ω) + σShSvρ (ω) + σShShρ (ω)240

in this study. The mean free path indicates the average distance between two scattering events241

(e.g. Hoshiba 1991) and has the unit of m. The mean free path also indicates the energy being242

scattered: a smaller mean free path means there will be more scattered wave energy in the243

media and vice versa. The corresponding mean free time (τw) is defined as244

τw =
lw

vw
=

1

nσvw
, (16)

where vw is the incident wave velocity (e.g. Margerin et al. 2000). The mean free time indicates245

the average time interval between scattering events. Notice that we will use a random variable246

called free time in the following Monte Carlo simulation (Section 3), and the free time is a time247

interval between two random scattering events. An important ingredient that differentiates our248

approach from Maeda et al. (2008) is that we allow the depth-dependent scattering properties249

for body waves (e.g. σShRρ and σShρ ). This depth dependence is related to the coupling of body250

and Rayleigh waves.251

2.5 Theoretical equipartition value252

We can calculate the theoretical equipartition energy ratio between two types of multiply-253

scattered waves. For example, one can calculate the energy ratio between multiply-scattered254

P and S waves based on the scattering relationship between the two types of body waves (e.g.255

Weaver 1982). Following the reciprocity relationship in Margerin et al. (2019) and ignoring256

P-S coupling at the free surface, we write the equipartition energy ratio between multiply-257
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scattered body and Rayleigh waves as258

¯̄ER
ĒP

=

∫ ∞
0

τRPρ (ω)

τPRρ (zs, ω)
dzs =

∫ ∞
0

σPRρ (zs, ω)α0

σRPρ (ω)UR
dzs =

πα3
0

ωcRUR
, (17)

¯̄ER
ĒSv

=

∫ ∞
0

τRSvρ (ω)

τSvRρ (zs, ω)
dzs =

∫ ∞
0

σSvRρ (zs, ω)β0

σRSvρ (ω)UR
dzs =

πβ30
ωcRUR

, (18)

¯̄ER
ĒSh

=

∫ ∞
0

τRShρ (ω)

τShRρ (zs, ω)
dzs =

∫ ∞
0

σShRρ (zs, ω)β0

σRShρ (ω)UR
dzs =

πβ30
ωcRUR

, (19)

where ¯̄ER is the total Rayleigh-wave energy over the whole medium, and ĒP is an integral of P-259

wave energy over a constant-depth plane and thus is the energy density at the depth. The body-260

wave energy densities are homogeneous at all depths in the equipartition regime (Margerin261

et al. 2019), and we validate this in Section 3. UR is equal to cR in a homogeneous isotropic262

elastic medium, but this is not the case in heterogeneous media. The equipartition relationships263

(Equation 17-19) hold not only for density perturbations, but also for perturbations in the264

Lamé parameter and shear modulus (Appendix B).265

It is not straightforward to combine mode conversion (i.e. P-Sv coupling) at the free sur-266

face with the reciprocity relationship when one derives the equipartition ratios (e.g. Shapiro267

et al. 2000). In order to consider the mode conversion, one needs to adopt another approach268

also mentioned in Margerin et al. (2019), the density of state (DOS) formulation. We use den-269

sity of state in the equipartition derivation and achieve the same equipartition ratios (Equa-270

tions 17-19) in Appendix C. We emphasize that, in a statistically uniform elastic halfspace,271

the equipartition ratios do not depend on the nature of the disorder.272

3 MONTE CARLO SIMULATION273

We simulate multiple scattering with a Monte Carlo method. The Monte Carlo simulation274

method has been applied to multiply scattered acoustic/elastic body waves (e.g. Hoshiba 1991;275

Margerin et al. 2000). We use this method to simulate multiply-scattered body and Rayleigh276

waves in a statistically uniform isotropic elastic medium filled with point scatterers. The idea277

underlying the Monte Carlo simulation is to simulate the propagation and scattering of wave278

energy as a random walk for a particle and repeat the random walk N times independently279

(Algorithm 1). After the N simulations, we count how many body and Rayleigh particles exist280

at each time step and interpret the body and Rayleigh particle numbers as the body- and281

Rayleigh-wave energy, respectively. Furthermore, by discretizing the 3D medium into a grid282

and recording changes of the particle numbers at each grid cell with time, we estimate the283

evolution of wave energy in time and space.284
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We divide one simulation process into four parts and introduce them separately. Before285

the simulations start, we need to calculate the cross sections and the mean free times for all286

possible types of scattering. For perturbations in density or shear modulus, P, Sv, Sh and287

Rayleigh waves can all be generated during the scattering process; for perturbations in Lamé288

parameter, only P and Rayleigh waves are generated by the scattering.289

3.1 Initialization290

We launch a particle at the source location in the beginning of one simulation. The particle291

can be a body (P/Sv/Sh) or Rayleigh wave (Algorithm 2). We can model different source292

mechanisms by changing initial wave types (e.g. Margerin et al. 2000) and propagation direc-293

tions (i.e. azimuth and colatitude). For example, if the source is an explosion, we can set that294

only P waves are generated at the source location. The P-wave initial azimuths are randomly295

generated with a uniform probability distribution between 0 and 2π, and the cosines of the296

P-wave initial colatitudes are randomly generated from a uniform distribution between -1297

and 1 (Algorithm 2). For a shear-force source like a fault, all types of waves are randomly298

selected in proportions equal to their respective radiated energy. Based on the initial wave299

type, we compute a random free time (T ) which indicates the travel time before the next300

scattering happens. We will cover the details of free time in the next section (Section 3.2).301

We also calculate the wave propagation vector (kx,ky,kz) based on the propagation azimuths302

and colatitudes.303

3.2 Effective cross section and mean free time304

The initialized particle propagates during the random free time T . We compute T as T =305

−τw ln(rand) where rand is a random number with a uniform probability distribution from306

0 to 1 (e.g. Hoshiba 1991), and w indicates a body (B) or Rayleigh wave (R). We directly307

follow the computation for Rayleigh-wave free time but not for the body-wave. Calculation308

of the body-wave free time between two scattering events is not straightforward, since the309

body-wave mean free time (τB e.g. τShρ ) varies with depth (Section 2.4). This is because310

τShρ is inversely proportional to σShρ , where σShρ includes the depth-dependent σShRρ . Thus,311

calculation of the body-wave free time requires tracking of the body-wave depth in order to312

integrate the variation of the mean free time in the propagation. To address this difficulty, we313

adopt a trick called delta collisions (Lux & Koblinger 1991). The idea of delta collisions is to314

impose an effective and constant cross section (σBe where e stands for ’effective’) and mean315

free time. To compensate for the difference between σBe and the real cross section at a given316
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Algorithm 1 Monte Carlo simulation algorithm

σBe =
∑
B′
σBB

′
+max[σBR(z)] . Calculating effective body-wave cross section

. B and B′ can be any possible body wave in scattering, P, Sv or Sh.

τBe = 1/n/σBe/vb . Effective body-wave mean free time

σR = σRR +
∑
B

σRB . Rayleigh wave cross section

τR = 1/n/σR/vr . Rayleigh wave mean free time

Set dt, the time step for recording particle numbers for each wave mode, P, Sv, Sh and R

for i = 1 : Nth simulation do

[mode T azi0 kx ky kz] = Initialization() . Wave mode, free time, propagation

azimuth and vector

Set x, y and z at the source location

while itime < Nstep do . ith simulation starts

if mode == B then . Body-wave propagation

if T > deltat then . No scattering happen

x = x+deltat*vb*kx; y = y+deltat*vb*ky; z = z+deltat*vb*kz

if z < 0 then . Encounter the free surface

FreeSurfaceBoundaryCondition

itime = itime + 1 . Record body-wave type at this time point

T = T - deltat

deltat = dt

else . A scattering will happen

x = x+T*vb*kx; y = y+T*vb*ky; z = z+T*vb*kz

if z < 0 then . Encounter the free surface

FreeSurfaceBoundaryCondition

deltat = deltat - T

[mode T azi0 kx ky kz] = scatterb(azi0) . Body-wave scattering

if mode == R then . Rayleigh-wave propagation

if T > deltat then . No scattering happen

x = x+deltat*vr*kx; y = y+deltat*vr*ky

itime = itime + 1 . Record Rayleigh wave type at this time point

T = T - deltat

deltat = dt

else . A scattering will happen

x = x+T*vr*kx; y = y+T*vr*ky

deltat = deltat - T

[mode T azi0 kz ky kz z] = scatterr(azi0) . Rayleigh-wave scattering
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Algorithm 2 Simulation initialization: [mode T azi0 kx ky kz] = Initialization()

Generate a particle; its mode can be a body (B = P/Sv/Sh) or Rayleigh (R) wave

if mode == B then

T = −τBe ∗ ln(rand) . Generate a random free time from a random number

ang = acos(-1+2*rand) . A random colatitude in [0,π]

azi0 = 2*pi*rand . A random propagation azimuth in [0,2π]

kx = sin(ang)*cos(azi0) . Body-wave propagation vector in Cartesian coordinates

ky = sin(ang)*sin(azi0)

kz = cos(ang)

else

T = −τR ∗ ln(rand)

azi0 = 2*pi*rand . A random propagation azimuth in [0,2π]

kx = cos(azi0) . Rayleigh-wave propagation vector in Cartesian coordinates

ky = sin(azi0)

deltat = dt

depth, we introduce an imaginary scattering part into the body-wave scattering process. The317

probability that the imaginary scattering event occurs is determined by the difference (1−prs318

in Algorithm 3) between σBe and σB(z). The imaginary scattering does not change the body-319

wave propagation direction. Notice that we do not need to introduce the effective mean free320

time for Rayleigh waves because both σRB and σRR (e.g. Equation 12) are independent of321

depth.322

3.3 Scattering323

After propagating for time T , the particle encounters a scatterer/perturbation, and scattering324

occurs. We generate a uniformly distributed random value in the range [0, 1] to simulate all325

possible conversions and determine the scattered wave type (Algorithms 3 and 4). Notice that326

for incident Rayleigh particles, if a RB conversion happens, we re-inject the scattered body327

particle at a depth based on the distribution of σRB as a function of depth (Appendix D).328

We generate the scattering azimuths and colatitudes (ξ1 &ψ1 in Section 2 or azi & ang in the329

pseudocode) of scattered waves based on the probabilistic interpretation of scattering cross330

sections (Appendix E). We add the scattering azimuths to the incident azimuth to achieve331

the propagation azimuth. Due to the isotropic incident angle assumption (Section 2.3), we do332

not need the incident angles in this part. We discuss this assumption in Section 5.1. Based on333
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the type of scattered wave, we generate a new value for T to determine the propagation time334

before the next scattering event.335

Algorithm 3 Body-wave scattering subprogram: [mode T azi0 kx ky kz] = scatterb(azi0)

σB(z) = σBR(z) +
∑
B′
σBB

′
. Cross section for all possible scattering at this depth

prs = σB(z)/σBe . Probability that scattering happening

if rand < prs then

Generate a new random number, rand . determine the scattered mode

if rand < σBP /σB(z) then . Possibility for BP scattering

mode = P . scattered P wave, B′ = P

if σBP /σB(z) < rand < (σBP + σBSv)/σB(z) then . Possibility for BSv scattering

mode = Sv . scattered Sv wave, B′ = Sv

if (σBP + σBSv)/σB(z) < rand < (σBP + σBSv + σBSh)/σB(z) then

. Possibility for BSv scattering

mode = Sh . scattered Sh wave, B′ = Sh

T = −τB′e ∗ ln(rand) . Generate a random free time from a new random number

Generating azi and ang based on probability distributions (Appendix E)

azi0 = azi0 + azi

kx = sin(ang)*cos(azi0) . Body wave propagation vector in Cartesian coordinates

ky = sin(ang)*sin(azi0)

kz = cos(ang)

if (σBP + σBSv + σBSh)/σB(z) < rand then . BR scattering

mode = R

T = −τR ∗ ln(rand)

Generate azi based on probability distributions (Appendix E)

azi0 = azi0 + azi

kx = cos(azi0) . Rayleigh-wave propagation vector in Cartesian coordinates

ky = sin(azi0)

else . Imaginary scattering happens

mode = B

T = −τBe ∗ ln(rand) . The propagation vector and direction stay the same
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Algorithm 4 Rayleigh-wave scattering subprogram: [mode T azi0 kx ky kz z] = scatterr(azi0)

zvec = 0 : Dz : zmax . The depth vector, from 0 to zmax, for injecting body wave

if rand < σRR/σR then . RR scattering

mode = R

T = −τR ∗ ln(rand) . Generate a random free time from a random number

Generate azi based on probability distributions (Appendix E)

azi0 = azi0 + azi

kx = cos(azi0) . Rayleigh-wave propagation vector in Cartesian coordinates

ky = sin(azi0)

else . RB scattering

if rand < (σRR + σRP )/σR then

mode = P . RP scattering, B = P

if (σRR + σRP )/σR < rand < (σRR + σRP + σRSv)/σR then

mode = Sv . RSv scattering, B = Sv

if (σRR + σRP + σRSv)/σR < rand then

mode = Sh . RSv scattering, B = Sh

z = interp1(σRB(zvec)/
∫
σRB(z)dz,zvec,rand)

. Inject body wave at depth based on RB cross section in depth (Appendix D)

T = −τBe ∗ ln(rand)

Generating azi and ang based on probability distributions (Appendix E)

azi0 = azi0 + azi

kx = sin(ang)*cos(azi0) . Body-wave propagation vectors in Cartesian coordinates

ky = sin(ang)*sin(azi0)

kz = cos(ang);

3.4 Boundary conditions336

We assume the free surface is flat and adopt two types of free-surface boundary conditions337

(FSBCs) in the simulation: mirror-like reflection and mode conversion. The mirror FSBC con-338

serves the wave energy and propagation vector except for the sign of the vertical component.339

This FSBC does not modify the incident wave type (i.e. no mode conversion). The mode-340

conversion FSBC allows the wave mode conversion (i.e. P to Sv or Sv to P) based on energy341

reflection coefficients. Depending on the incident-wave angle and wave type (B=P/Sv), we342

can calculate the corresponding reflection coefficient (RBB) for a reflected wave remaining as343

the same wave type (e.g. Aki & Richards 2002, Chapter 5.2.2). RBB is the reflected wave344
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amplitude ratio relative to the incident-wave amplitude. Given the incident-wave intensity is345

1, we recognize that the square of the coefficient (R2
BB) is the intensity of the reflection wave346

and the probability of this reflection. We then generate a random number from a uniform347

distribution between 0 and 1. If the random number is less than or equal to R2
BB, no mode348

conversion happens; otherwise, the incident P or Sv wave will convert to a Sv or P wave, re-349

spectively. If the mode conversion happens, we also recalculate the free time for the reflected350

waves. For the boundary condition in the depth, we assume that body waves can propagate351

to infinite depth in the simulations.352

4 SIMULATION RESULTS353

We set the frequency be 1 Hz and choose the medium parameters as follows: α0=5 km/s,354

β0=3 km/s and thus cR=2.74 km/s. We set the medium to be 10 km (zmax in Algorithm 4)355

thick. We assume that there is no intrinsic attenuation in the medium, which means that the356

seismic-wave energy will not irreversibly convert to other types of energies. We also assume357

that the scatterers (δρ) are randomly distributed in the medium, and set the perturbation358

density relative to the background (δρ/ρ0) to 0.2 and a scatterer volume (V ) to be 0.5 m3. We359

also set the volume density of scatterers (n) equal to 1 m−3. We compute the Rayleigh-wave360

eigenfunctions based on these velocities (Appendix A) and calculate all the cross sections and361

mean free times (Appendix B and Equation 16). The Rayleigh-wave mean free path (lR) is362

35.8 km (Equation 15) and is of the same order of mean free path as in Earth’s crust (e.g.363

Margerin et al. 1999). Note that the ratio between lR and the Rayleigh-wave wavelength364

(2.74 km) is 13 and fulfills the condition of application of radiative transfer theory that the365

mean free path should be much larger than the corresponding wavelengths (e.g. Ryzhik et al.366

1996). In the simulation, we place a source at 1 km depth. The source emits P and Rayleigh367

waves/particles. During the random walk for one particle, we record the location and mode368

for the particle every 1 s (dt in Algorithm 1). The random walk lasts 3000 s (Nstep=3000 in369

Algorithm 1). We repeat the random walk 100 million (N = 108) times. For each wave mode,370

we count the particles in a certain space (e.g. the shallowest 1km depth of the medium) in all371

the random walks and then divide the particle number with N to get the wave energy.372

We first simulate multiple scattering with the mirror FSBC. At each time step in the373

simulation, we estimate the body wave energy density as a function of depth (EB: EP , ESv374

and ESh) by counting the number of body waves per 1 km depth in the medium. We observe375

that EB at each depth gradually becomes uniform in depth as the simulation time increases376

(Figure 2). The homogenization of body-wave energy is due to the balance between the RB and377
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Figure 2. The simulated body-wave energy densities as a function of depth. We plot the energy

densities at different simulation time in the unit of Rayleigh-wave mean free time (τR): 20, 50, 100

and 200 τR. The black curves are from the simulation with the mirror free surface boundary condition

(FSBC); the red curves are from the mode-conversion FSBC. We smooth each curve by convolution

with a Gaussian filter with a width of one third the Rayleigh-wave wavelength.

BR scattering (Margerin et al. 2019). We calculate the Rayleigh-wave energy (ER) by counting378

the number of Rayleigh waves in the whole medium. We observe that the energy ratios between379

ER and ESv/h become homogeneous after 50 τR, and the energy ratios between ER (ESv/h)380

and EP become constant after 100 τR (Figure 3). We determine that the simulation reaches381

equipartition after all these energy ratios stabilize. All of the stable ratios are close to the382

corresponding theoretical values with a 4.7% maximum misfit (Table 1).383

We switch the FSBC to the mode-conversion case and repeat the simulation. In this384

simulation, similar to the last one, we observe homogeneous body-wave energies in depth385

in the equipartition stage (Figure 2). This mode-conversion FSBC provides similar energy386

partition ratios among Rayleigh and body waves compared to the mirror FSBC simulation387

(Figure 4 and Table 1). This similarity is not surprising because Trégourès & van Tiggelen388

(2002) theoretically demonstrated that the mode-conversion (i.e traction free) FSBC does389

not affect the body-wave energy partition ratios. Here we numerically demonstrate that no390

matter which FSBC is used, the simulation reaches equipartition. In addition, the body-wave391

angular distributions on the free surface match Lambert’s cosine law from the diffusion theory392

(Appendix F).393
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Figure 3. Temporal evolution of the energy partitioning ratios among Rayleigh, P, and Sv/h waves in

the simulation with the mirror FSBC. We estimate EB in the shallowest 1 km depth of the medium.

We calculate the simulated energy ratio from the last 50 τR simulation results. The theoretical energy

ratios are from Equations 17, 18 and 19. We plot the ratios from the simulation results and the

equipartition theory in solid and dashed lines, respectively.

5 DISCUSSION394

5.1 Body-wave incident angles395

We average the incident-angle-dependent cross sections by assuming that the incident body396

waves are isotropic, i.e. evenly distributed on a unit sphere. We examine this assumption397

here using our simulation results. We discuss the scattering colatitudes (ψ1 in Figure 1)398

because we actually use the colatitudes in simulation of the wave propagation (e.g. cos(ψ1)).399

If the scattered-body-wave colatitudes are isotropic, cos(ψ1) will be equal to 1 for all incident400

angles and the incident angles will also be isotropic. The positive and negative cosine values401

represent down-going and up-going wave propagation, respectively. We divide the potential402

range for cos(ψ1), from -1 to 1, into 180 even bins. At each time step in the simulation, we403

count the particle (i.e. wave) numbers for all types of body waves in each bin from the404

free surface to 10 km depth; we then calculate ratios between the particle numbers and405

the mean of the P particle numbers in all the bins. We finally average the ratios in a time406
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Figure 4. Temporal evolution of the energy partitioning ratios among Rayleigh, P and Sv/h waves in

the simulation with the mode-conversion FSBC. All data processing and figure settings match those

in Figures 3.

range when the energy partitioning ratios are stable, such as the last 50 Rayleigh-wave mean407

free times (50 τR). We refer to these averaged ratios with respect to cos(ψ1) as angular408

distributions for each type of wave (Figure 5). Based on the isotropic angular distributions,409

we expect the P- and Sv-/Sh-wave ratios to be 1 and (α0/β0)
3, respectively. In the two410

FSBC simulation results, we observe similar angular distributions (Figure 5). The P-wave411

Table 1. Misfits in the simulation results. We calculate the absolute difference between the simulated

and theoretical energy equipartition values (Figure 3, 4 and 6), and the misfit value is the ratio of the

absolute difference relative to the theoretical energy equipartition value. Simulations with the mirror

and mode-conversion FSBCs are presented in Section 4. The simulation with isotropic RB scattering

is presented in Section 5.1.

Simulation RP RSv RSh PSv PSh

Mirror FSBC 4.7% 0 2.2% 4.6% 2.3%

Mode-conversion FSBC 4.6% 0.2% 2.2% 4.6% 2.3%

Isotropic RB 1.1% 0.3% 0.3% 0.9% 0.9%
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distributions are almost isotropic with about 10% off than the expectation, 1, near cos(ψ1) = 0412

(i.e. parallel to the free surface, the insets in Figure 5a and b). The Sv-wave ratios are slightly413

elevated from cos(ψ1) = −1 to cos(ψ1) = 0 (i.e. up-going waves); for the down-going waves,414

the Sv-wave ratios are perturbed from the expected values with 10% as a maximum near415

cos(ψ1) = 0.05. The Sh-wave distributions are almost isotropic for all the cosine values and416

match the theoretical value, (α0/β0)
3.417

To investigate reasons for the biases in the angular distributions, we propose two tests.418

First, we check the body-wave angular distributions when we only have body-wave scattering419

in the simulation. To do that, we turn off the coupling between body and Rayleigh waves,420

i.e. no RB or BR scattering. We then run this modified simulation with the mode-conversion421

FSBC and calculate the angular distributions as above. We observe that all the body-wave422

angular distributions are isotropic after the simulation reaches equipartition (Figure 5c). This423

observation fits the generalized diffusion theory for the mode-conversion FSBC (e.g. Trégourès424

& van Tiggelen 2002) and indicates that the biases are not related to body-wave multiple scat-425

tering. Second, we turn on the Rayleigh-wave coupling and require the RP and RSv scattering426

colatitudes to be isotropic while the RSh scattering is already isotropic from the physics (Fig-427

ure 5d). We observe that this new simulation also generates isotropic distributions for all428

body waves. Furthermore, this new simulation provides more accurate energy equipartition429

ratios than the two in Section 4 (Figure 6 and Table 1). Thus, we conclude that the biases430

in the body-wave angular distributions in the simulation algorithm are due to the anisotropic431

RP and RSv scattering colatitude patterns. The isotropic scattering patterns can be used432

in the multiple scattering simulations as done before (e.g. Sato & Nishino 2002). However,433

the anisotropic RP and RSv scattering patterns are from the physics and change with depth434

(Figure E1). Therefore this observation and these biases need to be further investigated and435

more fully understood. This is a new observation that has not been noted in the literature436

before.437

5.2 Potential improvements on the simulation438

The Monte Carlo simulation algorithm presented here can model body/Rayleigh-wave energy439

propagating and scattering with a flat free surface, but we cannot model other seismic wave440

phenomena, such as inhomogeneous waves or nongeometric waves. Inhomogeneous waves are441

due to shallow seismic sources or seismic wave reflections (e.g. Aki & Richards 2002). Inho-442

mogeneous wave reflection at the free surface can generate nongeometric waves (e.g. Hron &443

Mikhailenko 1981; Roth & Holliger 2000). We can model these wave phenomena using wave444
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Figure 5. The body-wave angular distributions from the simulation with the mirror FSBC (a), the

mode-conversion FSBC (b), the mode-conversion FSBC and no RB or BR scattering (c), and the mode-

conversion FSBC and isotropic RB scattering (d). We use anisotropic RB scattering in (a) and (b).

The theoretical values for the P and Sh/Sv wave are always 1 and (α/β)3 for all cos(ψ1), respectively.

We plot the distributions from the simulation results and the diffusive theory in solid and dashed lines,

respectively. The insets in (a) and (b) show zooms of the P-wave distributions at cos(ψ1) = 0.

equations, but we have not incorporated these wave phenomena into the radiative transfer445

theory or Monte Carlo simulations yet. We do not consider complex subsurface media such446

as lateral heterogeneities (e.g. Yu et al. 2021), interfaces (e.g. Margerin et al. 1998; Sanborn447

et al. 2017), a topographic free surface (e.g. Snieder 1986b; Takemura et al. 2015; Wang et al.448

2015) or intrinsic attenuation (e.g. Zhang et al. 2021) into our simulations yet. Incorporating449

those into our algorithm is a promising direction for future studies and thus help studies like450

surface waves in microseisms (e.g. Ziane & Hadziioannou 2019; Gualtieri et al. 2020)451

We model Sv and Sh waves separately in our algorithm. However, in practice, S waves are452
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Figure 6. Temporal evolution of the energy partitioning ratios among Rayleigh, P and Sv/h waves in

the simulation with the mode-conversion FSBC and isotropic RB scattering. All data processing and

figure settings match those in Figure 3.

commonly combinations of both. One can use the Stokes vector to model the combinations453

in elastic media (e.g. Turner & Weaver 1995; Margerin et al. 2000). In using that approach,454

one needs to track not only the body-wave propagation direction as in our algorithm, but also455

polarization directions. Research regarding incorporation of Rayleigh waves into the Stokes456

vector is still absent and will be helpful for modelling Rayleigh- and Love-wave multiple457

scattering due to different polarization S waves.458

6 CONCLUSION459

We develop a Monte Carlo simulation algorithm to model body- and surface-wave multiple460

scattering in elastic media. We consider all the possible scattering combinations among P,461

Sv, Sh and Rayleigh waves, and derive the corresponding cross sections due to perturbations462

in elastic properties (i.e. density, Lamé parameter and shear modulus). We use these cross463

sections in the simulation and thus physically incorporate the interaction between body and464

Rayleigh waves during scattering. The algorithm provides the spatio-temporal evolution of465

body- and Rayleigh-wave energies. We focus on density perturbations as scatterers and vali-466
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date the algorithm by comparing the simulation results to the theoretical energy ratios. We467

numerically demonstrate that the simulations with the mirror and mode-conversion free sur-468

face boundary conditions provide similar energy equipartition ratios close to the theoretical469

equipartition values. In the equipartition state, the body-wave angular distributions on the470

free surface match Lambert’s cosine law under the two different free surface boundary condi-471

tions. Our results also indicate that biases in the simulation results are due to the anisotropic472

BR scattering angle patterns. Our research provides a new tool to study the multiple scatter-473

ing phenomena in elastic media, and thus may aid coda wave studies such as Q estimation or474

interpretation of coda-wave monitoring results.475
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APPENDIX A: RAYLEIGH WAVE EIGENFUNCTIONS632

Rayleigh waves possess displacements in the vertical (Z) and radial (R) directions. In a 1D

elastic medium, one can write the two component displacement at frequency ω and depth z

as

uR = r1(z, ω) exp[i(kR∆− ωt)], (A.1)

uZ = r2(z, ω) exp[i(kR∆− ωt)], (A.2)

where r1 and r2 are the eigenfunctions, kR is the Rayleigh-wave wavenumber, and ∆ is the633

propagation distance (Aki & Richards 2002, Chapter 7.2). One calculates the two eigenfunc-634

tions based on boundary conditions: vanishing traction at the free surface and zero displace-635

ment at infinity (e.g. Aki & Richards 2002, Chapter 7.2.1). In a homogeneous halfspace, the636
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analytical expressions for the eigenfunctions are637

r1(z, ω) = −kR exp(−kR

√
1−

c2R
α2
0

z) + kR
2β20 − c2R

2β20
exp(−kR

√
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c2R
β20
z), (A.3)

and638

r2(z, ω) = −kR

√
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c2R
α2
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2
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We calculate the eigenfunctions for the velocity model where α0=5 km/s and β0=3 km/s639

(Figure A1), and we use the eigenfunctions in the scattering amplitudes (e.g. Equation 7) and640

cross sections (e.g. Equation 10).641

APPENDIX B: SCATTERING CROSS SECTIONS642

B1 Body-to-Rayleigh-wave cross sections643

For scattering due to perturbations in the Lamé parameter (i.e. δλ),644
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σSvRλ = σShRλ = 0. (B.2)

For δρ scatters,645
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where ψ0 is the body-wave incident angle (Figure 1). After averaging over incident angles,646
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1∫ π

0 sin(ψ0)dψ0

∫ π

0
σPRρ sin(ψ0)dψ0 =

ω3

12α0cRUR
∫

(r21 + r22)dz
(r21 + r22)V 2

(
δρ

ρ0

)2

,

(B.6)

σ̃SvRρ =
1∫ π

0 sin(ψ0)dψ0

∫ π

0
σSvRρ sin(ψ0)dψ0 =

ω3

24β0cRUR
∫

(r21 + r22)dz
(r21 + 4r22)V 2

(
δρ

ρ0

)2

,

(B.7)

σ̃ShRρ = σShRρ . (B.8)
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Figure A1. Radial (r1) and vertical (r2) eigenfunctions vary with depth at 1 Hz. The eigenfunction

values are normalized by the absolute value of r1 at the free surface (z = 0). The depth axes are

Rayleigh-wave wavelength (λR) and kilometers to demonstrate how shallow scatterers must be in

order to generate Rayleigh waves.

For perturbations in shear modulus (δµ),647
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After averaging over incident angles,648
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B2 Rayleigh-to-body-wave cross sections649

For perturbations in the Lamé parameter (δλ),650
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σRSvλ = σRShλ = 0, (B.16)

where σ is the integral of σ over depth (e.g. Equation 12).651

For perturbations in density (δρ),652
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For perturbations in shear modulus (δµ),653

σRPµ =
k4Pβ

4
0

15πα0c2RUR
∫

(r21 + r22)dz

∫ [
3r21 +

3

k2R

(
∂r2
∂z

)2

+ 2
r1
kR

∂r2
∂z

+
1

k2R

(
∂r1
∂z

)2

+r22 −
2

kR

∂r1
∂z

r2

]
dzsV

2

(
δµ

µ0

)2

, (B.20)

σRSvµ =
ω3kS

πc2RUR
∫

(r21 + r22)dz

∫ [
1

20
r21 +

2

15k2R

(
∂r2
∂z

)2

− 2

15kR
r1
∂r2
∂z

+
7

120
r22

+
7

120k2R

(
∂r1
∂z

)2

− 7

60kR

∂r1
∂z

r2

]
dzsV

2

(
δµ

µ0

)2

, (B.21)

σRShµ =
ω3kS

πc2RUR
∫

(r21 + r22)dz

∫ [
r21
12

+
r22
24

+
1

8k2R

(
∂r1
∂z

)2
]
dzsV

2

(
δµ

µ0

)2

. (B.22)



32 Xu et al.

B3 Rayleigh-to-Rayleigh-wave cross sections654
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B4 Body-to-body-wave cross sections655

For perturbations in the Lamé parameter (δλ),656
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σPShλ = σPSvλ = σShPλ = σSvPλ = 0. (B.27)

For perturbations in the density (δρ), we write the cross sections657
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and the averaged cross sections over incident angles658
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For perturbations in shear modulus (δµ),659
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]
V 2

(
δµ

µ0

)2

, (B.42)

σSvPµ = σShPµ =
1

15

k4Pβ0
πα0

V 2

(
δµ

µ0

)2

, (B.43)

σSvSvµ =
k4S

120π

[
38 sin2(ψ0) cos2(ψ0) + 7 cos2(2ψ0)

]
V 2

(
δµ

µ0

)2

, (B.44)

σSvShµ =
k4S
48π

[
1 + cos2(2ψ0)

]
V 2

(
δµ

µ0

)2

, (B.45)

σShSvµ =
k4S

120π

[
2 + 5 cos2(ψ0)

]
V 2

(
δµ

µ0

)2

, (B.46)

σShShµ =
k4S
24π

[
1 + sin2(ψ0)

]
V 2

(
δµ

µ0

)2

, (B.47)

and660

σ̃PSvµ =
β0k

2
Sk

2
P

15πα0
V 2

(
δµ

µ0

)2

, (B.48)

σ̃PShµ =
β0k

2
Sk

2
P

15πα0
V 2

(
δµ

µ0

)2

, (B.49)

σ̃SvSvµ =
5k4S
72π

V 2

(
δµ

µ0

)2

, (B.50)

σ̃SvShµ =
11k4S
360π

V 2

(
δµ

µ0

)2

, (B.51)

σ̃ShSvµ =
11k4S
360π

V 2

(
δµ

µ0

)2

, (B.52)

σ̃ShShµ =
5k4S
72π

V 2

(
δµ

µ0

)2

. (B.53)
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We observe that

σPSvρ + σPShρ

σSvPρ

=
σPSvµ + σPShµ

σSvPµ

= 2

(
α0

β0

)2

. (B.54)

The above relationship agrees with previous research about the cross-section ratios between662

P and S waves (Aki 1992). We can further write

σSSρ = σSvSvρ + σSvShρ = σShSvρ + σShShρ =
k4S
6π
V 2

(
δρ

ρ0

)2

, (B.55)

σSSµ = σSvSvµ + σSvShµ = σShSvµ + σShShµ =
k4S
10π

V 2

(
δρ

ρ0

)2

. (B.56)

We observe that the two body-wave expressions above, along with the expressions of σPP ,σSvP ,663

σShP and σPSv+σPSh due to δλ/δρ/δµ are the same as the body-wave cross-section formulas664

in Margerin et al. (2000). Notice that the cross sections here are not averaged along incident665

angles.666

APPENDIX C: EQUIPARTITION FROM THE DENSITY OF STATE667

A basic principle in multiple scattering theory is equipartition. It stipulates that the correla-668

tion function of a diffuse field is proportional to the imaginary part of the Green’s function669

of the underlying wave equation. The trace of the imaginary part of the local Green’s func-670

tion is proportional to the (local) density of states (DOS) that counts all possible modes of671

propagation. Hence, the energy partitioning among different propagation modes in the diffuse672

regime can be obtained from the DOS. Formally, the DOS can be written as673

DOS = −2ω

π
Tr ImG(x,x;ω) = 2ω

∑
n

δ(ω2 − λn)|φn(x)|2 (C.1)

for positive angular frequency ω. In the last equality, the index n runs over all possible674

eigenmodes of the elastodynamic operator L = −α2∇∇·+β2∇×∇× with eigenvalues λn and675

displacement eigenfuction φn. Notice that using λ to represent eigenvalues is custom in the676

DOS theory and we only use this representation in this appendix. These eigenfunctions must677

be normalized in the sense of the scalar product 〈φn|φ′n〉 =
∫
d3rφn(x)φ′n(x)∗ = δn,n′ . In our678

application, the index n will be continuous and all discrete sums become integrals as shown679

below. The eigenfunctions of the operator L in an elastic halfspace bounded by a free surface680

are plane Rayleigh wave and body-wave modes composed of an incident (normalized) plane681

wave of a given polarization (P/Sv/Sh) together with its reflections. A rigorous diagonalization682

of the operator L in a halfspace bounded by a free surface can be found in Sécher (1998) and683
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more details about the eigenvalues and eigenfunctions can be found in Margerin (2009). We684

will examine the contributions of the different types of waves to the DOS using a classical685

seismological approach in this section.686

We first compute the DOS per unit surface for Rayleigh waves by integrating Equation C.1687

over depth. Taking into account that a Rayleigh-wave eigenmode with horizontal wavevector688

(kx, ky) is associated to the eigenvalue λ = c2r(k
2
x + k2y) and the normalization condition, we689

find:690

NR =2ω

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

δ(ω2 − c2r(k2x + k2y))

(2π)2
,

=
ω

2πc2R
.

(C.2)

In the first line of Equation C.2, the factor (2π)−2 inside the integral is inherited from the691

normalization condition for plane waves in 2-D. Note that NR is a DOS per unit surface per692

unit frequency.693

Let us now examine the case for Sh waves. From the basic analysis of free-surface reflection,694

we know that an Sh eigenfunction is of the form:695

φSh(x) =
(e−iqz + eiqz)ei(kxx+kyy)

(2π)3/2
eSh, (C.3)

which corresponds to the sum of an incident and a reflected plane wave with horizontal696

unit polarization vector eSh in the direction (ky,−kx, 0). We take the vertical axis oriented697

positively downward, so that a wavenumber −q < 0 (i.e. positive q) represents a up-going698

wave. The eigenvalue associated to φSh is λ = β20(k2x + k2y + q2) and the prefactor (2π)−3/2699

guarantees that the eigenfunction is correctly normalized. The squared modulus |φSh|2 is of700

the form 2 + 2 cos 2qz and presents oscillations (i.e. cos 2qz) due to the interference between701

upgoing and downgoing waves. As these interferences are not taken into account in our model,702

we average the DOS over depth to disentangle the upgoing and downgoing waves. Reporting703

the result:704

〈|φSh(x)|2〉z =
2

(2π)3
(C.4)

into the DOS definition yields:705

〈NSh〉z =2ω

∫ +∞

0
dq

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

2δ(ω2 − β20(q2 + k2x + k2y))

(2π)3

=
ω2

2π2β30
,

(C.5)

where 〈〉z denotes the depth average. In Equation C.5, the integral runs over positive q to706
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represent all possible incident (upgoing) plane Sh waves. The δ function naturally selects only707

those plane waves that satisfy the dispersion relation at frequency ω.708

The case of P and Sv waves is more complex than the above as these two waves are coupled709

at the free-surface reflection. Thus, a part of the Sv DOS comes from converted P waves at710

the free surface and vice-versa. A P eigenmode may be written as:711

φP (x) =
ei(kxx+kyy)

(2π)3/2
(e−iqpzeP + Ṕ P̀ eiqpzePr + Ṕ S̀eiqszeSvr ), (C.6)

where eP , ePr and eSvr are unit polarization vectors in the directions (kx, ky,−qp), (kx, ky, qp)712

and (−qs,−qs, kx + ky), respectively. The first two polarizations are longitudinal and the713

last one is transverse. The corresponding eigenvalue is λ = α2
0(k

2
x + k2y + q2p). The vertical S714

wavenumber is determined by qs =
√
α2
0(k

2
x + k2y + q2p)/β

2
0 − k2x − k2y and is always positive.715

For the reflection coefficients, we use the standard notations from Aki & Richards (2002).716

When we consider the quantity |φp(x)|2, cross terms involving P and S waves appear. Since717

these terms are oscillatory, they cancel out when the squared eigenfunction is averaged over718

depth, which in turn disentangles the P and S contributions:719

〈|φP (x)|2〉z =
(1 + |Ṕ P̀ |2 + |Ṕ S̀|2)

(2π)3
(C.7)

Eigenmodes for incident Sv waves have the form:720

φSv(x) =
ei(kxx+ikyy)

(2π)3/2
(e−iqszeSv + ŚS̀eiqszeSvr + ŚP̀ eiqpzePr ) (C.8)

where the corresponding eigenvalue is λ = β20(k2x + k2y + q2s), the definition of the polarization721

vectors is similar as above, and the vertical P wavenumber qp =
√
β20(k2x + k2y + q2s)/α

2
0 − k2x − k2y.722

Note that qp may be pure imaginary when the incident angle of Sv waves is post critical for723

the SP conversion. However, when averaged over depth, these evanescent P contributions van-724

ish, so that we may consider the propagating regime only. This is in line with our numerical725

approach where evanescent waves are neglected. The relation equivalent to Equation C.7 is726

given by727

〈|φSv(x)|2〉z =
(1 + |ŚS̀|2 + |ŚP̀ |2)

(2π)3
. (C.9)

Let us now collect all the terms that contribute to the DOS of Sv waves. These are the incident728

and reflected S waves in Equation C.9 as well as the P to S conversions in Equation C.7 which729
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yields:730

〈NSv〉z =2ω

∫ +∞

0
dqs

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

δ(ω2 − β20(q2s + k2x + k2y))

(2π)3
(1 + |ŚS̀|2),

+ 2ω

∫ +∞

0
dqp

∫ +∞

−∞
dkx

∫ +∞

−∞
dky

δ(ω2 − α2
0(q

2
p + k2x + k2y))

(2π)3
|Ṕ S̀|2.

(C.10)

Integrating over q and using polar coordinates for the horizontal wavenumbers integrals, we731

get:732

〈NSv〉z =
ω

4π2

(∫ ω/β0

0

(1 + |ŚS̀|2)kdk
β20
√
ω2/β20 − k2

+

∫ ω/α0

0

|Ṕ S̀|2kdk
α2
0

√
ω2/α2

0 − k2

)
. (C.11)

We now make the substitution k → ω sin j/β0:733

〈NSv〉z =
ω2

4π2β30

(∫ π/2

0
(1 + |ŚS̀|2) sin jdj +

∫ jc

0

β0|Ṕ S̀|2 sin j cos jdj

α0 cos i

)
, (C.12)

where sin i/α0 = sin j/β0 and jc is the critical angle of incidence of Sv waves for S-P con-734

versions. We now introduce additional relations: (1) Symmetry: β0 cos jṔ S̀ = α0 cos iŚP̀ ; (2)735

Energy conservation: |ŚS̀|2 + |ŚP̀ |2α0 cos i/β0 cos j = 1 for j ≤ jc and |ŚS̀|2 = 1 for j > jc.736

Taking these elements into account, we arrive at the result:737

〈NSv〉z =
ω2

2π2β30
. (C.13)

A similar treatment applied to P waves gives:738

〈NP 〉z =
ω2

2π2α3
0

. (C.14)

These results generalize the theoretical equipartition ratios to the case of a halfspace with a739

free surface. We observe that the ratios between NR and 〈NP 〉z, 〈NSv〉z and 〈NSh〉z are the740

same as in Equations 17, 18 and 19.741

APPENDIX D: PROBABILITY DISTRIBUTION OF BODY WAVE742

INJECTION AT DEPTH IN RAYLEIGH-TO-BODY-WAVE SCATTERING743

Rayleigh waves exist simultaneously at all depths at a given time while body waves exist744

only at a well-defined depth. Thus in the Monte Carlo simulation, we need 2D coordinate745

information (i.e. x and y) to indicate the position of a Rayleigh wave and need 3D coordinate746

information (i.e. x, y and z) for the body-wave position. For RB scattering, the scattered body747

wave shares the same 2D position as the incident Rayleigh wave, but we have to add a depth748

(z) to the body wave (i.e. inject the body wave at a depth).749

We interpret σRB as the probability distribution of RB scattering at depth. We generate750
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a possible depth for the scattered body wave (i.e. realizations of the distribution) using in-751

verse transform sampling. This sampling method requires the cumulative distribution function752

(CDF) of σRB and a random number (rand) uniformly distributed from 0 to 1. We then find753

a depth (zs) which satisfies754

CDF (zs) =

∫ zs
0 σRBdz∫∞
0 σRBdz

= rand. (D.1)

The depth (zs) is the scattered body-wave depth. For example, in RSh scattering (Equa-755

tion 11), we write the CDF as756

CDF (zs) =

∫ zs
0 σRShρ dz∫∞
0 σRShρ dz

=

∫ zs
0 r21(z, ω)dz∫∞
0 r21(z, ω)dz

, (D.2)

where
r21(z,ω)∫∞
0 r21dz

is the probability distribution function (PDF) for the RSh scattering at depth757

(Figure D1). The main part of the PDF is distributed between the one Rayleigh-wave wave-758

length depth and the surface, and the CDF value is already close to 1 at the one wavelength759

depth. Thus the scattering depth will be mostly distributed within one wavelength from the760

surface. In practice, we do not compute the integral in the Monte Carlo simulations (
∫ zs
0 σRBdz761

in Equation D.1), but instead calculate the CDF at some depths (zvec in Algorithm 4) prior762

to the Monte Carlo simulation and then interpolate the depth (z) during the simulation (Al-763

gorithm 4). In the simulation, we choose the parameters about the depths as: Dz = 0.1 and764

zmax = 10.765

APPENDIX E: GENERATING SCATTERING AZIMUTHS AND766

COLATITUDES767

We determine the type of scattered wave based on the cross sections of all possible scattered768

waves, and we use the cross section of the scattered wave to determine the scattering azimuth769

and colatitude. In calculating a cross section, we integrate the squared scattered-wave ampli-770

tudes along all possible scattering azimuths and colatitudes (e.g. Equation 8). A scattering771

azimuth (colatitude) contributing more to the integral means that more scattered-wave energy772

will be distributed at the azimuth (colatitude), which means the scattered wave will propagate773

at the azimuth (colatitude) with a higher probability. Thus we interpret the integrand (e.g. in774

Equation 8) as the PDF of scattering azimuth (colatitude). Following the same logic in Ap-775

pendix D, we use inverse transform sampling to generate scattering azimuths and colatitudes.776

For example, in ShR scattering, we only need the scattering azimuth and then write the PDF777
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Figure D1. The probability and cumulative distributions of RSh scattering with depth.

of scattering azimuth as778

PDF (ξ1) =

∑
m
|AShRm,ρ |2∫ 2π

0

∑
m
|AShRm,ρ |2dξ1

=
sin2ξ1∫ 2π

0 sin2ξ1dξ1
=
sin2ξ1
π

. (E.1)

We observe that the scattering azimuth is more likely to be π/2 and 3π/2 deg (90 and 270779

degree in Figure E1a), the azimuths orthogonal to the incident wave. No scattered Rayleigh780

waves are expected at 0 or π (180 degree) for an incident Sh wave. These observations fit our781

physical expectation in Section 2.2. We calculate the CDF based on Equation E.1, generate a782

random number (rand) uniformly distributed from 0 to 1, and generate ξ1, where CDF (ξ1) =783

rand. We use this same approach to generate random scattering azimuths for other scattering784

(e.g. the PR and SvR scattering).785

For scattered body waves we need to generate both scattering azimuth and colatitude.786
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For example, in RSh scattering, the PDF of scattering azimuth (ξ1) and colatitude (ψ1) is787

PDF (ξ1, ψ1) =

∑
m
|ARShm,ρ |2 sinψ1∫ π

0

∫ 2π
0

∑
m
|ARShm,ρ |2dξ1dψ1

=
sin2 ξ1 sinψ1∫ π

0

∫ 2π
0 sin2 ξ1 sinψ1dξ1dψ1

=
sin2ξ1 sinψ1

2π
,

(E.2)

where sinψ1 is due to the 2D spherical surface integrals in the total intensity of scattered Sh788

waves. This PDF is independent of scattering depth, and in the PDF ξ1 and ψ1 are independent789

(Figure E1b). Thus we generate the random azimuth and colatitude independently. Following790

the approach in last paragraph, we generate a random azimuth. Using inverse transform791

sampling and the PDF for the colatitude (i.e. sinψ1), we derive that the CDF for ψ1 is cosψ1.792

Thus we generate a random angle by calculating cos−1 of a random number from a uniform793

distribution between -1 and 1.794

Notice that ψ1 and ξ1 are not required to be independent as in RP scattering. In such795

a case, we need to generate a random azimuth and colatitude simultaneously. We write the796

PDF for the two parameters in the RP scattering as:797

PDF (ξ1, ψ1, zs) =

∑
m
|ARPm,ρ|2 sinψ1∫ π

0

∫ 2π
0

∑
m
|ARPm,ρ|2 sinψ1dξ1dψ1

(E.3)

=

[
r21(zs, ω) sin2 ψ1 cos2 ξ1 + r22(zs, ω) cos2 ψ1

]
sinψ1∫ π

0

∫ 2π
0

[
r21(zs, ω) sin2 ψ1 cos2 ξ1 + r22(zs, ω) cos2 ψ1

]
sinψ1dξ1dψ1

. (E.4)

We observe that the distribution also depends on the scattering depth (zs, Figure E1c and798

E1d). In this case, we first determine zs (Section D) and then find an azimuth and angle799

(ξ1,s and ψ1,s) which satisfy
∫ ξ1,s
0

∫ ψ1,s

0 PDFdξ1dξ1 = rand where rand is a random number800

from a uniform distribution between 0 and 1. In practice, instead of calculating the integral801

(
∫ ξ1,s
0

∫ ψ1,s

0 PDFdξ1dξ1) in the simulations, we calculate a 2D CDF table for all possible ξ1,s802

and ψ1,s prior to the simulation; for a more accurate table, we use the cosine values for803

scattering colatitudes (i.e. cosψ1) instead of the colatitudes (Algorithm 5). Notice that due804

to the cosine, we do not need to incorporate sinψ1 in the PDF function like the one in the805

right end of the numerator of Equation E.4.806

APPENDIX F: BODY-WAVE ANGULAR DISTRIBUTIONS ON THE FREE807

SURFACE808

To illustrate how the free-surface boundary condition (FSBC) affects the simulation, we809

present the incident and reflected body-wave angular distributions on the free surface under810
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Figure E1. The PDFs for scattering azimuth (a) and scattering azimuth and colatitude (b, c and d).

The radius in (a) is the PDF value. The color intensities in (b), (c) and (d) represent the PDF value.

The black arrows represent the incident wave. The plot titles indicate the scattering type.

the mirror and mode-conversion FSBCs. Similar to Section 5.1, we divide all wave propagation811

angles on the free surface (up-going and down-going) into 180 equal bins on the corresponding812

cosine values from -1 to 1. We define the propagation angle (ψ1) as the angle between the wave813

propagation direction and the down-going vertical direction (Figure 1). Thus cos(ψ1) values814

for up-going/incident and down-going/reflected waves are negative and positive, respectively.815

At each time step of the simulation, for each type of wave (i.e. P/Sv/Sh), we count how many816

particles encounter the free surface and get reflected in each bin. We then calculate ratios817

Algorithm 5 Calculation of a 2D CDF table

dazi = pi/180; dcosang = 2/180;

intg = 0; CDF = zeros(360,180);

for iazi=0:359 do

for icosang=0:179 do

intg = intg + PDF((iazi+0.5)*dazi,(icosang+0.5)*dcosang)* dazi * dcosang;

CDF(iazi+1,icosang+1) = intg;
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between all the particle numbers and the P-wave particle number in the vertically up-going818

bin, i.e. cos(ψ1) = −1. We average those ratios for the same wave type in a bin over a time819

range such as first and last 50 Rayleigh-wave mean free times (τR) in the simulation. We820

refer to those averaged ratios with respect to cos(ψ1) as the angular distribution for each821

type of wave on the free surface (Figure F1). We observe that, in the first 50 τR, where822

the simulations are not yet in equipartition, the two FSBCs perform differently and lead823

to two different body-wave angular distributions (Figure F1a and F1c). However, after the824

simulations reach equipartition (Figure F1b and F1d), the incident and reflected body-wave825

distributions for the two FSBCs are identical and symmetric along the zero cosine value (i.e.826

parallel to the free surface). These symmetric body-wave angular distributions fit Lambert’s827

cosine law, | cos(ψ1)|, as in the diffusion theory. The (α/β)2 for Sh/Sv waves is the intensity828

ratio between P and Sv/Sh, because we actually calculate intensity based on the number of829

particles encountering/leaving a surface, instead of energies based on the number of parti-830

cles in a space. Therefore we numerically demonstrate that the two FSBCs do not affect the831

body-wave angular distribution on the free surface in the equipartition state.832
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Figure F1. The body-wave angular distributions on the free surface under the mirror and mode-

conversion FBSCs in the first and last 50 Rayleigh-wave mean free times. The peak in c) is due to the

P-Sv-wave coupling on the free surface.


