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Abstract

Within the de Broglie-Bohm (dBB) theory, the measurement process and the
determination of its outcome are usually discussed in terms of the effect of the
Bohmian positions of the measured system S. This article shows that the Bohmian
positions associated with the measurement apparatus M can actually play a crucial
role in the determination of the result of measurement. Indeed, in many cases, the
result is practically independent of the initial value of a Bohmian position associated
with S, and determined only by those of M. The measurement then does not reveal
the value of any pre-existing variable attached to S, but just the initial state of
the measurement apparatus. Quantum contextuality then appears with particular
clarity as a consequence of the dBB dynamics for entangled systems.

A well-known feature of standard quantum mechanics is that the result of a mea-
surement does not reveal the value of any pre-existing physical quantity attached to
the measured system S; in most situations, the result is actually created during the
interaction process between S and the measurement apparatus. Jordan, as quoted by
Bell [1], wrote for instance: “In a measurement of position, the electron is forced .. to as-
sume a definite position; previously, it was neither here nor there, it had not yet made its
decision to a definite position..”. Within standard quantum mechanics, quantum contex-
tuality [2–4] is a well-known consequence of this property. In the de Broglie-Bohm (dBB)
theory [5, 6], the result is completely determined by the initial value of the positions,
which evolve within a deterministic dynamics [7–12]. The only source of randomness
arises from the fact that these positions are unknown. Now, when a quantum system S
interacts with a measurement apparatus M, one may wonder if the result is primarily
determined by the Bohmian positions associated with S, or by those associated with the
macroscopic measurement apparatus M.
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In most cases, the number of Bohmian positions associated with M is much larger
than that associated with S, and it seems natural that these positions should play a role.
But, curiously, the measurement process within dBB theory is often discussed in a model
where M is treated as a classical external potential acting on S, which amounts to merely
ignoring the quantum properties of M. For instance, in a Stern-Gerlach experiment, the
effect of the magnet on the incoming atom is treated classically through the action of
given external magnetic gradient; all effects of quantum entanglement between S and
M are then ignored. It is then clear that the initial Bohmian position of the incoming
particle within its wave function is the only variable that can determine the final outcome
(whether the particle is deviated upwards or downwards). Indeed, informal discussions
with colleagues physicists often reveal the belief that, within the dBB theory, the result
of measurement is determined by the initial value1 of the Bohmian variable(s) attached
to S.

The role of the variables attached to M is nevertheless also discussed by some au-
thors. For instance, Holland [8] shows how these variables introduce irreversibility in
the registration process of the final result, an essential step in any real measurement
process. Bricmont [11] gives a similar discussion in terms of effective collapse and deco-
herence. The possible influence on the result itself is explicitely mentioned by Dürr and
Teufel [13] but they consider that, in line with one’s intuition, the result of measurement
is often determined by the positions attached to S alone, and not by the initial value of
the coordinates of the particles of the pointer particles belonging to M.

The purpose of the present article is to show that this is not the case in general,
and even that the complete opposite may be true. Indeed we will see that, in many
cases, the measurement result is actually almost independent of the Bohmian positions
attached to S; it is rather determined by the initial values of the Bohmian position of
M. The measurement result is then a consequence of the initial physical state of the
measurement apparatus, and may appear as predetermined. This idea has some internal
consistency: it seems natural that, in the interaction between a large system and a small
system, the former dominates the process and forces the small system to follow a given
evolution.

1 A model of a spin measurement

In the historical Stern-Gerlach experiment [15], what was observed was the accumulation
of silver atoms onto a glass slide. This method does not seem really appropriate for the
measurement of single particles. Moreover, various recoil effects affect the atoms inside
the measurement apparatus: depending on the result of measurement, the atoms and
molecules inside in the magnet recoil upwards or downwards, various localized phonon
emission processes occur inside the glass plate, etc. Modelling these effects and the
resulting changes of quantum states would be a complicated task. We will therefore

1The relation between this initial value and the result should then be contextual, as emphasized for
instance in Refs [7, 11,14].
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introduce an optical version of the experiment that seems to be more appropriate for a
quantum treatment of single measurement events.

1.1 Optical Stern-Gerlach experiment

The experiment is sketched in figure 1. The atom wave packet propagates along the
direction of the Ox axis, and then crosses two wave packets of photons having opposite
directions of propagation and circular polarizations, emitted respectively by two single
photon sources E1 and E2. Depending on the spin state of the atom, one of the photons
is absorbed and scattered in all directions, while the atom undergoes a recoil that pushes
it either upwards of downwards. The other non absorbed photon is detected by either
detector D1 or D2, which provides a measurement of the atomic spin along direction Oz.
We assume that, initially, the atom is in a coherent spin state:

α |+〉+ β |−〉 (1)

with the normalization condition |α|2 + |β|2 = 1.

1.2 Wave function

We use a notation that is similar to that of Ref. [16]. The initial quantum state of the
whole system at time t = 0 is symbolized by the expression:

|Φ(t = 0)〉 =
[
α |+〉+ β |−〉

] ∣∣ϕ0
z

〉 ∣∣ϕ0
x

〉 ∣∣ϕ0
y

〉 N∏
p=1

∣∣χ0
1

〉
p

N∏
n=1

∣∣χ0
2

〉
n

(2)

where
∣∣ϕ0

z

〉 ∣∣ϕ0
x

〉 ∣∣ϕ0
y

〉
is the ket describing the orbital state of the atom as a product of

Oz, Ox and Oy states. The kets
∣∣χ0

1

〉
p

and
∣∣χ0

2

〉
n

respectively describe the initial states

of the pointer (or other) particles inside the first and second measurement apparatuses.
For simplicity, we will treat these particules as unidimensional.

First assume that each source E1,2 emits one photon; one is scattered, and the other
is absorbed by either D1 or D2, depending on the state of the spin. An amplification
process takes place in the photomultipliers, and drives the positions of the N particles
inside the pointers of both apparatuses. After the measurement has taken place, the
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state of the system becomes2:

|Φ(t)〉 = α |+〉
∣∣ϕ+

z (t)
〉 ∣∣ϕ0

x(t)
〉 ∣∣ϕ0

y(t)
〉 N∏
p=1

∣∣χ+
1 (t)

〉
p

N∏
n=1

∣∣χ0
2(t)
〉
n

+ β |−〉
∣∣ϕ−z (t)

〉 ∣∣ϕ0
x(t)

〉 ∣∣ϕ0
y(t)

〉 N∏
p=1

∣∣χ0
1(t)
〉
p

N∏
n=1

∣∣χ−2 (t)
〉
n

(3)

2We consider that, in the final state |Φ(t)〉, the two photons have been absorbed, either by one of the
detectors, or the environment; one should then consider that the states

∣∣χ1,2(t)
〉

also describes particles
in the environment. The initial and final states of the radiation in (2) and (3) are then the vacuum state,
which does not have to be written explicitly. Moreover, in order the increase the recoil effect of the
atom, we may assume that each source has emitted N photons instead of one. This would not change
the structure of the calculation either.

O

z

x

D1

D2

M1

M2

E2

E1

Figure 1: Schematic representation of an optical version of the Stern-Gerlach experiment.
A spin 1/2 particle is described by a wave packet propagating in the direction of the
Ox axis, and symbolized by the solid ellipse in the figure. If the particle is in the
|+〉 spin state, it can absorb a circularly polarized photon emitted by E1, but not the
photon emitted by E2, since it has the opposite circular polarization. The converse
is true if the particle is in the spin |−〉 state. In the former case, the photon recoil
transfers a positive momentum to the wave packet along axis Oz, in the latter case a
negative momentum. Either photon detector D2 or D1 then registers a clic, and its
signal is amplified sufficiently to move the position of a macroscopic pointer displaying
the results in apparatuses M2 or M1. We assume that the spin particle is initially in a
coherent superposition α |+〉+ β |−〉 of the two spin eigenstates.
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In this expression, |ϕ±z (t)〉 is the ket describing the motion of the atom wave packet of the
particle along Oz when a photon has provided a positive, or negative, recoil to the atom.
In both cases, we assume that the motion along Ox and Oy is not affected, and remains
described by the freely propagating state

∣∣ϕ0
x,y(t)

〉
. The wave functions associated with

these kets are:

ϕ±z (z, t) ∼
[
a4 +

4}2t2

m2

]−1/4
exp

{
±imvz

}
− [z ∓ vt]2

a2 + 2i}t
m

}
(4)

and:

ϕ0
x(x, t) ∼

[
a4 +

4}2t2

m2

]−1/4
exp

{
− x2

a2 + 2i}t
m

}
(5)

where a is the minimal width of the Gaussian wave packet (assumed to be the same along
the three axes), m the mass of the particle, and ±v its recoil velocity after absorbing
a photon from either emitter E1 or E2. A similar expression gives the expression of
the wave function along axis Oy. Since neither direction Ox nor Oy plays a role in the
calculation, we merely ignore the corresponding wave functions in what follows. The
phase S±z (z, t) of ϕ±z (z, t) is:

S±z (z, t) = ±mvz
}

+
2}t
m

[z ∓ vt]2

a4 + 4~2t2
m2

(6)

Similarly, the wave functions associated with the states |χ0
1,2(t)〉 and |χ+

1,2(t)〉 are3:

χ0(z, t) ∼
[
b4 +

4}2t2

M2

]−1/4
exp

{
− z2

b2 + 2i}t
M

}

χ±(z, t) ∼
[
b4 +

4}2t2

M2

]−1/4
exp

{
±iMV z

}
− [z ∓ V t]2

b2 + 2i}t
M

}
(7)

where M is the mass of the pointer particles, b the initial width of their wave packets,
and V their velocity when the detector has counted one photon. Therefore, the phases
ξ0(z, t) and ξ+(z, t) of these functions are:

ξ0(z, t) =
2}tz2

M
[
b4 + 4~2t2

M2

]
ξ±(z, t) = ±MV z

}
+

2}t
M

[z ∓ V t]2[
b4 + 4~2t2

M2

] (8)

3For the sake of simplicity, we assume that the arbitrary axis along which all pointer particles move
is Oz; the variable zp,n gives the position of the n, p-th particle with respect to some initial reference
position, which may differ from one particle to the other.
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2 Motion of the Bohmian positions

We now calculate the motion of the Bohmian positions, driven by the gradients of the
phase of the wave functions.

2.1 Equation of motion for a generic single particle with spin

To obtain a first idea of the calculation, assume first that we have a single particle with
spin 1/2. It may be described at any time by the spinor:

α |+〉
∣∣ϕ+(t)

〉
+ β |−〉

∣∣ϕ−(t)
〉

(9)

with:

〈r
∣∣ϕ+(t)

〉
= ϕ+(r, t) = |ϕ+(r, t)| eiS+(r,t)

〈r
∣∣ϕ−(t)

〉
= ϕ−(r, t) = |ϕ−(r, t)| eiS−(r,t) (10)

and |α|2 + |β|2 = 1; the two functions ϕ±(r, t) are supposed to be normalized. The
associated probability current is the sum of the contributions of the two spin components:

J(r) =
~
m

[
|α|2

∣∣ϕ+(r)
∣∣2∇S+(r) + |β|2

∣∣ϕ−(r)
∣∣2∇S−(r)

]
(11)

The Bohmian velocity v(r) is nothing but the ratio between this current and the local
probability density:

v(r) =
~/m

|α|2 |ϕ+(r)|2 + |β|2 |ϕ−(r)|2
[
|α|2

∣∣ϕ+(r)
∣∣2∇S+(r) + |β|2

∣∣ϕ−(r)
∣∣2∇S−(r)

]
(12)

2.2 Coupling between the positions of the spin particle and pointer
particles

We now come back to the optical Stern-Gerlach experiment. From now on, and as
mentioned above, we focus our calculation on the Oz component of the positions only.
We call Q the Oz component of the Bohmian position of the spin particle, Zn and Zp

the (one dimensional) Bohmian positions of the pointer particles. For the many particle
state (3), the Bohmian velocity of the spin particle is:

d

dt
Q =

~
mD(Q,Zp, Zn)

[
|α|2

∣∣ϕ+
z (Q, t)

∣∣2∏
p

∣∣χ+(Zp, t)
∣∣2∏

n

∣∣χ0(Zn, t)
∣∣2∇S+(Q, t)

+ |β|2
∣∣ϕ−z (Q, t)

∣∣2∏
p

∣∣χ0(Zp, t)
∣∣2∏

n

∣∣χ−(Zn, t)
∣∣2∇S−(Q, t)

]
(13)
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with:

D(Q,Zp, Zn) = |α|2
∣∣ϕ+

z (Q, t)
∣∣2∏

p

∣∣χ+(Zp, t)
∣∣2∏

n

∣∣χ0(Zn, t)
∣∣2

+ |β|2
∣∣ϕ−z (Q, t)

∣∣2∏
p

∣∣χ0(Zp, t)
∣∣2∏

n

∣∣χ−2 (Zn, t)
∣∣2 (14)

and:

∇S±(Q, t) = ±mv
}

+
4}t
m

Q∓ vt[
a4 + 4~2t2

m2

] (15)

The velocity of the spin particle is therefore a weighted average of the velocities associated
with two wave packets at point Q, describing upwards and downwards motions resulting
from opposite recoil effects. As expected with an entangled quantum state, the weights
depend, not only of the position Q of the particle, but also on the positions Zp and Zn

of all pointer particles.
Similarly, the velocity of any pointer particle is given by the relation:

d

dt
Zp =

~
MD(Q,Zp, Zn)

[
|α|2

∣∣ϕ+
z (Q, t)

∣∣2∏
p

∣∣χ+(Zp, t)
∣∣2∏

n

∣∣χ0(Zn, t)
∣∣2∇ξ+(Zp, t)

+ |β|2
∣∣ϕ−z (Q, t)

∣∣2∏
p

∣∣χ0(Zp, t)
∣∣2∏

n

∣∣χ−(Zn, t)
∣∣2∇ξ0(Zp, t)

]
(16)

with:

∇ξ±(Z, t) = ±MV

}
+

4}t
M

Z ∓ V t[
b4 + 4~2t2

M2

]
∇ξ0(Z, t) =

4}tZ

M
[
b4 + 4}2t2

M2

] (17)

where Z stands for Zp or Zn. The time evolution of the positions Zn is given by an
expression similar to (16), where ∇ξ+(Zp, t) is replaced by ∇ξ0(Zn, t) and ∇ξ0(Zp, t) by
∇ξ−(Zn, t). Again, we see that the velocity of each pointer particle is a weighted average
between the velocities associated with two wave packets, but for the pointers one of the
wave packets is static.

2.3 Slow and fast pointers

The two wave packets of the spin particle separate in a time of the order of τa ' a/vz,
those of the pointer particles separate in a time of the order of τ b ' b/V . The ratio
between these times is:

E =
τa
τ b

=
aV

bv
(18)
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If E > 1, the pointers are fast, indicating a result before the two wave packets of the
spin particle separate; if E < 1, they are slow, and the wave packets of the spin particle
no longer overlap when the pointers start to indicate a definite result.

2.4 The dynamics of all particles in each pointer reduces to that of a
single particle

We have assumed that all particles inside each of the two pointers have the same mass
and are described by Gaussian wave packets with identical initial widths. In this case,
we will show that their effect on the trajectory of the spin particle is identical to that of
two fictitious pointers, each containing a single particle with position Ẑ1,2:

Ẑ1 =
1√
N

N∑
p=1

Zp Ẑ2 =
1√
N

N∑
n=1

Zn (19)

In these relations, the
√
N ensures that Ẑ1,2 have the same variance and statistical

properties as any individual pointer position Zn,p. In this substitution of variables, we
will see that the effective velocity associated with the fictitious pointers becomes

√
NV .

To obtain these results, we insert relations (7) into the expression (13) of the velocity

of the spin particle. We then see that several factors appear in both
∣∣χ0

2(Zp,n, t)
∣∣2 and∣∣χ+

2 (Zp,n, t)
∣∣2, cancelling each other in the numerator and the denominator. In (13), we

can therefore replace all the |χ0(Zp,n, t)|2 by 1, and the |χ±(Zp,n, t)|2 by the remaining
factors: ∣∣χ±(Zp,n, t)

∣∣2 ⇒ exp

{
2b2

b4 + 4}2t2
M2

[
± 2V tZp,n − V 2t2

]}
(20)

Moreover, when the numbers of particles in both pointers are assumed to be equal,
the terms in −V 2t2 appear N times in both components in the numerator and the
denominator, so that they also cancel each other. Taking for instance the product over
p then leads to the following substitution:∏

p

∣∣χ±(Zp, t)
∣∣2 ⇒ exp

{
± 4b2

b4 + 4}2t2
M2

√
NV tẐ1

}
(21)

A product over n provides a similar result, where Ẑ1 is replaced by Ẑ2.
A similar simplification occurs with the wave function (4) of the spin particle. The

squared moduli of two wave functions of the spin particle are:∣∣ϕ±z (Q, t)
∣∣2 ∼ exp

{
− 2a2

a4 + 4~2t2
m2

[Q∓ vt]2
}

(22)

which also contain several common factors; only the terms linear in vt are relevant. We
can therefore make the substitutions:∣∣ϕ±z (z, t)

∣∣2 ⇒ exp

{
± 4a2

a4 + 4~2t2
m2

vtQ

}
(23)
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We then obtain the simpler relations:

d

dt
Q =

~
mD

[
|α|2 exp {R1}∇S+(Q, t) + |β|2 exp {−R2}∇S−(Q, t)

]
(24)

with:
D = |α|2 exp {R1}+ |β|2 exp {−R2} (25)

and:

R1,2 =
4a2

a4 + 4~2t2
m2

vtQ+
4b2

b4 + 4}2t2
M2

√
NV tẐ1,2 (26)

These equations show that the motion of Q depends on the positions of the pointer
particles only through the variables Ẑ1 and Ẑ2. One can actually even go further, and
note that the contribution of all pointer particles reduces to that of the average position
(Ẑ1 + Ẑ2)/2 of the fictitious pointers4.

Physically, for the first pointer, positive initial positions of the particles tend to favor
the component of the state vector where the pointer wave packets have a positive velocity,
over the other component in which they are static. If it turns out that the particles in
the pointer already tend to indicate a positive result before the measurement starts, the
probability of a positive spin result is increased. In the second pointer, positive initial
positions favor the same component of the state vector: in this component, the pointer
wave packets have a zero initial velocity, while in the other they go further away with
a negative velocity. So, for both pointers, positive values of the positions tend to favor
trajectories of the spin particle flying upwards with a spin up. Moreover we have seen
that, in the special case where all the wave packets are gaussian, only the sum of all
values of Zn and Zp plays a role in the process.

In order to obtain the evolution of Ẑ1, we now sum relation (16) over all values of p
and divide by

√
N . As above, simplifications between terms in the numerator and the

denominator take place and we obtain:

d

dt
Ẑ1 =

~
MD

[
|α|2 exp {R1}∇ξ̂

+
(Ẑ1, t) + |β|2 exp {−R2}∇ξ̂

0
(Ẑ1, t)

]
(27)

with the values obtained from (17):

∇ξ̂±(Ẑ, t) = ±M
√
NV

}
+

4}t
M

Ẑ ∓
√
NV t[

b4 + 4~2t2
M2

]
∇ξ̂0(Ẑ, t) =

4}tẐ

M
[
b4 + 4}2t2

M2

] (28)

Similarly, we have:

d

dt
Ẑ2 =

~
MD

[
|α|2 exp {R1}∇ξ̂

0
(Ẑ2, t) + |β|2 exp {−R2}∇ξ̂

−
(Ẑ2, t)

]
(29)

4The difference (Ẑ1 − Ẑ2) evolves separately in time, under the only effect of the spreading of the
wave packets.
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As a result, because of the particular form of the Gaussian wave packets, all Bohmian
positions inside each pointer can be replaced by the position of their center of mass
multiplied by

√
N , and be treated as a the position of a single fictitious pointer particle.

The equations of motion (24), (27) and (29) show that the velocity of the fictitious
pointers is also multiplied by the square root

√
N . If N is very large, the fictitious

pointers become very fast; we will see that this implies that the influence of the pointers
on the trajectory of the spin particle is dominant.

2.5 Dimensionless variables

For convenience, and use in the numerical calculations, we introduce dimensionless vari-
ables by setting:

Q′ =
Q

a
v′ =

ma

~
vz (30)

All positions are then expressed in terms of the initial widths of the corresponding wave
packets. For the pointer particles, we set:

Z ′p,n =
Zp,n

b
V ′ =

Mb

~
V (31)

and:

Ẑ ′1,2 =
Ẑ1,2

b
(32)

We also introduce a dimensionless time t′ by:

t′ =
~
ma2

t (33)

and note that the rapidity parameter E is now given by:

E = η
V ′

v′
(34)

with:

η =
ma2

Mb2
(35)

In (24) and following equations, we can then make the substitutions:

exp

{
± 4a2

a4 + 4~2t2
m2

vtQ

}
⇒ exp

{
± 4v′t′

1 + 4(t′)2
v′t′Q′

}
(36)

and:

exp

{
± 4b2

b4 + 4}2t2
M2

√
NV tẐ1,2

}
= exp

{
±

4η
√
NV ′t′Ẑ ′1,2

1 + 4η2(t′)2

}
(37)

For the spin particle, the gradients of the phase are given by:

∇S±z (Q) = ±v
′

a
+

4t′

a

Q′ ∓ v′t′

1 + 4(t′)2
=

1

a

±v′ + 4t′Q′

1 + 4(t′)2
(38)
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while, for the fictitious pointer particles, relations (28) lead to:

∇ξ±1 = ±
√
NV ′

b
+

4ηt′

b

Ẑ ′ ∓ η
√
NV ′t′

1 + 4η2(t′)2

∇ξ01 =
4ηt′

b

Ẑ ′

1 + 4η2(t′)2
(39)

When these substitutions are made, we obtain dimensionless equations of evolution:

d

dt′
Q′ =

1

D
′

[
|α|2 exp

{
R′1
} [v′ + 4t′Q′

1 + 4(t′)2

]
+ |β|2 exp

{
−R′2

} [−v′ + 4t′Q′

1 + 4(t′)2

]]
(40)

with:
D
′
=
[
|α|2 exp

{
R′1
}

+ |β|2 exp
{
−R′2

}]
(41)

and:

R′1,2 =
4v′t′Q′

1 + 4(t′)2
+

4η
√
NV ′t′Ẑ ′1,2

1 + 4η2(t′)2
(42)

For the motion of the pointers, we obtain:

d

dt′
Ẑ ′1 =

1

D
′

[
|α|2 exp

{
R′1
} [√NV ′ + 4ηt′Ẑ ′1

1 + 4η(t′)2

]
+ |β|2 exp

{
−R′2

} [ 4ηt′Ẑ ′1
1 + 4η2(t′)2

]]
(43)

and:

d

dt′
Ẑ ′2 =

1

D
′

[
|α|2 exp

{
R′1
} [ 4ηt′Ẑ ′2

1 + 4η2(t′)2

]
+ |β|2 exp

{
−R′2

} [√NV ′ + 4ηt′Ẑ ′2
1 + 4η2(t′)2

]]
(44)

We notice that the Planck constant ~ has disappeared from these equations. In
addition to the initial degree of polarization of the spin:

σ = |α|2 − |β|2 (45)

these equations contain four dimensionless parameters: the two reduced velocities v′ and
V ′, the parameter η, and the number of particles N within each pointer. Since N and V ′

appear only through the product
√
NV , the number of these four parameters actually

reduces to three.

3 Results

In order to understand the influence of the values of the initial positions of the spin
particle and those of the pointers, we now apply the preceding considerations to various
situations.
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3.1 Zero initial spin polarization

We first study the case where the initial spin polarization is zero, meaning that no
result of measurement is privileged by the rules of standard quantum mechanics. Any
imbalance can then result only from the influence of the Bohmian positions, either of
the spin particle, or of the particles in the pointers.

3.1.1 Uncoupled pointers, or no pointer

If we set V ′ = 0 in the equations, R′1 and R′2 are equal, and the motion of the spin
particle decouples from that of the pointers. Physically, when the pointer states χ0(z, t)
and χ±(z, t) in (7) remain identical, no quantum entanglement develops from the initial
quantum state (2). Figure 2 shows the trajectories obtained in this case. They are
actually exactly the same as the usual trajectories (when the effect of the measurement
apparatus is treated as a classical external potential). For simplicity, we have assumed
that each pointer contains a single particle, but the value of N is actually irrelevant for
the motion of the spin particle, which remains unaffected by the pointers. The left part
of the figure shows several trajectories of the spin particle starting from various initial
positions (41 different values of Q′(0), equally spaced in the interval ±1.5) , the central
part the trajectory of the first pointer, and the right part the trajectory of the second
pointer. As expected in the absence of entanglement, both pointers remain still in this
case, and therefore do not indicate any result of measurement.

3.1.2 Few particles in the pointers

Now assume that the pointers have a finite velocity (V ′ = v′), so that the pointers are
entangled with the spin particle. Each pointer still contains only one particle, with the
same initial position as in figure 2. The trajectories are shown in figure 3. The major
change is that the pointers now move and indicate in which direction the spin particle
flies at the end of the measurement process. If the spin particle flies upwards, the
trajectory of the first pointer moves upwards, while that of the second pointer remains
almost motionless; if the spin particle flies downwards, the first pointer remains still
while and the second pointer moves downwards. Nevertheless, with only two pointer
particles coupled to the spin particle, and with the initial positions Z1(0) = 0.2 and
Z2(0) = 0.1, the trajectories of the spin particle are not strongly changed with respect
to those of figure 2.

Now, if the initial positions of the pointers take larger positive values, which favours
a spin up result, figure 4 shows that more trajectories of the spin particle go in the up
direction. This is a first illustration of the influence of the initial positions of the particles
in the pointers: the proportion of trajectories going up and down differs from the simple
predictions of the Born rule. One could then worry because, in this figure, the proportion
of trajectories going up is larger than the quantum probability of obtaining a spin up
result. Nevertheless, in other situations where the initial positions of the pointers favour
a spin down result, the opposite is true (the trajectories are merely obtained from those

12
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Figure 2: Trajectories obtained when V ′ = 0, so that the motion of the pointers decouples
from that of the spin particle. Each pointer contains only one particle. The initial spin
polarization of the spin particle is σ = 0. In all figures of this article, we take the
parameter η = ma2/Mb2 equal to unity (η = 1) and v′ = mavz/~ = 10.
The left part of the figure shows the trajectories of the spin particle starting from different
initial positions, the central and right part the trajectories of the particles in the first
and second pointers. Since V ′ = 0, the trajectories of the spin particles are exactly the
same as those usually obtained when the measurement apparatus is treated classically
(through a given external potential). The initial positions of the two pointer particles
are Z1(0) = 0.2 and Z2(0) = 0.1, but these values are irrelevant for the trajectory of the
spin particle. The pointers remain motionless, except a small drift due to the spreading
of their (otherwise static) wave packets.

of figure 4 by a symmetry with respect to the horizontal axis). If a proper quantum
average is taken over the initial positions of the pointers, the proportion of trajectories
going up and down reproduces the quantum average exactly. Not surprisingly, the effect
of the initial positions of the pointers increases with larger values of the number of
pointer particles. Figure 5 shows what happens when N increases from 1 to 25. We see
that this significantly enhances the influence of the pointer particles on the Bohmian
trajectory of the spin particle (and spin direction at the end of the measurement).

3.1.3 Pointers containing many particles

In a realistic measurement apparatus, the pointers are macroscopic objects, and the
number of particles they contain is some fraction of the Avogadro number.

Figure 6 is obtained in the same conditions as figure 5, but with a much larger
number of pointer particles (N = 104 ) and only a very small positive offset of the initial
Bohmian positions Ẑ1,2(0) = 0.02. A striking effect is that this small offset is sufficient to
force all trajectories of the spin particle to fly upwards at the output of the measurement
apparatus, whatever the initial position of this particle. In this case, we see that it is
really the pointers that “decide” what the measurement result should be and, so to say,
force the particle to “obey to this decision” and to take a spin up value with a trajectory
flying upwards.
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Figure 3: The only change of the input parameters with respect to those of figure 2 is
that V ′/v′ = 1, so that the motions of the spin particle and of the pointers are coupled.
The positions of the two pointer particles now significantly evolve in time: if the spin
particle flies upwards at the end of the measurement, the first pointer (central part of
the figure) moves upwards, while the second pointer (right part of the figure) remains
still; if the spin particle flies downwards, the first pointer remains still and the second
pointer moves downwards. The trajectories of the spin particle remain similar to those
in figure 2.

This “all or nothing” effect of the pointer position shows very clearly that, what de-
termines the final result of measurement is not the Bohmian position of the spin particle,
but rather those of the particles inside the measurement apparatus. The standard quan-
tum results are nevertheless recovered when an average is taken over all initial positions
of the pointers, as we have checked numerically.
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Figure 4: Same situation as in figure 3 (no spin polarization, two pointer particles), but
now the initial positions of the pointer particles have larger positive Z1(0) = 0.6 and
Z2(0) = 0.4. This favors an upwards deviation of the spin particle. Even if the quantum
state is exactly the same as in figure 3, the positive initial values of the positions of the
two pointer particles have a significant effect on the trajectories of the spin particle.
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Figure 5: Same situation as in figure 3 (no spin polarization, Ẑ1(0) = 0.2 and Ẑ2(0) =
0.1), but with 25 particles in each pointer. The increase of the number of particles in
the pointers significantly enhances their influence on the trajectory of the spin particle.

.

3.2 Nonzero initial spin polarization

When the initial spin polarization does not vanish, it introduces a preferred result of
measurement, and therefore a preferred deviation of the particle trajectory. In the
limiting case where the spin is fully polarized in one direction, one of the two components
of the many body wave function (3) vanishes, and the final direction of motion of all the
Bohmian positions is fixed; the initial value of the position of the spin particle plays no
role in the result of measurement.

It is more interesting to study intermediate situations, where a compromise has to
occur between the quantum mechanical preference for one of the results and the influence
of the initial values of the Bohmian positions.

3.2.1 Few particles in the pointers

Figure 7 shows the trajectories when the spin polarization is σ = +0.5, assuming that the
average initial positions of the 25 pointer particles are positive. In this case, all particle
trajectories move upwards, as if the spin polarization were 100%. Figure 8 shows what
happens when the average initial positions of the pointers are negative. In this case,
some trajectories go downwards. Again, the standard quantum average is recovered
only when a statistical average over the initial positions of the pointer is applied.

3.2.2 Many particles in the pointers

If the number of pointers is macroscopic, as in § 3.1.3, the Bohmian variables tend to
completely dominate the determination of the result of measurement. The left part of
figure 9 shows the trajectories of the spin particle when the spin polarization is very small,
σ = 0.01, but N is very large, N = 106. The initial positions of the pointer particles are
supposed to vanish (Ẑ1,2(0) = 0), so that they do not favour any result of measurement
(they are “neutral”). In the absence of entanglement between the spin particle and the
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Figure 6: Same situation as in figures 3 and 5 (σ = 0), but with N = 104 pointers
and smaller offset values for the initial positions of the pointers (Ẑ1(0) = Ẑ2(0) = 0.02).
Even with these small values, the initial positions of the particles in the pointers now
completely determine the direction in which the spin particle flies, and therefore the final
spin direction. The initial position of the spin particle plays no role in the determination
of the result of measurement.

pointer particles, the numbers of trajectories going upwards and downwards should be
almost equal, as illustrated in the right part of the figure (obtained by setting V ′ = 0).
One could then naively expect that neutral pointer particles cannot change this situation
drastically. We see that this far from being true: actually, the Bohmian variables of the
measurement apparatus can completely dominate the determination of the measurement
result. They force all spin trajectories to remain grouped, in a sort of “all or nothing”
situation where all spins must take the same final positive value. The mechanism of
this effect is as follows. Every particle in the first pointer has a slightly larger chance to
have a positive initial velocity, and to move upwards. At subsequent times, its position
corresponds to slightly larger values of |χ±(Zp, t)|2 than

∣∣χ0(Zp, t)
∣∣2, which favours the

spin up component of the total wave function; a similar effect takes place in the second
pointer. Then the multiplicative effect of 106 particles transforms this small effect into
a big unbalance, which affects the conditional wave function of the spin particle and
makes it fly upwards.

Figure 10 shows what happens when the initial values of the positions of the pointer
particles are slightly negative, Ẑ1,2(0) = −0.01. This very small change is sufficient
to completely reverse the results of figure 9, since now all trajectories fly downwards.
More generally, exploring many values of the parameters but keeping N = 106 constant,
we find that the trajectories of the spin particles (almost) always remain completely
grouped, whatever the value of σ is. This is of course in complete opposition with what
happens in the absence of entanglement between S and M (right part of figures 9 and
10). Our main conclusion is that a large number of particles of the pointers renders
the initial position of the spin particle completely irrelevant in the determination of the
result of measurement. For each run of the experiment, this result is pre-determined by
the initial value of the positions of the particles inside the pointers.
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Figure 7: Bohmian trajectories of the spin particle and the particles of the pointers
in a case where the initial polarization of the spin is σ = 0.5. Each pointer contains
25 particles. If the Bohmian positions of the pointers favor a spin up result (Ẑ1(0) =
Ẑ2(0) = 0.1), the effect of the pointers is to force all the spin particle to go upwards.

4 Discussion

In their 1993 book, Bohm and Hiley [17] emphasize that the explicit context depen-
dence of experimental results within dBB theory is well in line with the central idea of
the Copenhagen interpretation, illustrated by a famous quotation by Bohr [18]: “the
necessity of considering the whole experimental arrangement, the specification of which
is imperative for an well-defined application of the quantum mechanical formalism”.
Bohm and Hiley write: “The context dependence of measurements ... also embodies, in
a certain sense, Bohr’s notion of the indivisibility of the combined system of observing
apparatus and observed object. Indeed, it can be said that our approach (the dBB
interpretation) provides a kind of intuitive understanding of what Bohr was saying”.
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Figure 8: As in figure 7, the initial spin polarization is σ = 0.5, but the initial positions of
the 25 pointer particles now favor negative results: Ẑ1(0) = Ẑ2(0) = −0.2. A significant
proportion of the trajectories of the spin particle now go downwards. An average over
all possible values of Ẑ1,2 with a weight equal to the quantum probabilities (quantum
equilibrium) would show that 3/4 of the trajectories fly upwards and 1/4 downwards,
which corresponds to the standard quantum result.
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Figure 9: The left part of the figure shows the trajectories obtained when the initial
spin polarization is positive but low, σ = 0.01; the number of the particles in the
pointers is high, N = 106, while their initial positions are neutral, Ẑ1,2(0) = 0. As
a point of comparison, the right part shows the same situation, but in the absence of
any entanglement with the pointers (V ′ = 0); as expected, almost as many trajectories
then fly up or down. This figure illustrates that, when the number of particles in the
pointers is high, even if their initial positions are neutral, they completely change the
trajectories of the spin particles, forcing all of them to fly upwards and with a spin up.
The initial Bohmian position of the spin particle is then completely irrelevant concerning
the measurement result.

Our discussion is fully in line with these remarks. It actually gives them a more
precise content, since it relates a general statement to a specific mechanism involving all
Bohmian positions variables in the measurement apparatus (context) and the measured
system. They all interact through a common wave function, and the motion of the
positions of the pointer particles determines the final result of measurement5. Our
discussion also illustrates the effects of quantum entanglement within dBB theory, where
each particle position in S and M is driven by its own “conditional wave function”
[19,20], which depends on all other Bohmian positions. The question is then to determine
whether the initial values of the positions attached to S, or those attached to M, are
dominant in the final state of the coupled motion. As we have seen, we have to distinguish
between two cases, depending whether the pointers are fast or slow.

In practice, fast pointers occur in many experiments, namely each time a big and
fast amplification process takes place within the measurement apparatus, which quickly
entangles many particles of M with S. This is for instance the case if the apparatus
includes photomultipliers, channeltrons, microchannel plates, drift chambers, etc. The
many wave packets of the particles inside M then separate before the wave packets of S
have the time to move, and the Bohmian positions of M determine which wave packet

5Needless to say, there is one exception: when S is initially in an eigenstate of measurement, the
result of measurement becomes certain, and the influence of all Bohmian variables (S and M) on the
result disappears.
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Figure 10: Same conditions as in figure 9 except that, here, the initial values of the
positions of the center of mass of the pointer particles are slightly negative, corresponding
to Ẑ1,2(0) = −0.01. This is sufficient to completely change the situation and reverse the
deviation of all trajectories of the spin particle (left part of the figure; the right part is of
course unchanged). Again, the initial Bohmian position of the spin particle is completely
irrelevant.

drives the position of S. This results in a projection of the effective wave function of S,
an effect that is very similar to state vector projection and to that discussed in Ref. [16];
it is in general nonlocal.

Slow pointers occur in the opposite situation: when the wave packets of S separate
before S gets entangled with many particles in M. In a standard Stern-Gerlach exper-
iment, no amplification takes place, and this is probably the case. The atoms merely
accumulate one by one on the output glass plate, long after their wave packets have
completely separated in the field gradient. Of course, during the initial interaction of
the atom with the field gradient, a microscopic momentum is transferred to a large num-
ber N of atoms or molecules, each of them receiving a recoil momentum proportional to
1/N . We have seen that an amplification coefficient

√
N appears in this case, but this

is not sufficient to overcome the 1/N factor. As a consequence, we can expect that a
Stern-Gerlach experiment corresponds to a case of slow pointers: therefore, the result
of measurement is indeed determined by the initial position of the atom, as assumed in
most discussions of this experiment.

Our conclusions also have implications concerning the calculation of correlation func-
tions at different times. Within standard quantum mechanics, these functions are ob-
tained by taking into account the first measurement and the effect of the measurement
apparatus. This is done by applying a projection operator, after which one calculates the
subsequent evolution of the wave function from this new state. Similarly, in dBB quan-
tum theory, it is essential to take into account the effect of the Bohmian variables of the
measurement apparatus. Otherwise, incorrect correlation functions are obtained [21].

Needless to say, the model of the measurement apparatus we have used is oversimpli-
fied, assuming for instance the same Gaussian wave function for all the particles inside
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the measurement apparatuses that are entangled with the spin particle. This simplifica-
tion does not change the structure of the entangled quantum state of the spin particle
and the measurement apparatus. Since this structure is the origin of our results, we
believe that they are generic. Moreover, for simplicity, we have focussed our discussion
on the particles inside the pointers, but it is clear that other parts of the measurement
apparatuses also play a role. The number of particles N should not be seen as referring
only to the physical content of the pointers themselves. It should be understood as
the number of particles that get entangled with the spin particle during the amplifica-
tion process that takes place in any measurement apparatus and results in the physical
displacement of the pointers.

5 Conclusion

Curioulsy, many discussions of quantum measurements within dBB theory emphasize
the role of the Bohmian position(s) associated with the microscopic system S, ignoring
all those attached to the measurement apparatus M. Under these conditions, of course,
the result of a measurement performed on S can reveal nothing but the initial value of
the Bohmian position(s) attached to S. Nevertheless, we have learnt from the historical
discussions between Einstein and Bohr [18], for instance the argument concerning an
interference experiment with a moving pierced screen playing the role of a which way
apparatus, that the quantum properties of the measurement apparatus cannot be ignored
without running into contradictions. Indeed, the same rules have to be applied to both S
and M; otherwise one misses an essential purpose of the dBB theory, which is to propose
a framework for a completely unified dynamics.

During the initial stage of a measurement process, S becomes entangled with some
variables of M, so that the velocity of the Bohmian position variables attached to S
depend on those of M. Our analysis takes into account this entanglement and studies in
detail how it changes the way the wave function of the whole system drives every position.
It shows that the initial value of the positions attached to M play a crucial role. This also
illustrates the intrinsic contextuality [3, 4, 22] of the dBB theory: the results associated
with a given observable do not depend only on some initial value of a variables pertaining
to S; actually, for a macroscopic measurement apparatus, we have seen that they may
even be independent of the positions attached to S. This is in direct line with Bohr’s
ideas, where the results crucially depend on the entire measurement apparatus which,
in a Bohmian context, means that they depend on all the initial positions inside this
apparatus. See also [23] for a general discussion of why microscopic trajectories play only
an auxiliary role in Bohmian mechanics formulated in terms of macroscopic phenomena.

Another way to describe the effect of entanglement is to emphasize its nonlocal
aspect. When S no longer interacts with M, the wave packets of the pointers may still
overlap, so that no specific result of measurement has emerged yet. Later, when the
wave packets of the pointers have significantly moved, this overlap vanishes, forcing
the ensemble of pointer positions to “choose” a component of the wave function where
the result is determined. In such a case, it is a nonlocal effect originating from the
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measurement apparatus that drives S into the wave packet associated with the result
of measurement. The microscopic system has, so to say, to “follow the decision” of the
macroscopic system. The left parts of figures 9 and 10 illustrate how the initial position of
the spin particle then plays no role whatsoever in the determination of the measurement
result. This can be seen as the macroscopic counterpart of the nonlocal effect arising in
a Bell experiment performed with two spins and two Stern-Gerlach apparatuses, where
the position of one microscopic particle drives the position of the other particle.
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