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Abstract—Monitoring air pollution plumes in emergency situa-
tions (industrial accidents, natural disasters, deliberate terrorist
releases, etc.) becomes an issue of utmost importance in our
society given the dramatic effects that the released pollutants
can cause. Considering these situations, the pollution plume
is strongly dynamic leading to a fast dispersion of pollutants
in the atmosphere. Thus, the need for real-time response is
very strong and a solution to get precise mapping of pollution
dispersion is required to mitigate risks. However, monitoring and
forecasting air quality in real time in such situations remains
a highly challenging endeavour. In this paper, we suggest a
systemic approach for monitoring dynamic air pollution based
on aerial sensing (sensors mounted on UAVs). The proposed
framework consists of a cycle with feedback loop which will
constantly combine a spatio-temporal forecasting model based on
a convolutional long short term memory (ConvLSTM) network
with a data assimilation technique to get accurate pollution maps,
while adjusting at each time the trajectories of drones following
uncertainty forecasts. Our solution was evaluated and validated
using a highly dynamic real world data set namely Fusion Field
Trial 2007 (FFT07). The proposed strategy, together with the
obtained evaluation results, are presented, and carefully analyzed.

Index Terms—Dynamic air pollution, Deep Learning, Data
Assimilation, Uncertainty, UAVs.

I. INTRODUCTION

Monitoring the atmospheric dispersion of toxic, explosive
or irradiating pollutants, following an anthropogenic accident
(industrial, transportation of hazardous materials, etc.) or a
natural one (volcanic eruption, etc.) is a major issue given
the dramatic effects that these plumes can cause. In these
emergency situations, very large amount of pollutants are
released and quickly transported over the air, as was the case
during the Fukushima explosion in Japan (March 2011), the
Lubrizol accident in France (October 2019) or more recently
the Beyrouth harbour explosion in Lebanon (August 2020).
Besides contributing to the upliftment of the global warming,
these dirty emissions constitute a prominent danger for the
residents of the accident area, which can lose their lives, if no
adequate actions are taken rapidly. Thereby, it is primordial to
efficiently follow the pollution plume and predict its trajectory
in real time to permit to decision makers to take the adequate
actions at time and design evacuation schemes. In such emer-
gency situations, the strong and unpredictable dynamics of the
pollution plumes, the lack of knowledge of pollution sources

and emission rates, and the strong need for reactivity make
the use of conventional approaches (air quality monitoring
stations, wearable or portable sensors and detectors, dispersion
models alone) difficult and generally inefficient.

In another side, the current progress in developing low-cost
micro-scale sensing technology and the democratization of the
Unmanned Aerial Vehicles (UAVs), also referred to ”drones” is
radically changing the traditional approaches to allow real-time
air pollution monitoring in hardly accessible areas. Coupling
the data collected by the UAVs with effective spatio-temporel
forecasting models would enable precise mapping and efficient
forecasting of plume dispersion, in the goal to provide valuable
information to mitigate the risks encountered.

In air pollution field, great efforts were devoted to the
study of chronic air pollution [1]. Historically, deep learning
has been gaining ground since the significant advances in
hardware. Many works have reviewed recent solutions using
artificial neural networks (ANNs) for air pollution predictions
and have claimed their ability to extract efficient representa-
tions of relevant functionalities and characteristics from large
amounts of data [2] [3]. In another side, data assimilation
techniques that combine numerical models to real observations
have shown great potential to get accurate pollution maps [4].
However, most works in this field are focused on addressing
temporal and spatio-temporal forecasting issues for chronic
air quality. Nevertheless, the spatial and temporal resolution
needed in emergency situations is much higher to efficiently
cover the phenomenon in real time, due to the strong dynamic
of the pollution plume.

In addition, considering the criticality of the risks during
these situations, it is important to consider uncertainty quan-
tification in the predictive modelling. However, this aspect
has often been unheeded when designing pollution forecasting
models. In fact, providing such information in an emergency
situation, makes models more reliable and hence, permits
better crisis management.

In this article, we introduce a novel real-time and fine-
grained air quality monitoring system based on aerial sensing
for dynamic air pollution in emergency situations. The general
framework is based on the following components: efficient
short-term forecasting and suitable path planning approach
assuming a reliable communication between drones. This



paper offers a preliminary proposal of this framework.
The main contributions of our work can be listed as follows:
• We propose a real-time and fine-grained general frame-

work for dynamic air pollution monitoring based on
aerial sensing, in the aim to follow pollution plumes. The
system’s architecture is designed to address air pollution
monitoring issues in emergencies.

• Our proposal combines a multi-point deep learning model
based on ConvLSTM network to a data assimilation
technique to provide better estimations of the pollution
map, while constantly update the trajectories of the UAVs
with the goal to minimize the predictions uncertainty.

• We validate our general framework using a simple path
planning heuristic and we apply our proposal on a highly
dynamic real world data set namely Fusion Field Trials
2007 (FFT07). Several experiments have been conducted
to demonstrate the effectiveness of our framework, where
the impact of the number of drones deployed have been
carefully investigated.

• Our results highlight the following engineering insights:
using a small fleet of drones coupled with data assimila-
tion instead of forecasts alone gives satisfactory results.
In addition, our study suggests that it may be a good
strategy to deploy many drones at the beginning and keep
a smaller fleet on the long term. This would allow a better
management of drones autonomy.

The remainder of the paper is organized as follows. Sec-
tion II describes the context of the considered problem, the
different hypothesis taken and our objectives. Then, section
III formulates the dynamic air pollution monitoring problem
based on aerial sensing. Section IV introduces our proposed
approach to address the considered problem with details of its
different parts. Section V presents the experimental settings,
elaborates the evaluation results and show the effectiveness
of our framework. Further, in section VI, we present the prior
works while section VII concludes this paper and draws future
work.

II. CONTEXT, HYPOTHESIS AND OBJECTIVES

In this work, we consider the case where a pollutant plume
is released following an accident or a deliberate action. We
focus on monitoring outdoor plumes and without loss of gen-
erality, we consider gaseous air pollutants. Initially, we assume
that we have little or no knowledge of the pollutant dispersion
(plume size, plume contour, release source, emission rate,
etc.). We envisage the use of connected UAVs that should be
deployed as soon as the alert is given and should coordinate in
order to timely monitor, characterize and follow the pollutant
plume. We consider to that end the case of a fleet of UAVs
equipped with adequate on-board environmental sensors, GPS,
processing capabilities and wireless communication interfaces.
For this study, we assume the use of rotary wing UAVs capable
of performing hovering flight. In addition, We assume that the
sensors are calibrated properly as recommended by manufac-
turer to reduce the sensor’s errors. Regarding communication,
we assume that drones remain connected to a central point (a

station on the ground or a leader UAV) when travelling within
the area of interest.

Taking the aforementioned assumptions into consideration,
our goal is to design an air pollution monitoring system for
emergency situations based on a cooperative fleet of drones,
in order to efficiently follow the pollution plume and mitigate
the different risks. More precisely, the objectives of this study
are dual: we aim to provide a best guess of the pollution
plume while optimizing the path planning of the UAVs. These
objectives are intrinsically dependent. Indeed, the pollution
concentrations estimates impact the deployment strategy of
the drones (e.g. push the drones to measure more in certain
locations depending on the prediction results) and conversely,
the deployment of the aerial sensors influence the effectiveness
of the short-term prediction model.

To achieve these targets, we introduce a general framework
designed to perform real-time monitoring of dynamic pollution
plumes. Fig 1 presents a high level view of our framework.
As can be shown, our approach is comprised of three ma-
jor parts including: reliable communication between UAVs,
spatio-temporal prediction and anticipatory path planning. The
envisaged general approach consists in a cycle with feedback
loop that may start with a short setup phase of regular or
random navigation of the UAVs. After that, at each step the
UAVs perform environmental measurements thanks to their
different sensors. Then, all UAVs communicate their data to a
central point (station on the ground or a leader UAV). The
latter performs spatio-temporal prediction based on current
and past data and computes short-term forecasted pollutant
concentrations as well as the corresponding uncertainties. The
pollution forecasts are then corrected using an appropriate
chosen method (e.g. data assimilation technique). Afterwards,
the central point computes optimal path planning based on
these precedent predictions as well as current UAV positions,
it then communicates the new suitable positions to each UAV.
After moving to the next positions, all UAVs perform again
the sensing process and so on. The proposed approach will
continuously combine prediction of the plume evolution to
optimized path planning algorithms in order to ensure the best
plume characterization. Note that the power consumption as
well as communication issues are out of the scope of this
article and will be considered in future work.

III. PROBLEM FORMULATION

In this section, we present the mathematical formulation that
describes our dynamic air pollution monitoring problem. Let’s
consider a map of a given area that we call the monitoring
region. The latter is discretized to get a set of points P
that approximate our region of interest with a high spatial
granularity |P| = n. We consider an aerial sensing system
consisting of m drones that move between the n potential
positions within the monitoring region in order to collect air
pollution measurements z. Our objective is to be able to
provide high quality forecasts of the concentration values at
each point p ∈ P in the near future, while considering at each
time t an optimal redeployment scheme of the drones with



Fig. 1. High level view of the system’s architecture

the goal behind to improve the estimated pollution maps. The
measurements collected by the drones are used to forecast
future pollution maps while at the same time the optimal
drones path planning is performed based on the prediction
results. In other words, our goal is to estimate at best the
future concentrations map (χt+1) based on the J last partial
measurements maps (χ̂t−J+1, ..., χ̂t), that are updated each
time following the optimal drones path planning algorithm.
Mathematically, the final pollution map of the next timestamp
is inferred by calculating the maximum possible probability.

χ̃t+1(Yt+1) = argmax
χt+1(Yt+1)

p(χt+1(Yt+1)

| χ̂t−J+1(Yt−J+1), ..., χ̂t(Yt))
(1)

Y = (yij) ∈ {0, 1}m×n (2)

n∑
j=1

yij = 1 i ∈ [1,m] (3)

m∑
i=1

yij ≤ 1 j ∈ [1, n] (4)

where Yt (we omit the time argument in formulas for
simplicity sake) is an m × n matrix depending on time,
representing the positions of drones in the monitoring region
at time t (yij = 1 if the drone i is deployed at the position
j and yij = 0 otherwise). In general case, we ensure that for
each potential position p ∈ P , one drone at most is positioned
(equation 4) and we ensure that a drone is deployed in one
position at a time (equation 3).

IV. PROPOSED APPROACH

The problem we are considering in this work is pretty
complex to solve, since it requires mixing up two intrinsi-
cally dependent problems : an optimal discrete path planning

scheme of UAVs and a continuous forecasting of pollution
maps, and besides, these tasks should be performed in real
time. We tackle this issue by breaking it down into separate
parts namely: short-term forecasting, spatial fitting and drones
path planning, which makes it more affordable to solve. In
what follows, we present the core concept of our approach
and thereafter we introduce its parts with detail of the different
techniques investigated.

Our proposal consists in a cycle with feedback loop that
starts with a short setup phase of regular navigation of the
UAVs. This phase is considered as an initialization phase that
permits to perform uniform measurements within the monitor-
ing region. The objective behind this step is to characterize the
different structures used in spatial fitting in one hand and in
another hand to feed the prediction model with the collected
measurements for training purpose.

Based on the current observations and the previous ones,
our forecasting model performs short-term prediction of future
pollution map as well as the corresponding uncertainties.
Following the highest uncertainties, the UAVs are moved to
new positions and perform air pollution measurements. The
collected measurements are then forwarded to a central point
(ground station or a leader UAV) to be preprocessed. Then, the
central point uses the newly collected observations to perform
spatial fitting. In this work, we propose a data assimilation
technique for spatial fitting to correct the estimated pollution
maps generated by the forecasting model. Afterwards, the
corrected map is fed to the forecasting model to compute again
short-term forecasted pollutant concentrations and so on. The
general overview of the proposed framework is depicted in Fig
2.

A. Short-term forecasting

In this part, we consider the sequence spatio-temporal
forecasting issue of dynamic air pollution. The purpose of
this step is to determine the concentration values of the whole



Fig. 2. Flow chart of the proposed framework. The enlarged diagram represents the forecasting architecture with 4 repeated ConvLSTM layers with skip
connections

monitoring region P in the near future assuming the histor-
ical pollution maps. Therefore, the system can provide the
predicted air pollution at different locations before receiving
the real measured values from the sensing devices.

In the view of the dynamic nature of air pollution and the
spatio-temporal dependencies of the time series input data
in emergency situations, a model combining the capability
of recurrent neural networks (as LSTMs) and the feature
extraction ability of convolutional neural networks (CNNs) is
proposed. More concretely, the forecasting model consists of
two components: a feature extractor module and a prediction
module. The former is constructed by stacking multiple Con-
vLSTM layers. ConvLSTM is presented as an extension of
LSTM to cope with spatial redundancy [5].

The output of the former module is fed to a Conv2D with 1
× 1 filter to output the final estimation. Our model processes
a sequence of grayscale pollution images as 2D input images
and outputs the estimated pollution map of the monitoring
region for the next timestamp. Hence, the input pollution
data should be converted to images before feeding them to
the forecasting model. This conversion could correspond to
a simple projection if the data are uniformly distributed in
space. Otherwise, more sophisticated conversion should be
performed.

The performance of our deep learning model has been
evaluated and compared to several state-of-the-art methods
through extensive experiments in an anterior work [6] and the
effectiveness of the proposed model has been demonstrated.

The same architecture described earlier is used to infer
uncertainties of forecasts. More precisely, to quantify the

uncertainty of the forecasts, we consider prediction intervals
(PIs) rather than point forecasts. This allows to get intervals
that bracket the real values. To that end, we have compared
the quantile regression method with Monte Carlo dropout
technique on top of our forecasting architecture to generate PIs
in [6]. In this work we consider uncertainty based on quantiles
since the latter approach is not computationally expensive and
generates good quality PIs.

The lower and upper bound of the PI are directly estimated
through the forecasting network using the quantile loss de-
scribed by the equation 5, where τ is the considered quantile.
Each time, two separate models are trained, one for the lower
percentile and the other for the upper percentile to produce
PIs following a considered confidence level (coverage level).

Lτ (z, ẑ) =
∑

i|zi<ẑi

(τ − 1)|zi − ẑi|+
∑

i|zi≥ẑi

τ |zi − ẑi| (5)

B. UAVs Path Planning

In the general case, the flight route of the UAVs could influ-
ence the effectiveness of the spatial fitting and the short-term
forecasting. Indeed, the measurements collected by the drones
after adjusting their positions are fed to the spatial fitting
component to create a more precise and detailed distribution
map of the air quality. The core idea of our proposal here is to
guide drones based on the outputs of the short-term forecasting
component. Concretely, we propose a simple path planning
heuristic that has as a purpose to decrease the uncertainty
of the air quality forecasting maps. Accordingly, we consider
the uncertainties map generated by the precedent component



(short-term forecasting) to update the drones positions. More
precisely, we consider high confidence level PIs and we choose
their width to be our measure of uncertainty. Indeed, a PI is
characterized by two parameters: its coverage (the percentage
of real values inside the PI) and the width of the interval.
Therefore, as a high coverage level (e.g. 80%) is sufficient to
encompass the real observations within the PIs most of the
time [6], the width could reflect the uncertainty.

Thence, we move the drones to new positions at each step
according to the highest uncertainty locations i.e where the
width of PIs are the highest. To that end, we first sort the
n sites (nodes) within the monitoring region according to
their uncertainties in a decreasing order. Then, following the
considered order (from nodes where the uncertainty is the
highest to the ones where the uncertainty is the smallest), every
node will receive the nearest not yet treated drone and so on
till we send all the drones to their new sites. Note that even
if energy consumption is not explicitly taken into account in
this work, our heuristic permits to reduce the routes length
traveled by drones as a second criteria, which hence, reduces
the movements of drones and their energy consumption.

Several extensions of this path planning heuristic can be
proposed thereafter to take into account realistic constraints.

C. Spatial fitting

Spatial fitting designates the usage of the current data i.e
the limited number of collected observations from measured
locations and sometimes historical data as well to provide
a best estimate of the air quality at unmeasured locations
and therefore establish a more fine-grained distribution of air
pollution.

In this work, a data assimilation technique is used for
spatial fitting. Data assimilation methods combine different
sources of information to estimate at best the state of the
system. These sources represent usually the real observations
and the simulations of a numerical model. Without loss of
generality, we opted for the best linear unbiased estimator
(BLUE) technique following the satisfactory results that the
latter showed in air pollution field when its parameters are well
characterized [4]. The goal of using BLUE in our context is
to correct at each time the estimated pollution map using the
measurements collected by the drones. Mathematically, this
method aims to estimate the true state of a system xt ∈ Rn×1,
assuming an unbiased background estimate (prior knowledge)
xb ∈ Rn×1 and a partial observation u ∈ Rm×1, (m < n).
The result of BLUE is given by :

xa = xb +K(u−Hxb) (6)

where xa ∈ Rn×1 is the analyzed state which represents
the estimate of a target variable after correction (the pollution
concentrations here), K ∈ Rn×m is the Kalman gain and
H ∈ Rm×n the observation operator. Concretely H is a binary
matrix where hij = 1 if the sensor (observation) i is deployed
at position j, and hij = 0 otherwise. As seen from expression
6, the analysed state is a correction of the background estimate
with K(u−Hxb). BLUE determines the optimal Kalman gain,

by minimising the sum of the squares of the errors of the
analyzed state, as follows:

K = BHT (HBHT +R)−1 (7)

where B ∈ Rn×n is the co-variance matrix of the back-
ground estimate (prior knowledge) and R ∈ Rm×m is the
co-variance matrix of the observations. The intuition behind
using BLUE in our case study is to propagate the prediction
errors to the whole pollution map in the view of correcting the
forecasted concentration values using the real measurements.
To that end, we consider the estimated pollution map generated
by the forecasting model as our prior knowledge (background
estimate) xb while u represents the measurements collected
by the drones at m potential locations within the monitoring
region. We assume that pollution measurement errors are
uncorrelated because of the fact that they mainly depend on the
electronics of the sensing mechanism. Thus, the co-variance
matrix of sensing errors R, is a diagonal matrix. The co-
variance matrix of the prediction errors B is constructed in
the initialization phase using the measurements collected by
the drones and the outputs of the short-term forecasting model.

V. VALIDATION

In this section, we provide the results of the experimental
evaluation of our framework for dynamic air pollution. Before
going deeper in experimentation, we present the data set used
to validate our approach, the preprocessing made and we detail
the experimentation setup.

A. Data set and preprocessing

In this work, we use the Fusion Field Trial 2007 (FFT07) [7]
real world data set to evaluate our general framework. FFT07
is a set of short range (≈ 500 m) dispersion experiments
conducted at the U.S Army’s Dugway Proving Ground (DPG),
Utah in September 2007. The experiments provide high spatial
and temporal resolution dispersion of the pollutant considered
(propylene C3H6). It includes continuous and instantaneous
releases from single and multiple sources (up to 4) where
the gas is released continuously over a period of 10 min
with a release rate of 377.5 L min−1. The concentration
measurements were recorded by a set of 100 sensors that were
placed in a rectangular staggered grid of area 475 m × 450 m
in 10 rows and 10 column at a height of 2 meters above the
ground (see Fig 3).

The present study utilizes the observations measured during
multiple continuous releases (3 sources in trial 28). In total,
the trial 28 contains 4910000 records and with it, several
flags were provided to describe the status of the observa-
tions. Concerning the preprocessing made, we removed the
dysfunctional sensors entirely (10 sensors). The corrupt and
missing data were dropped and were not imputed. The reason
is that we observed that the vast majority of these latter data
were recorded towards the end of the experiment, and as
the pollution plume at this point completely disappeared, the
sensors logically measured zeros, which isn’t of much interest
for our study. Finally the concentrations data were aggregated



to a second scale and were normalized and scaled to [0,1] by
the MinMaxScaler method and de-normalization were applied
to the predicted data outputs.

To the best of our knowledge FFT07 is one of the rare highly
dynamic real world data set where punctual releases were
measured by dozens of sensors simultaneously, this makes this
data set well suited to study dynamic air pollution plumes.

Fig. 3. FFT grid for trial 28

B. Experimentation setup

In this section, we describe the details of the practical part
of this work. The high level neural network library Keras
[8] which runs on top of Tensorflow [9] is used to build
our deep learning forecasting model. Adam [10] was used as
optimizer with a learning rate of 0.00005. The weights were
initialized according to the Xavier uniform initialization [11].
The batch size was set to three and the number of epoch to
60. The parameters were chosen following a grid search in the
parameters space.

In all our evaluations, the time lag for the forecasting model
was set to 5. Also, the time of the initialization phase was set
to 10 minutes. The quality of the obtained results is measured
using mean absolute error (MAE). Its corresponding formula
is defined as follows:

MAE =
1

n

n∑
i=1

|zi − ẑi| (8)

Where zi, ẑi are the measured and predicted propylene
concentration, respectively, and n is the number of measured
values.

C. Short-term prediction quality

This experiment is designed to verify the feasibility of our
forecasting model and to show the estimated concentrations
as well as the prediction intervals generated. To that end,
we suppose having the historical data in all the nodes. The
performance of our forecasting model on four nodes (sensors)
taken at random are shown in Fig 4, where the first 80% of
the data where used for training and the following 20% for

tests in this experiment. To generate the PIs of a coverage
level of 80%, two models were trained with a percentile of
0.1 and 0.9 to infer the lower and upper bound, respectively.
As can be observed from Fig 4, the model’s predictions (in
blue) follow the general trend of the real observations (in red)
and are pretty close in terms of concentration values. We also
observe that the generated prediction intervals with a coverage
level of 80% surround the predictions made by the model and
bracket the ground truth values most of the time. It can also be
noticed that the PIs obtained are asymmetric and don’t have
the same width along the timestamps, which comforts us in
our choice of considering the PIs width as our measure of
uncertainty.

It’s worth to mention that several coverage levels for the
PIs were tested ranging from 10% to 90%, and a coverage
level of 80% is chosen here as it generates PIs with a good
compromise between percentage coverage and interval width
[6].

D. Evaluation of the general framework

In this part the global loop described in Fig 2 is considered
i.e the short-term prediction, the path planning and the spatial
fitting. The aim of this experiment is to demonstrate the
effectiveness of our general framework and to assess the
impact of the data assimilation technique ”BLUE” in the
loop. To that end, we considered three scenarios: 1) in the
first scenario, at each step, we assume the lack of knowledge
of the real observations within the whole monitoring region.
Concretely, this scenario corresponds to the case where data
assimilation is omitted and hence, the predictions made by
the model are directly injected into the historical data to
perform the upcoming predictions. 2) In the second case which
corresponds to our global loop, at each step, we assume
having partial observations collected by m drones in the
study area, for example 5 drones. In this second scenario, the
real measurements collected are fed to the data assimilation
algorithm to correct the forecasting model’s predictions. 3) In
the last scenario, the real observations of the whole grid are
at each time injected to obtain the predictions. In other words,
this could be assimilated to the case where drones are deployed
in each of the 90 nodes of the monitoring region. The resulting
scores are plotted in Fig 5. Obviously, it can be seen that the
third case scenario scores better. This is due to the use of
the real observations to predict the next timestamp pollution
map. In other hand, the first scenario corresponds to the worst
case with no drone deployed, it produces the highest errors.
Indeed, the system uses the precedent predictions to perform
the upcoming ones without being fed by the ground truth.
We observe also that using data assimilation greatly improves
the results comparing to when no spatial fitting is used. Even
deploying only 5 drones, permits to reduce the MAE from 4.8
to 3.7 where the highest pick is observed. Finally, we notice for
the three scenarios that the MAE get lower over time. That
can be explained by: 1) the fact that the sources emissions
stopped. 2) The dispersion of the pollutants released in the



Fig. 4. Ground truth Vs predicted values as well as their prediction intervals for four sensors

atmosphere: the concentrations values become progressively
lower, thus the mean absolute error decreases.

E. Impact of the training size on the mapping quality

We inspected here the effect of the training size on the
mean absolute error while considering the three scenarios
described earlier. To that end, we considered various training
sizes ranging from 2 to 12 minutes and we set the number of
drones to 10. The experience where repeated several times and
the results where averaged and depicted in Fig 6. According to
the resulting plot, we observe that increasing the training size
results in smaller errors for the three scenarios considered.
Moreover, the findings observed in the precedent test are
confirmed. Indeed, the third case scenario (using observations)
achieves the best score whatever the training size considered,
followed by the case where data assimilation is used and
then the one using only predictions. In addition, we notice
that using data assimilation reduces significantly the errors
comparing to the case where this latter is omitted, when
considering small training sizes (for instance, it scores 64%
better than the first case scenario for a training size of 2
min). Finally for large training sizes (over 10 min) the errors
obtained with the scenario using real measurements and the
one using data assimilation with partial observations are pretty
close. This is due to the fact that the forecasting model is
trained with enough data. Thus, it is able to provide accurate
pollution forecasts even with few real measurements as input.

F. Impact of the number of drones on the mapping quality

To investigate further the impact of the number of drones
deployed on the system performance. We variate the num-
ber of UAVs deployed considering these values m ∈
{5, 10, 20, 30, 40}. The MAE in each case is computed and
depicted in Fig 7. Results confirm that the more drones you
deploy, the lower the MAE is and hence better is the result.

Moreover, generally, considering more than 30 drones in our
monitoring region is not of much practical value since as
shown in this experiment, it doesn’t provide any advantage as
the performances stagnate. In addition, from a certain point of
the experiment, decreasing the number of the deployed drones
to 10-20 has a modest impact on the errors.

Fig. 5. Mean Absolute Error Vs timestamp, considering three cases: using
real measurements, using data assimilation with 5 drones deployed and using
the predicted values

Fig. 6. Mean Absolute Error Vs training size considering three cases: using
real measurements, using data assimilation with 10 drones and using the
predicted values

VI. RELATED WORKS

The problem considered in this paper has two main search
axis that should be considered to design and evaluate our
global systemic approach.



Fig. 7. Mean Absolute Error Vs timestamp, considering various number of
drones m ∈ {5, 10, 20, 30, 40}

The first axis covers works on the spatio-temporal air quality
prediction. At this axis, a lot of machine and deep learning
approaches were recently proposed [12] [13] as well as some
data assimilation solutions that combine measurements with
physical models [14]. A recent work of Du et al. propose a
deep learning model named DAQFF for PM2.5 single step
forward and multi-step forward forecasting. The framework is
compromised of two components: a multiple one dimension
convolution layers (CNN) and a bidirectional LSTM [15]. The
first component is used to extract spatial features between
stations and the second one to capture the temporal features
in the time series input data. In Another work [16], a deep
forecasting model combining an artificial neural network with
CNN and LSTM is developed to extricate spatio-temporal
relations and forecast air pollution for up to 48 h. In this work,
different meteorological data as well as information related
to the elevation space to extract terrain impact on air quality,
were used. The evaluations carried out demonstrated the effec-
tiveness of the proposed model compared to the state-of-the-
art methods considered. In this axis, most of the approaches
may be of interest in our case. However, they are focused on
addressing the case of monitoring chronic pollution. Therefore,
they don’t consider the numerous challenges of emergency
situations and none of them incorporate the uncertainty in their
forecasting models.

The second axis considered concerns path planning of
UAVs. Quite recently, considerable attention has been paid to
the use of UAVs in several domains [17] [18] In [19], Wei and
Zheng present an informative path planning algorithm based
on a reinforcement learning approach using a single robot. In
the formulated problem, the reward of a path is defined based
on the information collected through it. The authors modeled
the problem as a sequential decision process and proposed a
solution based on the Q-learning algorithm. In another work
[20], the authors propose a path planning algorithm for robot
navigation while combining global planning and reinforcement
learning. First, a path graph is built using an accepted-rejected
sampling where points are generated randomly and deleted if
located in obstacle regions. After random sampling, the paths
collided with the obstacles are removed and the k nearest
points from the collision-free paths are computed for each
source point. Finally, a Q-learning algorithm is performed to
find the next path point according to the current position. These
general approaches are very interesting, however, to the best

of our knowledge, only few pollution-specific solutions were
proposed in the literature [21] and the majority of approaches
considered the use of a single UAV.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a general framework designed to monitor real-
time dynamic air pollution in emergency situations is intro-
duced. The problem addressed involves predicting accurate
pollution maps while at the same time considering a suitable
drones path planning approach to improve the concentrations
forecasting. The architecture of our framework includes the
following components: short-term prediction, spatial fitting
and drones path planning. The short-term prediction is per-
formed using a spatio-temporal deep learning model based
on ConvLSTM, which is an adequate choice to model high
dynamic pollution map due to its capacity to capture the
temporal and spatial dependency within a neighborhood. The
spatial fitting is realized using a data assimilation technique
named ”BLUE”, which has as objective to correct the esti-
mated pollution map generated by the forecasting model when
using the real observations collected by the drones. Finally,
a simple path planning heuristic is proposed to validate our
framework. This heuristic updates the drones positions at each
time following the highest uncertainties. Our solution was
validated and evaluated through several experiments using a
real world dynamic data set (FFT07). The preliminary analysis
and results point towards interesting potential of the proposed
framework. We aim in our future work at extending our
framework to incorporate more sophisticated path planning
algorithms. For instance, the latter can be designed to take
into account communication constraints as well as the limited
power consumption of the drones. For example, we can
decrease progressively the number of the drones deployed over
time, which will enable a better autonomy management of
the drones. Indeed, at the beginning of the plume dispersion,
the uncertainties are the highest and the lack of knowledge
is important, which justifies a deployment of larger number
of drones at first. Another open direction is to envisage the
consideration of an online learning model capable of a constant
evolution (update of its parameters) with the possible evolution
of the data arriving. The cost of this model in terms of
forecasting accuracy and time processing will be carefully
investigated.
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