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Non-Asymptotic Analysis of Stochastic Approximation Algorithms for
Streaming Data

Antoine Godichon-Baggioni, Nicklas Werge∗, Olivier Wintenberger

LPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

We consider the stochastic approximation problem in a streaming framework where an objective is minimized through
unbiased estimates of its gradients. In this streaming framework, we consider time-varying data streams that must be
processed sequentially. Our methods are Stochastic Gradient (SG) based due to their applicability and computational
advantages. We provide a non-asymptotic analysis of the convergence of various SG-based methods; this includes the
famous SG descent (a.k.a. Robbins-Monro algorithm), constant and time-varying mini-batch SG methods, and their
averaged estimates (a.k.a. Polyak-Ruppert averaging). Our analysis suggests choosing the learning rate according to
the expected data streams, which can speed up the convergence. In addition, we show how the averaged estimate can
achieve optimal convergence in terms of attaining Cramer-Rao’s lower bound while being robust to any data stream
rate. In particular, our analysis shows how Polyak-Ruppert averaging of time-varying mini-batches can provide vari-
ance reduction and accelerate convergence simultaneously, which is advantageous for large-scale learning problems.
These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed algorithms.

Keywords: stochastic optimization, machine learning, stochastic algorithms, online learning, streaming, mini-batch

1. Introduction

Machine learning and artificial intelligence have become an integral part of modern society. This massive uti-
lization of intelligent systems generates an endless sequence of data, many of which come as streaming data such as
weather, traffic, stock trade, or other real-time sensor data. These continuously generated data should be processed
sequentially with the property that the data stream may change over time. Such a streaming framework requires
computationally efficient and robust algorithms that can quickly update the model as more data arrives.

Stochastic approximation algorithms have proven effective in handling large amounts of data; Bottou et al. [3] re-
views such stochastic algorithms for large-scale machine learning, including noise reduction and second-order meth-
ods, among others. Among these, the most well-known is presumably the Stochastic Gradient (SG) descent proposed
by [27], which is used for many models within machine learning. Since its introduction, much work has been spent on
analyzing, developing, and improving various SG-based methods, e.g., see Kushner and Yin [16], Lan [17], Shalev-
Shwartz et al. [30]. An essential extension is the Polyak-Ruppert procedure (ASG) proposed by Polyak and Juditsky
[26], Ruppert [28], which guarantees optimal statistical efficiency without jeopardizing the computational complexity;
this average aggregates the estimates sequentially, which reduces the estimate variance while accelerating convergence
[26].

Contributions. A fundamental aspect of this paper is to explore how changing data streams affect these stochastic
algorithms. Our analysis extends the work of Moulines and Bach [21] to a streaming framework. We investigate
several kinds of data streams, from vanilla SG descent and ASG to more exotic learning designs such as time-varying
mini-batch SG and ASG. Our main theoretical contribution is the non-asymptotic analysis of SG-based methods in
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this streaming framework. Our results show a noticeable improvement in convergence rates by having learning rates
that adapt to the expected data streams. In particular, we show how to obtain optimal convergence rates robust to any
data streaming rate.

Organization. Section 2 presents the streaming framework on which the non-asymptotic analysis relies. Our
convergence results are presented in Sections 3 and 4, with and without averaging. Both sections includes analysis of
unbounded and uniform bounded gradients. These theoretical results are illustrated in Section 5 for a variety of data
streams. At last, some final remarks are done in Section 6.

2. Problem Formulation

The analysis of statistical and machine learning models often involves some form of optimization [3, 11, 18].
Many of these optimization problems aim to minimize functions of the form,

L(θ) = E[lt(θ)], (1)

with respect to θ ∈ Θ, where Θ ⊆ Rd is a convex body; a convex body in Rd is a compact convex set with non-
empty interior. For streaming (or large-scale) problems, it would be too expensive to compute the full gradient
∇θL(θ). Instead, the minimization of L in (1) is achieved without evaluating it directly but by unbiased estimates of
its gradients, namely, through ∇θlt : Θ → R. Observe that the principles for biased functions (lt) are rather different
[6, 29]. Thus, we let (lt) constitute a sequence of independent differentiable random (possibly non-convex) functions
and their gradients unbiased estimates of ∇θL, e.g., see Nesterov et al. [24] for definitions and properties of such
functions.

Many problems, from classification, and regression to ranking, can be written on this form (1), e.g., see Teo et al.
[33] for examples of scalar and vectorial loss functions and their derivatives. For example, consider the simple case
where we have some samples {(Xt,Yt)}, t = 1, . . . , n. Our interest is to find predictor hθ over some parameterization
{hθ}θ∈Θ, by minimizing (1) with lt(θ) = l(hθ(Xt),Yt)+λΩ(θ), where l is some loss function, λ > 0 a regulizer parameter,
and Ω : Θ → R some regularizer, e.g., the l1 or l2 regularization; here the loss l could be the quadratic, logistic,
(squared) hinge, or Huber’s (robust) loss, but it depends on the experiments that one wants to perform [3, 17, 24].

Streaming framework. Let us now describe our streaming framework in which we will solve our problem in (1):
at each time t ∈ N, a block consisting of nt ∈ N random functions lt = (lt,1, . . . , lt,nt ) arrive. To solve this, we introduce
the Stochastic Streaming Gradient (SSG), defined as

θt = θt−1 −
γt

nt

nt∑
i=1

∇θlt,i(θt−1), θ0 ∈ Θ, (2)

where (γt) is a decreasing sequence of positive numbers also referred to as the learning rate, satisfying
∑t

i=1 γi = ∞

and
∑t

i=1 γ
2
i < ∞ for t → ∞ [27]. In the same way, we introduce the Projected SSG (PSSG), defined by

θt = PΘ

θt−1 −
γt

nt

nt∑
i=1

∇θlt,i (θt−1)

 , θ0 ∈ Θ, (3)

where PΘ denotes the Euclidean projection onto the convex body Θ ⊆ Rd, i.e., PΘ(θ) = arg minθ′∈Θ‖θ − θ
′‖2. The

PSSG estimate in (3) is very convenient for models with conditions on the parameters space, and thereby, requires a
projection of the parameters. Next, to guarantee optimal convergence properties [26, 28], we introduce the Polyak-
Ruppert average of (2), called Averaged SSG (ASSG), given as

θ̄t =
1
Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, (4)

where Nt =
∑t

i=1 ni denotes the accumulated sum of observations. Similarly, we define the (Polyak-Ruppert) Average
PSSG (APSSG) estimate as when (θ̄t) (in (4)) is derived using (3).
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2.1. Quasi-strong Convex and Lipschitz Smooth Objectives
Following Moulines and Bach [21], Sridharan et al. [31], we make the following assumptions about the objective

function L: assume that θ∗ ∈ Θ is the unique global minimizer of L with ∇θL(θ∗) = 0. Also, let L be µ-quasi-strong
convex [13, 23] with convexity constant µ > 0, that is, ∀θ ∈ Θ the following inequality holds,

L(θ∗) ≥ L(θ) + 〈∇θL(θ), θ − θ∗〉 +
µ

2
‖θ − θ∗‖2. (5)

Teo et al. [33] provides a comprehensive record of various convex functions L used in machine learning applications.
Milder degrees of convexity have been studied by, e.g., Karimi et al. [13], which studied stochastic gradient methods
under the Polyak-Łojasiewicz condition [19, 25], or Gadat and Panloup [7], which studied the Ruppert-Polyak aver-
aging estimate under some Kurdyka-Łojasiewicz-type condition [15, 19]. Next, let the function ∇θL be C∇-Lipschitz
continuous, i.e., there exists C∇ > 0 such that ∀θ, θ′ ∈ Θ,

‖∇θL(θ) − ∇θL(θ′)‖ ≤ C∇‖θ − θ′‖. (6)

Furthermore, for the averaging estimate in (4), we need the function L to be twice differentiable with C′
∇

-Lipschitz
continuous Hessian operator ∇2

θL, meaning, there exists C′
∇
≥ 0 such that ∀θ, θ′ ∈ Θ,

‖∇2
θL(θ) − ∇2

θL(θ′)‖ ≤ C′∇‖θ − θ
′‖. (7)

Note that (6) and (7) only needs to hold for θ′ = θ∗.

3. Stochastic Streaming Gradients

This section considers the SSG and PSSG methods with streaming batches arriving in constant and time-varying
streams. Our aim is to provide bounds on the quadratic mean E[‖θt − θ

∗‖2], which depends explicitly upon the
problem’s parameters. In order to do this, we assume the following about the function lt,i for each t ∈ N with
i = 1, . . . , nt:

Assumption 1. For each θ ∈ Θ, the random variable ∇θlt,i(θ) is square-integrable and ∀θ ∈ Θ, E[∇θlt,i(θ)] = ∇θL(θ).

Assumption 2-p (Cl-expected smoothness). There exists a positive integer p such that ∀θ, θ′ ∈ Θ, E[‖∇θlt,i(θ) −
∇θlt,i(θ′)‖p] ≤ Cp

l E[‖θ − θ′‖p] with Cl ∈ R+.

Assumption 3-p (σ-gradient noise). There exists a positive integer p such that E[‖∇θlt,i(θ∗)‖p] ≤ σp with σ ∈ R+.

These assumptions are modified versions of the standard assumptions for stochastic approximations [2, 16] as they
hold for any i = 1, . . . , nt. Note that Assumption 2-p only needs to hold for θ′ = θ∗. By the smoothness assumption
(Assumption 2-p), we avoid the unfavorable uniformly bounded gradients assumption, which is too restrictive and
only holds for a few losses. Assumption 3-p is a weak assumption that should be seen as an assumption on Θ rather
than on (lt,i). For SSG and PSSG, we only need Assumptions 2-p and 3-p to hold for p = 2, whereas, for ASSG and
APSSG, we need p = 4 in order to bound the fourth-order moment.

Our streaming framework include classic examples: stochastic approximation (Robbins-Monro setting [27]) and
learning from i.i.d. data, such as linear regression, logistic regression, general ridge regressions and quantile regres-
sion, p-means, and softmax regression, under regularity conditions [5, 32, 33].

In the following theorem, we derive an explicit upper bound on the t-th estimate of (2) and (3) for any learning
rate (γt) using classical techniques from stochastic approximations [2, 16].

Theorem 1 (SSG/PSSG). Denote δt = E[‖θt−θ
∗‖2] for some δ0 ≥ 0, where (θt) follows (2) or (3). Under Assumption 1,

Assumptions 2-p and 3-p with p = 2, we have for any learning rate (γt) that

δt ≤ exp

−µ t∑
i=t/2

γi

 πδt +
2σ2

µ
max

t/2≤i≤t

γi

ni
, (8)

with πδt = exp(4C2
l
∑t

i=1 γ
2
i /ni) exp(2C2

∇

∑t
i=1 1{ni>1}γ

2
i )(δ0 + 2σ2/C2

l ).
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Sketch of proof. Under Assumption 1, Assumptions 2-p and 3-p with p = 2, we derive from (2) that (δt) satisfies
the recursive relation

δt ≤ [1 − 2µγt + (2C2
l + (nt − 1)C2

∇)n−1
t γ2

t ]δt−1 + 2σ2n−1
t γ2

t , (9)

for any (nt) and (γt) fulfilling the conditions imposed on the learning rate [27]. This recursive relation is then bounded
in a non-asymptotic manner using Proposition 5. Bounding the projected estimate in (3) follows directly from the fact
that E[‖PΘ(θ) − θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Θ [35]. Alternatively, the projected estimate can also be shown without
Assumptions 2-p and 3-p but instead with a bounded gradient assumption (Assumption 5), e.g., see Moulines and
Bach [21].

Related work. When nt = 1 in (8), we obtain the usual SG descent studied in Moulines and Bach [21]. Similarly,
Theorem 1 provides an upper bound on the function values, E[L(θt)−L(θ∗)] ≤ Clδt/2; this follows by Cauchy-Schwarz
inequality and Assumption 2-p.

Natural decay imposed by Robbins and Monro [27]. The learning rate (γt) should satisfy the following re-
quirements:

∑t
i=1 γi = ∞ and

∑t
i=1 γ

2
i /ni ≤

∑t
i=1 γ

2
i < ∞ for t → ∞. These conditions directly imply that πδt < ∞

as t → ∞. Thus, our attention is on reducing the noise term maxt/2≤i≤t γi/ni without damaging the natural decay of
the sub-exponential term exp(−µ

∑t
i=t/2 γi). In particular, this non-asymptotic bound shows convergence in quadratic

mean for any learning rate, fulfilling these conditions. In addition, the scaling with (nt) in the noise term shows an
apparent variance reduction when we increase the streaming batches (nt).

Throughout this paper, we will consider learning rates on the form γt = Cγnβt t−α with hyper-parameters Cγ > 0,
β ∈ [0, 1], and α chosen accordingly to the expected streaming batches denoted by nt. We start by considering constant
streaming batches (i.e., mini-batch SG), where nt follows the constant streaming batch size Cρ ∈ N:

Corollary 1 (SSG/PSSG, constant streaming batches). Denote δt = E[‖θt − θ
∗‖2], where (θt) follows (2) or (3).

Suppose γt = Cγnβt t−α with nt = Cρ for Cρ ∈ N, such that α ∈ (1/2, 1). Under Assumption 1, Assumptions 2-p and 3-p
with p = 2, we have

δt ≤ exp

− µCγN1−α
t

21−αC1−α−β
ρ

 πc
∞ +

21+ασ2Cγ

µC1−α−β
ρ Nα

t

, (10)

where πc
∞ = exp(4αC2

γ(2C2
l + Cρ1{Cρ>1}C2

∇
)/(2α − 1)C1−2β

ρ )(δ0 + 2σ2/C2
l ) is a finite constant.

Decay of the initial conditions. The bound in Corollary 1 depends on the initial condition δ0 = ‖θ0 − θ
∗‖2 and

the variance σ2 in the noise term. The initial condition δ0 vanish sub-exponentially fast for α ∈ (1/2, 1). Thus, the
asymptotic term is 21+ασ2Cγ/µC1−α−β

ρ Nα
t , i.e., δt = O(N−αt ). Moreover, the bound in (10) is optimal (up to some

constants) for quadratic functions (lt,i), since the deterministic recursion in (9) would be with equality. It is worth
noting that if CγCl or CγC∇ is chosen too large, they may produce a large πc

∞ constant. In addition, πc
∞ is positively

affected by Cρ when β < 1/2. Obviously, the hyper-parameter β only comes into play if the streaming batch size is
larger than one, i.e., Cρ > 1. Nonetheless, the effect of πc

∞ will decrease exponentially fast due to the sub-exponentially
decaying factor in front.

Variance reduction. The asymptotic term is divided by C1−α−β
ρ , implying we could achieve variance reduction by

taking α + β ≤ 1 when Cρ is large. Taking a large streaming batch size, e.g., Cρ = t, one accelerates the vanilla SG
descent convergence rate to O(N1−β

t ). However, this large streaming batch size would be unsuitable in practice, and it
would mean that we would take few steps until convergence is achieved.

The safe choice of having β = 0 functions well for the SSG method for any streaming batch size Cρ, but fixed-sized
streaming batches are not the most realistic streaming setting. These streaming batches are far more likely to vary in
size depending on the data streams. For the sake of simplicity, we consider time-varying streaming batches where nt

are on the form Cρtρ with Cρ ∈ N and ρ ∈ (−1, 1) such that nt ≥ 1 for all t. We will refer to ρ as the streaming rate.
For the convenience of notation, let ρ̃ = ρ1{ρ≥0}.

Corollary 2 (SSG/PSSG, time-varying streaming batches). Denote δt = E[‖θt − θ
∗‖2], where (θt) follows (2) or (3).

Suppose γt = Cγnβt t−α with nt = Cρtρ for Cρ ∈ N and ρ ∈ (−1, 1), such that α − βρ̃ ∈ (1/2, 1). Under Assumption 1,
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Assumptions 2-p and 3-p with p = 2, we have

δt ≤ exp

− µCγN1−φ
t

2(2+ρ)(1−φ)C1−β−φ
ρ

 πv
∞ +

21+(2+ρ)φσ2Cγ

µC(1−β)1{ρ≥0}−φ
ρ Nφ

t

, (11)

where φ = ((1 − β)ρ̃ + α)/(1 + ρ̃) and πv
∞ = exp(4(α − βρ̃)C2

γC
2β
ρ (2C2

l + C2
∇

)/(2(α − βρ̃) − 1))(δ0 + 2σ2/C2
l ) is a finite

constant.

Decay of the initial conditions. As mentioned for Corollary 1, the condition of having α − βρ̃ ∈ (1/2, 1) is a
natural restriction from Robbins and Monro [27], which relaxes the usual condition of having α ∈ (1/2, 1) for ρ non-
negative. For ρ ∈ (−1, 1/2), setting α = 2/3 and β = 1/3 would give same decay rate, δt = O(N−2/3

t ) as we saw for
Corollary 1 when α = 2/3. However, accelerated convergence could be achieved by, e.g., setting α = 1 and β = 1/2
for streaming rate ρ ∈ (0, 1), giving us δt = O(N−(1+ρ/2)/(1+ρ)

t ).
Variance reduction. Similarly to Corollary 1, the sub-exponential and asymptotic term is scaled by C1−β−φ

ρ for
ρ ≥ 0, implying we should take α + β ≤ 1 to obtain variance reduction. These conclusions will change when we
consider the averaging estimate in Section 4.

The reasoning in Corollary 2 could be expanded to include random streaming batches where nt is given such that
CLtρL ≤ nt ≤ CHtρH with ρL, ρH ∈ (−1, 1) and CL,CH ≥ 1. This yields the modified rate φ′ = ((1− β)ρL +α)/(1 + ρH);
nevertheless, we will leave the proof to the reader.

4. Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate (θ̄n) given in (4) derived with use of (θt) from (2) (Section 4.1)
or (3) (Section 4.2). Besides having Assumptions 2-p and 3-p to hold for p = 4, an additional assumption is needed
for bounding the rest term of the averaging estimate.

Assumption 4. There exists a non-negative self-adjoint operator Σ such that E[∇θlt,i(θ∗)∇θlt,i(θ∗)>] � Σ.

Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 3-p.

4.1. Unbounded Gradients
As in Section 3, we conduct a general study for any learning rate (γt) when applying the Polyak-Ruppert averaging

estimate from (4):

Theorem 2 (ASSG). Denote δ̄t = E[‖θ̄t − θ
∗‖2] with (θ̄t) given by (4), where (θt) follows (2). Under Assumption 1,

Assumptions 2-p and 3-p with p = 4, and Assumption 4, we have for any learning rate (γt) that

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
1
µNt

t−1∑
i=1

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ δ1/2
i +

nt

µγtNt
δ1/2

t +
n1

µNt

(
1
γ1

+ Cl

)
δ1/2

0 +
Cl

µNt

 t−1∑
i=1

ni+1δi


1/2

+
C′
∇

µNt

t−1∑
i=0

ni+1∆
1/2
i ,

(12)

where Λ = Tr(∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1) and ∆t = E[‖θt − θ
∗‖4] for some ∆0 ≥ 0.

As noticed in Polyak and Juditsky [26], the leading term Λ/Nt achieves the Cramer-Rao lower bound [7, 22]. Note
that the leading term Λ/Nt is invariant of the learning rate (γt). Moreover, this bound of O(N−1

t ) is achieved without
inverting the Hessian. Next, the processes (δt) and (∆t) can be bounded by the recursive relations in (8) and (22).
There are no sub-exponential decaying terms for the initial conditions in Theorem 2, which is a common problem for
averaging. However, as mentioned previously, we are more interested in advancing the decay of the asymptotic terms.
To ease notation, we make use of the functions ψy

x(t) : R→ R, given as

ψ
y
x(t) =


t(1−x)/(1+y)/(1 − x) if x < 1,
(1 + y) log(t) if x = 1,
x/(x − 1) if x > 1,
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with y ∈ R+, such that
∑t

i=1 i−x ≤ ψ0
x(t) for any x ∈ R+. Note that ψy

x(t)/t = O(t−(x+y)/(1+y)) if x < 1, ψy
x(t)/t =

O(log(t)t−1) if x = 1, and ψy
x(t)/t = O(t−1) if x > 1. Hence, for any x, y ∈ R+, ψy

x(t)/t = Õ(t−(x+y)/(1+y)), where the Õ(·)
notation hides logarithmic factors.

Corollary 3 (ASSG, constant streaming batches). Denote δ̄t = E[‖θ̄t − θ
∗‖2] with (θ̄t) given by (4), where (θt) follows

(2). Suppose γt = Cγnβt t−α with nt = Cρ for Cρ ∈ N, such that α ∈ (1/2, 1). Under Assumption 1, Assumptions 2-p
and 3-p with p = 4, and Assumption 4, we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
6σC(1−α−β)/2

ρ

µ3/2C1/2
γ N1−α/2

t

+
2α6C′

∇
σ2Cγ

µ2C1−α−β
ρ Nα

t

+
2ClσC1/2

γ

µ3/2C(1−α−β)/2
ρ N(1+α)/2

t

+
CρΓc

µNt

+
C2−α−β
ρ

√
πc
∞Ac
∞

µCγN2−α
t

+
(6 + 71{Cρ>1})23α/2C′

∇
σ2C3/2

γ C3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
,

with Γc given by (1/CγC
β
ρ + Cl)δ

1/2
0 + Cl

√
πc
∞Ac
∞/Cρ +

√
πc
∞Ac
∞/CγC

β
ρ + C′

∇

√
Πc
∞Ac
∞, consisting of the finite constants

πc
∞, Πc

∞ and Ac
∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, C′

∇
, Cγ, Cρ, β and α.

Accelerated decay the initial conditions. By averaging, we have increased the rate of convergence from O(N−αt )
to the optimal rate O(N−1

t ). The two subsequent terms are the main remaining terms decaying at the rate O(Nα−2
t ) and

O(N−2α
t ), which suggests setting α = 2/3 would be optimal. The remaining terms are negligible. Next, it is worth

noting that having α+ β = 1 in Corollary 3, we would give no impact in the main remaining terms from the streaming
batch size Cρ. Moreover, taking α = 2/3 and β ≤ 1/3 would be an optimal choice of hyper-parameters such that
the streaming batch size Cρ have a positive or no impact. At last, as we do not rely on sub-exponentially decaying
terms, we need to be more careful when picking our hyper-parameters, e.g., taking CγCl too large may cause Γc to be
significant. Nevertheless, the term consisting of Γc decay at a rate of at least O(N−2

t ).

Corollary 4 (ASSG, time-varying streaming batches). Denote δ̄t = E[‖θ̄t − θ
∗‖2] with (θ̄t) given by (4), where (θt)

follows (2). Suppose γt = Cγnβt t−α with nt = Cρtρ for Cρ ∈ N and ρ ∈ (−1, 1), such that α − βρ̃ ∈ (1/2, 1). Under
Assumption 1, Assumptions 2-p and 3-p with p = 4, and Assumption 4, we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
23+φ(1+ρ̃)σC(1−φ−β)/21{ρ≥0}

ρ

µ3/2C1/2
γ N1−φ/2

t

+
2(1+φ)(1+ρ̃)−2C′

∇
σ2Cγ

µ2C1−φ−β
ρ Nφ

t

+
2φ(1+ρ̃)/2ClσC1/2

γ

µ3/2C(1−φ−β)/21{ρ≥0}
ρ N(1+φ)/2

t

+
CρΓv

µNt

+
C2−φ−β
ρ

√
πv
∞Av
∞

µCγN2−φ
t

+
23(1+φ)(1+ρ̃)/2C′

∇
σ2C3/2

γ C1+3β/2
ρ ψ

ρ̃
3(α−βρ̃)/2(Nt/Cρ)

µ3/2C1{ρ≥0}
ρ Nt

,

with Γv given by (1/CγC
β
ρ + Cl)δ

1/2
0 + 2ρ̃Cl

√
πv
∞Av
∞/Cρ + 2

√
πv
∞Av
∞/CγC

β
ρ + 2ρ̃C′

∇

√
Πv
∞Av
∞, consisting of the finite

constants πv
∞, Πv

∞ and Av
∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, C′

∇
, Cγ, Cρ, β and α.

Robustness towards streaming rates ρ: Following the arguments above, the two main remainder terms reveal
that φ = 2/3⇔ α − βρ̃ = (2 − ρ̃)/3, e.g., by setting β = 0, we should pick α = (2 − ρ̃)/3. Likewise, if ρ = 0, we yield
the same conclusion as in Corollary 3, namely α = 2/3. However, these hyper-parameter choices are not resilient
against any arrival schedule ρ. Nonetheless, we can robustly achieve φ = 2/3 for any ρ ∈ (−1, 1) by setting α = 2/3
and β = 1/3. In other words, we can achieve optimal convergence for any data stream by having α = 2/3 and β = 1/3.

4.2. Bounded Gradients

In what follows, we consider the averaging estimate θ̄n given in (4) but with the use of the projected estimate
PSSG from (3). To avoid calculating the six-order moment, we make the unnecessary assumption that ‖∇θlt,i(θ)‖ is
uniformly bounded for any θ ∈ Θ; the derivation of the six-order moment can be found in Godichon-Baggioni [9].

Assumption 5. Let Dθ = infθ∈∂Θ‖θ − θ
∗‖ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists GΘ > 0 such

that ∀t ≥ 1, supθ∈Θ‖∇θlt,i(θ)‖
2 ≤ G2

Θ
a.s., with i = 1, . . . , nt.
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Corollary 5 (APSSG, constant streaming batches). Denote δ̄t = E[‖θ̄t−θ
∗‖2] with (θ̄t) given by (4), where (θt) follows

(3). Suppose γt = Cγnβt t−α with nt = Cρ for Cρ ∈ N, such that α ∈ (1/2, 1). Under Assumption 1, Assumptions 2-p
and 3-p with p = 4, Assumptions 4 and 5, we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
6σC(1−α−β)/2

ρ

µ3/2C1/2
γ N1−α/2

t

+
2α6C′

∇
σ2Cγ

µ2C1−α−β
ρ Nα

t

+
2ClσC1/2

γ

µ3/2C(1−α−β)/2
ρ N(1+α)/2

t

+
CρΓc

µNt

+
C2−α−β
ρ

√
πc
∞Ac
∞

µCγN2−α
t

+
(6 + 71{Cρ>1})23α/2C′′

∇
σ2C3/2

γ C3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
,

with C′′
∇

= C′
∇

+22GΘ/D2
θ and Γc given by (1/CγC

β
ρ+Cl)δ

1/2
0 +Cl

√
πc
∞Ac
∞/Cρ+

√
πc
∞Ac
∞/CγC

β
ρ+C′

∇

√
Πc
∞Ac
∞, consisting

of the finite constants πc
∞, Πc

∞ and Ac
∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, C′

∇
, Cγ, Cρ, β and α.

Corollary 6 (APSSG, time-varying streaming batches). Denote δ̄t = E[‖θ̄t − θ
∗‖2] with (θ̄t) given by (4), where (θt)

follows (3). Suppose γt = Cγnβt t−α with nt = Cρtρ for Cρ ∈ N and ρ ∈ (−1, 1), such that α − βρ̃ ∈ (1/2, 1). Under
Assumption 1, Assumptions 2-p and 3-p with p = 4, Assumptions 4 and 5, we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
23+φ(1+ρ̃)σC(1−φ−β)/21{ρ≥0}

ρ

µ3/2C1/2
γ N1−φ/2

t

+
2(1+φ)(1+ρ̃)−2C′

∇
σ2Cγ

µ2C1−φ−β
ρ Nφ

t

+
2φ(1+ρ̃)/2ClσC1/2

γ

µ3/2C(1−φ−β)/21{ρ≥0}
ρ N(1+φ)/2

t

+
CρΓv

µNt

+
C2−φ−β
ρ

√
πv
∞Av
∞

µCγN2−φ
t

+
23(1+φ)(1+ρ̃)/2C′′

∇
σ2C3/2

γ C1+3β/2
ρ ψ

ρ̃
3(α−βρ̃)/2(Nt/Cρ)

µ3/2C1{ρ≥0}
ρ Nt

,

with C′′
∇

= C′
∇

+ 22GΘ/D2
θ and Γv given by (1/CγC

β
ρ + Cl)δ

1/2
0 + 2ρ̃Cl

√
πv
∞Av
∞/Cρ + 2

√
πv
∞Av
∞/CγC

β
ρ + 2ρ̃C′

∇

√
Πv
∞Av
∞,

consisting of the finite constants πv
∞, Πv

∞ and Av
∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, C′

∇
, Cγ, Cρ, β and α.

5. Experiments

In this section, we demonstrate the theoretical results presented in Sections 3 and 4 for various data streams.
In Section 5.1, we illustrate the unbounded gradient case (Sections 3 and 4.1) using linear regression. Where in
Section 5.2, we present the bounded gradient case (Sections 3 and 4.2) by considering the geometric median. To
measure the performance, we use the quadratic mean error of the parameter estimates over one-hundred replications,
given by (E[‖θNt − θ

∗‖2])t≥1. Note that averaging over several iterations gives a reduction in variability, which mainly
benefits the SSG and PSSG.

5.1. Linear Regression

Consider the linear regression defined by yt = XT
t θ + εt, where Xt ∈ Rd is a random features vector, θ ∈ Rd is

the parameters vector, and εt is a random variable with zero mean, independent from Xt. Moreover, (Xt, εt)t≥1 are
independent and identically distributed. Thus, θ∗ is the minimizer of L(θ) = E[(yt − XT

t θ)
2]. In this example, we fix

d = 10, set θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10, and let (Xt) and (εt) be standard Gaussian. It is well-known that
Cγ can substantially impact convergence; when Cγ is too large, instability can occur, leading to an explosion during
the first iterations. If Cγ is too small, the convergence can become very slow and destroy the desired rate α. To focus
on the various data streams, we set Cγ = 1/2 and α = 2/3.

In Figure 1a, we consider constant data streams to illustrate the results in Corollaries 1 and 3. The figures show
a solid decay rate proportional to α = 2/3 for any streaming batch size Cρ ∈ {1, 8, 64, 128} with β = 0, as shown in
Corollary 1. In addition, we see an acceleration in decay by averaging, as explained in Corollary 3. Both methods show
a noticeable reduction in variance when Cρ increases which are particularly beneficial in the beginning. Moreover, as
mentioned in Remark 1, the stationary phase may also commence earlier when we raise the streaming batch size Cρ.
Next, in Figures 1b to 1e, we vary the streaming rate ρ for streaming batch sizes Cρ = 1, 8, 64, and 128, respectively,
with β = 0. These figures shows an increase in decay of the SSG when the streaming rate ρ increase. Despite this,
we still achieve better convergence for the ASSG method, which seems more immune to the different choices of

7



Figure 1: Linear regression for various data streams nt = Cρtρ. See Section 5.1 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Time-varying streaming batches, Cρ = 1, β = 0

(c) Time-varying streaming batches, Cρ = 8, β = 0 (d) Time-varying streaming batches, Cρ = 64, β = 0

(e) Time-varying streaming batches, Cρ = 128, β = 0 (f) Time-varying streaming batches, Cρ = 8, β = 1/3
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streaming rate ρ, e.g., see the discussion after Corollary 4. We know this from Corollary 2, as φ = (ρ̃+ α)/(1 + ρ̃) ≥ α
for β = 0. In addition, we see that Cρ has a positive effect on the noise (i.e, variance reduction), but if Cρ becomes
too large, it may slow down convergence (as seen in Figure 1e). Alternatively, we could think around the problem in
another way: how can we choose α and β such that we have optimal decay of φ = 2/3 for any ρ. In other words, for
any arrival schedule that may occur, how should we choose our hyper-parameters such that we achieve optimal decay
of φ = 2/3. As discussed after Corollary 4, one example of this could be achieved by setting α = 2/3 and β = 1/3
such that φ = 2/3 for any ρ. Figure 1f shows an example of this where we (indeed) achieve the same decay rate for
any streaming rate ρ.

5.2. Geometric Median
The geometric median is a generalization of the real median introduced by Haldane [12]. Robust estimators

such as the geometric median may be preferred over the mean when the data is noisy. Moreover, in our streaming
framework, stochastic algorithms are preferred as they efficiently handle large samples of high-dimensional data [5, 9].
The geometric median of X ∈ Rd is defined by θ∗ ∈ Rd which minimizes the convex function L(θ) = E[‖X− θ‖− ‖X‖],
e.g., see Gervini [8], Kemperman [14] for properties such as existence, uniqueness, and robustness (breakdown point).
Thus, the gradient ∇θL(θ) = E[∇θlt(θ)] with ∇θlt(θ) = −(Xt − θ)/‖Xt − θ‖ is bounded as ‖∇θlt(θ)‖ ≤ 1. As discussed in
Gadat and Panloup [7], this boundedness implies that it is not necessary to project our estimates explicitly. Similarly to
above, we fix d = 10 and let (Xt) be standard Gaussian centered at θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10. Moreover,
following the reasoning of Cardot et al. [5], we set Cγ =

√
d =
√

10, and let α = 2/3.
Figure 2a shows the variance reduction effect for different constant streaming batches Cρ with β = 0. However,

the robustness of the geometric median leaves only a small positive impact for further variance reduction. Thus, too
large (constant) streaming batch sizes Cρ hinders the convergence as we make too few iterations. These findings can
be extended to Figures 2b to 2e, where we vary the streaming rate ρ for streaming batch sizes Cρ = 1, 8, 64, and
128, respectively, with β = 0. The lack of convergence improvements comes from β = 0, which means we do not
exploit the potential of using more observations to accelerate convergence. As shown in Figure 2f, we can achieve this
acceleration by simply taking β = 1/3. In addition, β = 1/3 provides optimal convergence robust to any streaming
rate ρ. Choosing a proper β > 0 is particularly important when Cρ is large, as robustness is an integral part of the
geometric median method.

6. Conclusions

We considered the stochastic approximation problem in a streaming framework where we had to minimize convex
objectives using only unbiased estimates of its gradients. We introduced and studied the convergence rates of the
stochastic streaming algorithms in a non-asymptotic manner. This investigation was derived using learning rates of
the form γt = Cγnβt t−α under time-varying data streams (nt). The theoretical results and our experiments showed a
noticeable improvement in the convergence rate by choosing the learning rate (hyper-parameters) according to the
expected data streams. For ASSG and APSSG, we showed that this choice of learning rate led to optimal convergence
rates and was robust to any data stream rate we may encounter. Moreover, in large-scale learning problems, we know
how to accelerate convergence and reduce variance through the learning rate and the treatment pattern of the data.

There are several ways to expand our work but let us give some examples: first, we can extend our analysis
to include streaming batches of any size in the spirit of the discussion after Corollary 2. Second, many machine
learning problems encounter correlated variables and high-dimensional data, making an extension to non-strongly
convex objectives advantageous Bach and Moulines [1], e.g, in Werge and Wintenberger [34], they use SG-based
optimization methods for volatility prediction through GARCH modeling. Third, Assumption 1 requires unbiased
(and independent) gradient estimates, thus, an obvious extension could incorporate a more realistic dependency as-
sumption, thereby increasing the applicability for more models. Moreover, studying dependence may give insight
into how to process dependent information optimally. Next, a natural extension would be to modify our averaging
estimate from (4) to a weighted averaged version (WASSG) proposed by Mokkadem and Pelletier [20] and Boyer and
Godichon-Baggioni [4], given as

θ̄t,λ =
1∑t

i=1 ni log(1 + i)λ

t∑
i=1

ni log(1 + i)λθi−1, θ̄0,λ = 0, (13)

9



Figure 2: Geometric median for various data streams nt = Cρtρ. See Section 5.2 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Time-varying streaming batches, Cρ = 1, β = 0

(c) Time-varying streaming batches, Cρ = 8, β = 0 (d) Time-varying streaming batches, Cρ = 64, β = 0

(e) Time-varying streaming batches, Cρ = 128, β = 0 (f) Time-varying streaming batches, Cρ = 8, β = 1/3

10



for λ > 0 with (θt) following (2) or (3). We can limit the effect of bad initializations by placing more weight on the
newest estimates. Following the demonstrations in Section 5, an example of this WASSG estimate (θ̄t,λ) can be found
in Figure 3 with use of λ = 2. Here we see that although the WASSG estimate in (13) may not achieve a better final
error (compared to the ASSG and APSSG estimates in Figures 1f and 2f), but it still achieves a better decay along the
way, often referred to as parameter tracking.

Figure 3: WASSG for various data streams nt = Cρtρ. See Section 6 for details.

(a) Linear regression, time-varying streaming batches, Cρ = 8, β = 1/3 (b) Geometric median, time-varying streaming batches, Cρ = 8, β = 1/3

7. Proofs

In this section, we provide detailed proofs of the results presented in the manuscript. Purely technical results used
in the proofs can be found in Appendix A. Let (Ft)t≥1 be an increasing family of σ-fields, namely Ft = σ(l1, . . . , lt)
with lt = (lt,1, . . . , lt,nt ). Furthermore, we expand the notation with Ft−1,i = σ(l1,1, . . . , lt−1,nt−1 , lt,1, . . . , lt,i) such that
Ft−1,0 = Ft−1. Meaning, ∀0 ≤ i < j, we have Ft−1 ⊆ Ft−1,i ⊂ Ft−1, j. Thus, by the independence of the random
(differentiable) functions (lt,i), Assumption 1 yields that ∀t ≥ 1, E[∇θlt,i(θt−1)|Ft−1,i−1] = ∇θL(θt−1) with i = 1, . . . , nt.

7.1. Proofs for Section 3
The section is structured such that we start by analyzing the recursive relations and bounding them for every choice

of learning rate. Next, we look at specific choices of learning rates.

Proof of Theorem 1. Taking the quadratic norm on both sides of (2), expanding it, and take the conditional expecta-
tion, yields

E[‖θt − θ
∗‖2|Ft−1] = ‖θt−1 − θ

∗‖2 +
γ2

t

n2
t
E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣Ft−1

 − 2γt

nt

nt∑
i=1

E[〈∇θlt,i(θt−1), θt−1 − θ
∗〉|Ft−1]. (14)

To bound the second term (on the right-hand side) of (14), we first expand it as follows,

nt∑
i=1

E[‖∇θlt,i(θt−1)‖2|Ft−1] +

nt∑
i, j

E[〈∇θlt,i(θt−1),∇θlt, j(θt−1)〉|Ft−1]. (15)

For first term of (15), we utilize the Lipschitz continuity of ∇θlt,i, together with Assumptions 1 to 3-p, to obtain

E[‖∇θlt,i(θt−1)‖2|Ft−1] ≤ 2E[‖∇θlt,i(θt−1) − ∇θlt,i(θ∗)‖2|Ft−1] + 2E[‖∇θlt,i(θ∗)‖2|Ft−1] ≤ 2C2
l ‖θt−1 − θ

∗‖2 + 2σ2, (16)
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using ‖x + y‖2 ≤ 2(‖x‖2 + ‖y‖2). Next, for the second term in (15): as Ft−1 ⊆ Ft−1,i ⊂ Ft−1, j for all 0 ≤ i < j, we have

E[〈∇θlt,i(θt−1),∇θlt, j(θt−1)〉|Ft−1] = E[E[〈∇θlt,i(θt−1),∇θL(θt−1)〉|Ft−1,i−1]|Ft−1],

since θt−1 and lt,i are Ft−1, j−1-measurable for all 0 ≤ i < j, and similarly, as θt−1 is Ft−1-measurable and Ft−1,i−1-
measurable for all i ≥ 0, we also have

E[E[〈∇θlt,i(θt−1),∇θL(θt−1)〉|Ft−1,i−1]|Ft−1] = E[〈E[∇θlt,i(θt−1)|Ft−1,i−1],∇θL(θt−1)〉|Ft−1] = ‖∇θL(θt−1)‖2,

where ‖∇θL(θt−1)‖2 ≤ C2
∇
‖θt−1 − θ

∗‖2 as ∇θL is C∇-Lipschitz continuous and ∇θL(θ∗) = 0. Thus, we obtained a bound
for the second term (on the right-hand side) of (14) using the bounds of the two terms in (15):

nt∑
i=1

(2C2
l ‖θt−1 − θ

∗‖2 + 2σ2) +

nt∑
i, j

C2
∇‖θt−1 − θ

∗‖2 = (2C2
l nt + C2

∇(nt − 1)nt)‖θt−1 − θ
∗‖2 + 2σ2nt. (17)

For the third term (on the right-hand side) of (14) we use that L is µ-quasi-strong convex and θt−1 is Ft−1-measurable,

E[〈∇θlt,i(θt−1), θt−1 − θ
∗〉|Ft−1] = 〈E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ

∗〉 = 〈∇θL(θt−1), θt−1 − θ
∗〉 ≥ µ‖θt−1 − θ

∗‖2, (18)

by Assumption 1. Combining inequalities from (17) and (18) into (14) and taking the expectation on both sides of the
inequality, yields the recursive relation (9):

δt ≤ [1 − 2µγt + (2C2
l + (nt − 1)C2

∇)n−1
t γ2

t ]δt−1 + 2σ2n−1
t γ2

t ,

with δt = E[‖θt − θ
∗‖2] with some δ0 ≥ 0. At last, by Proposition 5, we obtain the desired inequality in (8), namely

δt ≤ exp

−µ t∑
i=t/2

γi

 exp

4C2
l

t∑
i=1

γ2
i

ni

 exp

2C2
∇

t∑
i=1

1{ni>1}γ
2
i

 δ0 +
2σ2

C2
l

 +
2σ2

µ
max

t/2≤i≤t

γi

ni
.

using that (nt − 1)n−1
t ≤ 1{nt>1}, nt ≥ 1, and that max1≤i≤t 2σ2/(2C2

l + (ni − 1)C2
∇

) ≤ max1≤i≤t 2σ2/2C2
l = σ2/C2

l .

Remark 1. The decrease of (2C2
l + (nt − 1)C2

∇
)n−1

t γt determines when the stationary phase occurs. This is more
clearly seen in Proposition 4, where the inner terms directly depend on the inception of the stationary phase. Thus, by
increasing nt, we decrease (2C2

l + (nt − 1)C2
∇

)n−1
t γt, and especially it dominates the constant Cl.

Proof of Corollary 1. By Theorem 1, we have the upper bound giving as

δt ≤ exp

−µ t∑
i=t/2

γi

 πc
t +

2σ2

µCρ
max

t/2≤i≤t
γi. (19)

as nt = Cρ, with πc
t = exp((4C2

l /Cρ)
∑t

i=1 γ
2
i ) exp(2C2

∇
1{Cρ>1}

∑t
i=1 γ

2
i )(δ0+σ2/C2

l ). The sum term
∑t

i=1 γ
2
i = C2

γC
2β
ρ

∑t
i=1 i−2α

in πc
t can be bounded with the help of integral tests for convergence,

∑t
i=1 i−2α = 1 +

∑t
i=2 i−2α ≤ 1 +

∫ t
1 x−2α dx ≤

1 + 1/(2α − 1) = 2α/(2α − 1), as α ∈ (1/2, 1). Likewise, plugging γt = CγC
β
ρt−α into the first term of (19), gives

exp

−µ t∑
i=t/2

γi

 = exp

−µCγC
β
ρ

t∑
i=t/2

i−α
 ≤ exp

(
−µCγC

β
ρ

∫ t

t/2
x−α dx

)
≤ exp

−µCγC
β
ρt1−α

21−α

 ,
using the integral test for convergence. Next, as (γt)t≥1 is decreasing, then maxt/2≤i≤t γt = γt/2. Combining all these
findings into (19), gives us

δt ≤ exp

−µCγC
β
ρt1−α

21−α

 πc
∞ +

21+ασ2Cγ

µC1−β
ρ tα

, (20)

with πc
∞ = exp(4αC2

γ(2C2
l + Cρ1{Cρ>1}C2

∇
)/(2α− 1)C1−2β

ρ )(δ0 + 2σ2/C2
l ). At last, converting (20) into terms of Nt using

Nt = Cρt, yields the desired.
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Proof of Corollary 2. For convenience, we divided the proof into two cases to comprehend that nt ≥ 1 for all t: first,
we bound each term of (8) (from Theorem 1) after inserting, γt = Cγnβt t−α = CγC

β
ρtβρ−α if ρ ≥ 0, or γt ≥ Cγt−α if

ρ < 0 (using that β ≥ 0) into the inequality. If ρ ≥ 0, the first term of (8) can be bounded, as follows:

exp

−µ t∑
i=t/2

γi

 = exp

−µCγC
β
ρ

t∑
i=t/2

iβρ−α
 ≤ exp

−µCγC
β
ρt1+βρ−α

21+βρ−α

 ,
using that α − βρ ∈ (1/2, 1) and the integral test for convergence. In a same way, if ρ < 0, one has

exp

−µ t∑
i=t/2

γi

 ≤ exp

−µCγ

t∑
i=t/2

i−α
 ≤ exp

(
−
µCγt1−α

21−α

)
.

Likewise, with the help of integral tests for convergence, we have for ρ ≥ 0, that
∑t

i=1 γ
2
i /ni ≤

∑t
i=1 γ

2
i ≤ 2(α −

βρ)C2
γC

2β
ρ /(2(α − βρ) − 1), as nt ≥ 1 and α − ρβ > 1/2. If ρ < 0, one has

∑t
i=1 γ

2
i /ni ≤

∑t
i=1 γ

2
i ≤ 2αC2

γC
2β
ρ /(2α − 1)

since Cρ ≥ nt ≥ 1. Next, as (1 − β)ρ + α > 0 for ρ ≥ 0, then we can bound the last term of (8) by

2σ2

µ
max

t/2≤i≤t

γi

ni
=

2σ2Cγ

µC1−β
ρ

max
t/2≤i≤t

1
i(1−β)ρ+α

≤
21+(1−β)ρ+ασ2Cγ

µC1−β
ρ t(1−β)ρ+α

.

Likewise, if ρ < 0, we have

2σ2

µ
max

t/2≤i≤t

γi

ni
=

2σ2Cγ

µ
max

t/2≤i≤t

1

n1−β
i iα

≤
21+ασ2Cγ

µtα
,

since nt ≥ 1 and β ≤ 1. Combining all these findings gives

δt ≤ exp

−µCγC
β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

 πv
∞ +

21+φ(1+ρ̃)σ2Cγ

µC(1−β)1{ρ≥0}
ρ tφ(1+ρ̃)

, (21)

where πv
∞ = exp(4(α − βρ̃)C2

γC
2β
ρ (2C2

l + C2
∇

)/2(α − βρ̃) − 1) with ρ̃ = ρ1{ρ≥0} and φ = ((1 − β)ρ̃ + α)/(1 + ρ̃). To write
this in terms of Nt, we use that Nt =

∑t
i=1 ni = Cρ

∑t
i=1 iρ = Cρ(tρ +

∑t−1
i=1 iρ) ≤ Cρ(tρ +

∫ t
1 xρ dx) ≤ Cρ(tρ + tρ

∫ t
1 dx) =

Cρ(tρ + t1+ρ) ≤ 2Cρt1+ρ, for ρ ≥ 0, thus, t ≥ (Nt/2Cρ)1/(1+ρ). For ρ < 0, we have Nt ≤ Cρt, i.e, t ≥ Nt/Cρ.

7.2. Proofs for Section 4
Lemma 1 (ASSG/APSSG). Denote ∆t = E[‖θt − θ

∗‖4] for some ∆0 ≥ 0, where (θt) follows (2) or (3). Under
Assumption 1, Assumptions 2-p and 3-p with p = 4 and Assumption 4, we have for any learning rate (γt) that

∆t ≤ exp

−µ t∑
i=t/2

γi

 Π∆
t +

32σ4

µ2 max
t/2≤i≤t

γ2
i

n2
i

+
48σ4

µ
max

t/2≤i≤t

γ3
i

n3
i

+
114σ4

µ
max

t/2≤i≤t

γ3
i 1{ni>1}

n2
i

, (22)

with Π∆
t given in (30).

Proof of Lemma 1. We will now derive the recursive step sequence for the fourth-order moment using the same argu-
ments as in proof for Theorem 1. Thus, one can show that

E[‖θt − θ
∗‖4|Ft−1] ≤‖θt−1 − θ

∗‖4 +
γ4

t

n4
t
E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
4
∣∣∣∣∣∣∣∣Ft−1

 +
4γ2

t

n2
t
E

〈 nt∑
i=1

∇θlt,i (θt−1) , θt−1 − θ
∗

〉2∣∣∣∣∣∣∣Ft−1


+

2γ2
t

n2
t
‖θt−1 − θ

∗‖2E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣Ft−1

 − 4γt

nt
‖θt−1 − θ

∗‖2
nt∑

i=1

〈E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ
∗〉

+
4γ3

t

n3
t
E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2 〈 nt∑

i=1

∇θlt,i (θt−1) , θt−1 − θ
∗

〉∣∣∣∣∣∣∣∣Ft−1

 ,
13



using θt−1 is Ft−1−measurable. Note, by Assumption 1, we have

〈E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ
∗〉 = 〈∇θL(θt−1), θt−1 − θ

∗〉 ≥ µ‖θt−1 − θ
∗‖2,

as L is µ-quasi-strong convex. Combining this with the Cauchy-Schwarz inequality 〈x, y〉 ≤ ‖x‖‖y‖, we obtain the
simplified expression:

E[‖θt − θ
∗‖4|Ft−1] ≤‖θt−1 − θ

∗‖4 +
γ4

t

n4
t
E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
4
∣∣∣∣∣∣∣∣Ft−1

 +
6γ2

t

n2
t
‖θt−1 − θ

∗‖2E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣Ft−1


− 4µγt‖θt−1 − θ

∗‖4 +
4γ3

t

n3
t
‖θt−1 − θ

∗‖E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
3
∣∣∣∣∣∣∣∣Ft−1

 .
Next, recall Young’s Inequality, i.e., for any at, bt, ct > 0 we have atbt ≤ a2

t c2
t /2 + b2

t /2c2
t ,∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
3

≤
γt

2nt ‖θt−1 − θ∗‖

∥∥∥∥∥∥∥
nt∑

i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
4

+
2nt ‖θt−1 − θ

∗‖

γt

∥∥∥∥∥∥∥
nt∑

i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2

,

giving us

E[‖θt − θ
∗‖4|Ft−1] ≤(1 − 4µγt)‖θt−1 − θ

∗‖4 +
3γ4

t

n4
t
E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
4
∣∣∣∣∣∣∣∣Ft−1

 +
8γ2

t

n2
t
‖θt−1 − θ

∗‖2E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣Ft−1

 .
(23)

To bound the second and fourth-order terms in (23), we would need to study the recursive sequences: firstly, utilizing
the Lipschitz continuity of ∇θlt,i, together with Assumptions 2-p and 3-p, and that θt−1 is Ft−1-measurable (Assump-
tion 1), we obtain

E[‖∇θlt,i(θt−1)‖p|Ft−1] ≤ 2p−1[E[‖∇θlt,i(θt−1) − ∇θlt,i(θ∗)‖p|Ft−1] + E[‖∇θlt,i(θ∗)‖p|Ft−1]] ≤ 2p−1[Cp
l ‖θt−1 − θ

∗‖p + σp],
(24)

for any p ∈ [1, 4] using the bound ‖x + y‖p ≤ 2p−1(‖x‖p + ‖y‖p). Thus, we can bound the second-order term in (23) by

E


∥∥∥∥∥∥∥

t∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
2
∣∣∣∣∣∣∣∣Ft−1

 ≤[2C2
l nt + C2

∇(nt − 1)nt]‖θt−1 − θ
∗‖2 + 2σ2nt ≤ [2C2

l nt + C2
∇n2

t 1{nt>1}]‖θt−1 − θ
∗‖2 + 2σ2nt,

(25)

following the same steps in the proof of Theorem 1, but with use of (24). Bounding the fourth-order term is a bit
heavier computationally, but let us recall that ‖

∑
i xi‖

2 =
∑

i‖xi‖
2 +

∑
i, j〈xi, x j〉 =

∑
i‖xi‖

2 + 2
∑

i≤ j〈xi, x j〉. Then, we
have that ∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i(θt−1)

∥∥∥∥∥∥∥
4

=

 nt∑
i=1

‖∇θlt,i(θt−1)‖2 +

nt∑
i, j

〈∇θlt,i(θt−1),∇θlt, j(θt−1)〉

2

≤2

 nt∑
i=1

‖∇θlt,i(θt−1)‖2
2

+ 4

 nt∑
i< j

〈∇θlt,i(θt−1),∇θlt, j(θt−1)〉

2

, (26)

as (x + y)2 ≤ 2x2 + 2y2. For the first term of (26), we have

E


 n1∑

i=1

‖∇θlt,i(θt−1)‖2
2∣∣∣∣∣∣∣Ft−1

 =

nt∑
i=1

E[‖∇θlt,i(θt−1)‖4|Ft−1] +

nt∑
i, j

E[‖∇θlt,i(θt−1)‖2‖∇θlt, j(θt−1)‖2|Ft−1]

≤8nt[C4
l ‖θt−1 − θ

∗‖4 + σ4] + 4n2
t 1{nt>1}[C2

l ‖θt−1 − θ
∗‖2 + σ2]2,

14



using the bound from (24), nt(nt − 1) ≤ n2
t 1{nt>1}, and that Ft−1 ⊆ Ft−1,i ⊂ Ft−1, j for all 0 ≤ i < j. To bound the second

term of (26), we ease notation by denoting ∇θlt,i(θt−1) by υi, giving us nt∑
i< j

〈υi, υ j〉

2

=

nt∑
i< j

〈υi, υ j〉
2 +

nt∑
i< j,k<l

(i, j),(k,l)

〈υi, υ j〉〈υk, υl〉 =

nt∑
i< j

〈υi, υ j〉
2

︸       ︷︷       ︸
A

+

nt∑
i< j,k<l

(i, j),(k,l), j=l

〈υi, υ j〉〈υk, υl〉

︸                        ︷︷                        ︸
B

+

nt∑
i< j,k<l

(i, j),(k,l), j,l

〈υi, υ j〉〈υk, υl〉

︸                        ︷︷                        ︸
C

.

By Cauchy-Schwarz inequality, we can bound the first term A, by

E[A|Ft−1] ≤
nt∑

i< j

E[‖υi‖
2‖υ j‖

2|Ft−1] ≤ 2nt(nt − 1)[C2
l ‖θt−1 − θ

∗‖2 + σ2]2 ≤ 2n2
t 1{nt>1}[C2

l ‖θt−1 − θ
∗‖2 + σ2]2,

using that Ft−1 ⊆ Ft−1,i ⊂ Ft−1, j for all 0 ≤ i < j. Next, since l = j implies i , k, we have

E[B|Ft−1] =

nt∑
i< j,k<l,i,k, j=l

E[〈υi, υ j〉〈υk, υl〉|Ft−1] =

nt∑
i< j,k<l,i,k, j=l

E[E[〈E[υi|Ft−1,i−1], υ j〉〈E[υk |Ft−1,k−1], υl〉|Ft−1,l−1]|Ft−1]

=

nt∑
i< j,k<l,i,k, j=l

E[E[〈∇θL(θt−1), υl〉
2|Ft−1,l−1]|Ft−1] ≤

nt∑
i< j,k<l,i,k, j=l

E[‖∇θL(θt−1)‖2E[‖υl‖
2|Ft−1,l−1]|Ft−1]

≤

nt∑
i< j,k<l,i,k, j=l

2C2
∇‖θt−1 − θ

∗‖2[C2
l ‖θt−1 − θ

∗‖2 + σ2] = nt(nt − 1)(nt − 2)C2
∇‖θt−1 − θ

∗‖2[C2
l ‖θt−1 − θ

∗‖2 + σ2]

≤n3
t 1{nt>1}C2

∇‖θt−1 − θ
∗‖2[C2

l ‖θt−1 − θ
∗‖2 + σ2],

using the Cauchy-Schwarz inequality and the bound in (24). In the same way, as j , l includes (i, j) , (k, l), we can
rewrite C as

C =

nt∑
i< j,k<l, j,l

〈υi, υ j〉〈υk, υl〉 =

nt∑
i< j,k<l,i=k, j,l

〈υi, υ j〉〈υk, υl〉︸                          ︷︷                          ︸
C1

+

nt∑
i< j,k<l,i,k, j,l

〈υi, υ j〉〈υk, υl〉︸                          ︷︷                          ︸
C2

,

where E[C1|Ft−1] = E[B|Ft−1]. Finally, we can rewrite C2 as

C2 =

nt∑
i< j,k<l,i,k, j,l,i=l, j,k

〈υiυ j〉〈υkυl〉︸                               ︷︷                               ︸
C2,1

+

nt∑
i< j,k<l,i,k, j,l,i,l, j=k

〈υiυ j〉〈υkυl〉︸                               ︷︷                               ︸
C2,2

+

nt∑
i< j,k<l,i, j,k,l

〈υiυ j〉〈υkυl〉︸                        ︷︷                        ︸
C2,3

,

where E[C2,1|Ft−1] = E[C2,2|Ft−1] = E[B|Ft−1], and

E[C2,3|Ft−1] =

nt∑
i< j,k<l,i, j,k,l

E[‖∇θL(θt−1)‖4|Ft−1] ≤ nt(nt − 1)(nt − 2)(nt − 3)C4
∇‖θt−1 − θ

∗‖4 ≤ n4
t 1{nt>1}C4

∇‖θt−1 − θ
∗‖4.

Thus, the fourth-order term of (23), is bounded by

E


∥∥∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥∥∥
4
∣∣∣∣∣∣∣∣Ft−1

 ≤16nt[C4
l ‖θt−1 − θ

∗‖4 + σ4] + 16n2
t 1{nt>1}[C2

l ‖θt−1 − θ
∗‖2 + σ2]2

+ 12n3
t 1{nt>1}C2

∇‖θt−1 − θ
∗‖2[C2

l ‖θt−1 − θ
∗‖2 + σ2] + 4n4

t 1{nt>1}C4
∇‖θt−1 − θ

∗‖4

≤[16C4
l nt + 16C4

l n2
t 1{nt>1} + 12C2

∇C2
l n3

t 1{nt>1} + 4C4
∇n4

t 1{nt>1}]‖θt−1 − θ
∗‖4

+ [32C2
l σ

2n2
t 1{nt>1} + 12C2

∇σ
2n3

t 1{nt>1}]‖θt−1 − θ
∗‖2 + 16σ4nt + 16σ4n2

t 1{nt>1}. (27)
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Combining the bound from (25) and (27) into (23), we obtain the recursive relation for the fourth-order moment:

E[‖θt − θ
∗‖4|Ft−1] ≤[1 − 4µγt + 8C2

∇1{nt>1}γ
2
t + 16C2

l n−1
t γ2

t + 48C4
l n−3

t γ4
t + 48C4

l n−2
t 1{nt>1}γ

4
t + 36C2

∇C2
l n−1

t 1{nt>1}γ
4
t

+ 12C4
∇1{nt>1}γ

4
t ]‖θt−1 − θ

∗‖4 + [16σ2n−1
t γ2

t + 96C2
l σ

2n−2
t 1{nt>1}γ

4
t + 36C2

∇σ
2n−1

t 1{nt>1}γ
4
t ]‖θt−1 − θ

∗‖2

+ 48σ4n−3
t γ4

t + 48σ4n−2
t 1{nt>1}γ

4
t .

Using the Young’s inequalities, 2C2
∇
C2

l ≤ ntC4
∇

+ n−1
t C4

l , 16σ2n−1
t γ2

t ‖θt−1 − θ
∗‖2 ≤ 2µγt‖θt − θ

∗‖4 + 32σ4µ−1n−2
t γ3

t ,
2C2

l σ
2n−2

t 1{nt>1}γ
4
t ‖θt−1−θ

∗‖2 ≤ C4
l n−2

t 1{nt>1}γ
4
t ‖θt−θ

∗‖4+σ4n−2
t 1{nt>1}γ

4
t , and 2C2

∇
σ2n−1

t 1{nt>1}γ
4
t ‖θt−1−θ

∗‖2 ≤ C4
∇
1{nt>1}γ

4
t ‖θt−

θ∗‖4 + σ4n−2
t 1{nt>1}γ

4
t , yields,

E[‖θt − θ
∗‖4|Ft−1] ≤[1 − 2µγt + 8C2

∇1{nt>1}γ
2
t + 16C2

l n−1
t γ2

t + 48C4
l n−3

t γ4
t + 114C4

l n−2
t 1{nt>1}γ

4
t + 48C4

∇1{nt>1}γ
4
t ]‖θt−1 − θ

∗‖4

+ 32µ−1σ4n−2
t γ3

t + 48σ4n−3
t γ4

t + 114σ4n−2
t 1{nt>1}γ

4
t . (28)

Taking, the expectation on both sides of the inequality in (28) yields the recursive relation for the fourth-order moment:

∆t ≤[1 − 2µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

l n−1
t γ2

t + 48C4
l n−3

t γ4
t + 114C4

l n−2
t 1{nt>1}γ

4
t + 48C4

∇1{nt>1}γ
4
t ]∆t−1

+ 32µ−1σ4n−2
t γ3

t + 48σ4n−3
t γ4

t + 114σ4n−2
t 1{nt>1}γ

4
t . (29)

with ∆t = E[‖θt − θ
∗‖4] for some ∆0 ≥ 0. By Proposition 5, we achieve the (upper) bound of ∆t in (29), given as

∆t ≤ exp

−µ t∑
i=t/2

γi

 Π∆
t +

32σ4

µ2 max
t/2≤i≤t

γ2
i

n2
i

+
48σ4

µ
max

t/2≤i≤t

γ3
i

n3
i

+
114σ4

µ
max

t/2≤i≤t

γ3
i 1{ni>1}

n2
i

.

where Π∆
t is given by

exp

32C2
l

t∑
i=1

γ2
i

ni

 exp

96C4
l

t∑
i=1

γ4
i

n3
i

 exp

228C4
l

t∑
i=1

1{ni>1}γ
4
i

n2
i


exp

16C2
∇

t∑
i=1

1{ni>1}γ
2
i

 exp

96C4
∇

t∑
i=1

1{ni>1}γ
4
i

 ∆0 +
2σ4

C4
l

+
4σ4γ1

µC2
l n1

 , (30)

with use of

max
1≤i≤t

32µ−1σ4n−2
i γi + 48σ4n−3

i γ2
i + 114σ4n−2

i 1{ni>1}γ
2
i

8C2
∇
1{ni>1} + 16C2

l n−1
i + 48C4

l n−3
i γ2

i + 114C4
l n−2

i 1{ni>1}γ
2
i + 48C4

∇
1{ni>1}γ

2
i

≤
σ4

C4
l

+
2σ4γ1

µC2
l n1

.

At last, bounding the projected estimate (3) follows from that E[‖PΘ(θ) − θ∗‖2] ≤ E[‖θ − θ∗‖2], ∀θ ∈ Θ.

7.2.1. Proofs for Section 4.1
Proof of Theorem 2. Following Polyak and Juditsky [26], we rewrite (2) to

θt = θt−1 −
γt

nt

nt∑
i=1

∇θlt,i(θt−1) ⇐⇒
1
γt

(θt−1 − θt) = ∇θlt(θt−1), (31)

where ∇θlt(θt−1) denotes n−1
t

∑nt
i=1 ∇θlt,i(θt−1). Note ∇θlt(θt−1) ≈ ∇θlt(θ∗) + ∇2

θ lt(θ
∗)(θt−1 − θ

∗), and that ∇θlt(θ∗) and
∇θlt(θ)−∇θL(θ) behaves almost like an i.i.d. sequences with zero mean. Thus, θ̄t−θ

∗ behaves like−∇θL(θ∗)−1N−1
t

∑t
i=1 ni∇θli(θ∗)

leading to a bound in O(
√

Nt). Observe that

∇2
θL(θ∗)(θt−1 − θ

∗) =∇θlt(θt−1) − ∇θlt(θ∗) − [∇θlt(θt−1) − ∇θlt(θ∗) − ∇θL(θt−1)]︸                                      ︷︷                                      ︸
martingale term

− [∇θL(θt−1) − ∇2
θL(θ∗)(θt−1 − θ

∗)]︸                                    ︷︷                                    ︸
rest term

,
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where ∇2
θL(θ∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2

θL(θ∗) ≥ µ. Thus, summing the parts and
using the Minkowski’s inequality, we obtain the inequality:

(
E

[∥∥∥θ̄t − θ
∗
∥∥∥2

]) 1
2
≤

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥∥∥
2


1
2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥
2


1
2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni
[
∇θli (θi−1) − ∇θli (θ∗) − ∇θL (θi−1)

]∥∥∥∥∥∥∥
2


1
2

+

E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

[
∇θL (θi−1) − ∇2

θL (θ∗) (θi−1 − θ
∗)
]∥∥∥∥∥∥∥

2


1
2

.

As (∇θlt,i(θ∗)) is a square-integrable martingale increment sequences on Rd (Assumption 1), we have

E


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θ∗)

∥∥∥∥∥∥∥
2 ≤ 1

N2
t

t∑
i=1

ni∑
j=1

E
[∥∥∥∇2

θL (θ∗)−1
∇θli, j (θ∗)

∥∥∥2
]
≤

Tr
[
∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1
]

Nt
, (32)

using Assumption 4. To ease notation, we denote Tr[∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1] by Λ. Next, note that for all t ≥ 1, we
have the relation in (31), giving us

1
Nt

t∑
i=1

ni∇θli (θi−1) =
1
Nt

t∑
i=1

ni

γi
(θi−1 − θi) =

1
Nt

t−1∑
i=1

(θi − θ
∗)

(
ni+1

γi+1
−

ni

γi

)
−

1
Nt

(θt − θ
∗)

nt

γt
+

1
Nt

(θ0 − θ
∗)

n1

γ1
,

leading to∥∥∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥ ≤ 1
Ntµ

t−1∑
i=1

‖θi − θ
∗‖

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
1

Ntµ
‖θt − θ

∗‖
nt

γt
+

1
Ntµ
‖θ0 − θ

∗‖
n1

γ1
.

Hence, with the notion of δt = E[‖θt − θ
∗‖2] this expression can be simplified toE


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥∥∥
2


1
2

≤
1

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
nt

Ntγtµ
δ

1
2
t +

n1

Ntγ1µ
δ

1
2
0 . (33)

For the martingale term, we have

E


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni
[
∇θli (θi−1) − ∇θli (θ∗) − ∇θL (θi−1)

]∥∥∥∥∥∥∥
2 ≤ 1

N2
t µ

2

t∑
i=1

n2
i E

[
‖∇θli (θi−1) − ∇θli (θ∗)‖2

]

=
1

N2
t µ

2

t∑
i=1

E


∥∥∥∥∥∥∥∥

ni∑
j=1

∇θli, j (θi−1) − ∇θli, j (θ∗)

∥∥∥∥∥∥∥∥
2 ≤ 1

N2
t µ

2

t∑
i=1

ni∑
j=1

(
E

[∥∥∥∇θli, j (θi−1) − ∇θli, j (θ∗)
∥∥∥2

]) 1
2
≤

C2
l

N2
t µ

2

t∑
i=1

niδi−1,

(34)

by the Cauchy-Schwarz inequality and Assumption 2-p. For all t ≥ 1, the rest term is directly bounded by (7):E

∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

[
∇θL (θi−1) − ∇2

θL (θ∗) (θi−1 − θ
∗)
]∥∥∥∥∥∥∥

2


1
2

≤
C′
∇

Ntµ

t∑
i=1

ni∆
1
2
i−1, (35)

with the notion ∆t = E[‖θt − θ
∗‖4]. Finally, combining the terms from (32) to (35), gives us

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
1

Ntµ

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
nt

Ntγtµ
δ1/2

t +
n1

Ntγ1µ
δ1/2

0 +
Cl

Ntµ

 t∑
i=1

niδi−1

1/2

+
C′
∇

Ntµ

t∑
i=1

ni∆
1/2
i−1, (36)

where δ̄t = E[‖θ̄t − θ
∗‖2], which can be simplified into (12) by shifting the indices and collecting the δ0 terms.
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Proof of Corollary 3. As nt = Cρ for all t ≥ 1, we simplify the bound for δ̄t in (12) to

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
Cρ

Ntµ

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ 1
γi+1
−

1
γi

∣∣∣∣∣ +
Cρ

Ntγtµ
δ1/2

t +
Cρ

Ntµ

(
1
γ1

+ Cl

)
δ1/2

0 +
ClC

1
2
ρ

Ntµ

 t−1∑
i=1

δi


1/2

+
C′
∇
Cρ

Ntµ

t−1∑
i=0

∆
1/2
i . (37)

The second-order moment δt is bounded by Corollary 1 but with use of (20) as we work in terms of t. The fourth-order
moment ∆t from Lemma 1 can be simplified to:

∆t ≤ exp

−µ t∑
i=t/2

γi

 Πc
∞ +

1
µ

32σ4

µC2
ρ

max
t/2≤i≤t

γ2
i +

48σ4

C3
ρ

max
t/2≤i≤t

γ3
i +

114σ4
1{Cρ>1}

C2
ρ

max
t/2≤i≤t

γ3
i


≤ exp

−µCγC
β
ρt1−α

21−α

 Πc
∞ +

1
µ

22α32σ4C2
γC

2β
ρ

µC2
ρt2α +

23α48σ4C3
γC

3β
ρ

C3
ρt3α

+
23α114σ4C3

γC
3β
ρ 1{Cρ>1}

C2
ρt3α

 ,
using that γt = CγC

β
ρt−α is decreasing as α ∈ (1/2, 1). Regarding Π∆

t defined in (30), we can bound it by

Πc
∞ = exp

64αC2
l C2

γC
2β
ρ

(2α − 1) Cρ

 exp

 (192 + 456Cρ1{Cρ>1})C4
l C4

γC
4β
ρ

C3
ρ

 exp

32αC2
∇
C2
γC

2β
ρ 1{Cρ>1}

2α − 1


exp

(
192C4

∇C4
γC

4β
ρ 1{Cρ>1}

) ∆0 +
2σ4

C4
l

+
4σ4Cγ

µC2
l C1−β

ρ

 ,
using

∑t
i=1 i−2α ≤ 2α/(2α − 1) and

∑t
i=1 i−4α ≤ 2. Note that Πc

∞ is a finite constant, independent of t. To bound
the first term of (37), namely Cρ

Ntµ

∑t−1
i=1 δ

1/2
i |γ

−1
i+1 − γ

−1
i |, we remark that |γ−1

t+1 − γ
−1
t | ≤ C−1

γ C−βρ αtα−1, one has (since
√

a + b ≤
√

a +
√

b),

Cρ

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ 1
γi+1
−

1
γi

∣∣∣∣∣ ≤C1−β
ρ α

CγµNt

t∑
i=1

iα−1

exp

−µCγC
β
ρi1−α

22−α

 √
πc
∞ +

2
1+α

2 σ
√

Cγ

√
µC

1−β
2
ρ iα/2

 . (38)

For simplicity, let us denote

Ac
∞ =

∞∑
i=0

exp

−µCγC
β
ρi1−α

22−α

 ≥ ∞∑
i=0

iα−1 exp

−µCγC
β
ρi1−α

22−α

 ,
as α < 1. Thus, the first part of (38) is bounded as follows:

C1−β
ρ α

√
πc
∞

CγµNt

t∑
i=1

iα−1 exp

−µCγC
β
ρi1−α

22−α

 ≤ C1−β
ρ α

√
πc
∞Ac
∞

CγµNt
.

Furthermore, with the help of an integral test for convergence, one has
∑t

i=1 iα/2−1 ≤ 1 +
∫ t

1 sα/2−1 ds = 1 + (2/α)tα/2 −
(2/α) ≤ (2/α)tα/2, such that the second part of (38) can be bounded by

2
1+α

2 σC
1−β

2
ρ α

C1/2
γ µ3/2Nt

t∑
i=1

iα/2−1 ≤
2

3+α
2 σC

1−β
2
ρ tα/2

C1/2
γ µ3/2Nt

=
2

3+α
2 σC

1−α−β
2

ρ

C1/2
γ µ3/2N1−α/2

t

.

By combining this, we get

Cρ

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ 1
γi+1
−

1
γi

∣∣∣∣∣ ≤ C1−β
ρ α

√
πc
∞Ac
∞

CγµNt
+

2
3+α

2 σC
1−α−β

2
ρ√

Cγµ3/2N1−α/2
t

. (39)
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Similarly, second term of (37), can be bounded by

Cρ

Ntγtµ
δ

1
2
t ≤

C1−α−β
ρ

CγµN1−α
t

exp

−µCγC
β
ρt1−α

22−α

 √
πc
∞ +

2
1+α

2 σ
√

Cγ

√
µC

1−β
2
ρ tα/2

 ≤ C2−α−β
ρ

√
πc
∞Ac
∞

CγµN2−α
t

+
2

1+α
2 C

1−α−β
2

ρ σ√
Cγµ3/2N1−α/2

t

,

using exp(−µCγC
β
ρt1−α/22−α) = Ac

t ≤ t−1 ∑t
i=1 Ac

i ≤ t−1Ac
∞ as Ac

t is decreasing. In a same way, one has

ClC
1
2
ρ

Ntµ

 t−1∑
i=1

δi


1
2

≤
ClC

1
2
ρ

Ntµ

Ac
∞π

c
∞ +

21+ασ2Cγt1−α

(1 − α) µC1−β
ρ

1/2

≤
ClC

1
2
ρ

√
πc
∞

√
Ac
∞

Ntµ
+

2
1+α

2 Clσ
√

Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

.

Bound the last term of (37), is done as follows,

C′
∇
Cρ

Ntµ

t−1∑
i=0

∆
1
2
i ≤

C′
∇
Cρ

Ntµ

t−1∑
i=0

exp

−µCγC
β
ρi1−α

22−α

 √
Πc
∞ +

2α6C′
∇
σ2CγC

β
ρ

Ntµ2

t−1∑
i=1

i−α +
(6 + 71{Cρ>1})23α/2C′

∇
σ2C3/2

γ C3β/2
ρ

Ntµ3/2

t−1∑
i=1

i−3α/2

≤
C′
∇
Cρ

√
Πc
∞Ac
∞

Ntµ
+

2α6C′
∇
σ2Cγ

C1−α−β
ρ µ2Nα

t

+
(6 + 71{Cρ>1})23α/2C′

∇
σ2C3/2

γ C3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
.

Thus, by collecting the terms above, we obtain:

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
6σC

1−α−β
2

ρ√
Cγµ3/2N1−α/2

t

+
2α6C′

∇
σ2Cγ

C1−α−β
ρ µ2Nα

t

+
C2−α−β
ρ

√
πc
∞Ac
∞

CγµN2−α
t

+
2

1+α
2 Clσ

√
Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

+
CρΓc

µNt
+

(6 + 71{Cρ>1})23α/2C′
∇
σ2C3/2

γ C3β/2
ρ

µ3/2ψ0
3α/2(Nt/Cρ)−1Nt

,

where Γc = (1/CγC
β
ρ + Cl)δ

1/2
0 + Cl

√
πc
∞Ac
∞/C

1/2
ρ +

√
πc
∞Ac
∞/CγC

β
ρ + C′

∇

√
Πc
∞Ac
∞.

Proof of Corollary 4. The steps of the proof follows the ones of Corollary 3 with the smart notation of φ and ρ̃: The
bound for δ̄t in (12) is given by

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
1

Ntµ

t−1∑
i=1

δ1/2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ +
nt

Ntγtµ
δ1/2

t +
n1

Ntµ

(
1
γ1

+ Cl

)
δ1/2

0 +
Cl

Ntµ

 t−1∑
i=1

ni+1δi


1/2

+
C′
∇

Ntµ

t−1∑
i=0

ni+1∆
1/2
i ,

(40)

where the learning rate is on the form γt = Cγnβt t−α with nt = Cρtρ. The second-order moment δt is upper bounded by
(21) from Corollary 2. The fourth-order moment ∆t from Lemma 1 can be simplified as follows,

∆t ≤ exp

−µ t∑
i=t/2

γi

 Πv
∞ +

32σ4

µ2 max
t/2≤i≤t

γ2
i

n2
i

+
162σ4

µ
max

t/2≤i≤t

γ3
i

n2
i

,

as nt ≥ 1 for any t ≥ 1 and β ≤ 1, and

Πv
∞ = exp

32(α − βρ̃)C2
γC

2β
ρ (2C2

l + C2
∇

)

2(α − βρ̃) − 1

 exp
(
192C4

γC
4β
ρ (4C4

l + C4
∇)

) ∆0 +
2σ4

C4
l

+
4σ4Cγ

µC2
l C1−β

ρ

,


using that

∑t
i=1 i−a ≤ 2 for a ≥ 2. Next, for ρ ≥ 0, we have

∆t ≤ exp

−µCγC
β
ρt1+βρ−α

21+βρ−α

 Πv
∞ +

22α−2βρ+2ρ32σ4C2
γC

2β
ρ

µ2C2
ρt2α−2βρ+2ρ +

23α−3βρ+2ρ162σ4C3
γC

3β
ρ

µC2
ρt3α−3βρ+2ρ ,
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using that α − βρ ∈ (1/2, 1). If ρ < 0, one directly have

∆t ≤ exp

−µCγC
β
ρt1−α

21−α

 Πv
∞ +

22α32σ4C2
γC

2β
ρ

µ2t2α +
23α162σ4C3

γC
3β
ρ

µt3α .

With the notion of φ and ρ̃, we can combine the two ρ-cases as follows:

∆t ≤ exp

−µCγC
β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

 Πv
∞ +

22φ(1+ρ̃)32σ4C2
γC

2β
ρ

µ2C21{ρ≥0}
ρ t2φ(1+ρ̃)

+
23φ(1+ρ̃)−ρ̃162σ4C3

γC
3β
ρ

µC21{ρ≥0}
ρ t3φ(1+ρ̃)−ρ̃

.

We will in the following bound the terms for t but afterwards we will translate it to terms in Nt. If ρ ≥ 0, the first
relation is t ≥ (Nt/2Cρ)1/(1+ρ) since Nt = Cρ(tρ+

∑t−1
i=1 iρ) ≤ Cρ(tρ+

∫ t
1 xρ dx) ≤ Cρ(tρ+tρ

∫ t
1 dx) = Cρ(tρ+t1+ρ) ≤ 2Cρt1+ρ

by use the integral test for convergence. Similarly, Nt = Cρ
∑t

i=1 iρ ≥ Cρ

∫ t
0 xρ dx = Cρtρ+1, thus, t ≤ (Nt/Cρ)1/(1+ρ). If

ρ < 0, one has t ≤ Nt and Nt ≤ Cρt, i.e., t ≥ Nt/Cρ.
Bounding 1

Ntµ

∑t−1
i=1 δ

1/2
i |ni+1/γi+1−ni/γi|, we first note nt/γt = C−1

γ C1−β
ρ t(1−β)ρ+α for ρ ≥ 0. Thus, by the mean value

theorem, we obtain: ∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ ≤ ((1 − β)ρ + α)
C1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣∣ν(1−β)ρ+α−1
∣∣∣ ≤ ((1 − β)ρ + α) C1−β

ρ

Cγi1−(1−β)ρ−α , (41)

as α + (1 − β)ρ ≤ 1 − ρ since α − βρ ∈ (1/2, 1). For ρ < 0, the mean value theorem gives us∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ =
1

Cγ

∣∣∣∣n1−β
i+1 (i + 1)α − n1−β

i iα
∣∣∣∣ ≤ C1−β

ρ

Cγ
|(i + 1)α − iα| ≤

αC1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣∣να−1
∣∣∣ ≤ αC1−β

ρ

Cγi1−α
,

as (nt)t≥1 is a decreasing sequence and β ≤ 1. Thus, for any ρ ∈ (−1, 1), we have∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ ≤ φ(1 + ρ̃)C1−β
ρ

Cγi1−φ(1+ρ̃) .

By using this, we obtain:

1
Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ ≤φ(1 + ρ̃)C1−β
ρ

NtµCγ

t∑
i=1

iφ(1+ρ̃)−1

exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 √
πv
∞ +

2
1+φ(1+ρ̃)

2 σ
√

Cγ

√
µC

(1−β)
2 1{ρ≥0}

ρ i
φ(1+ρ̃)

2

 .
Next, let us denote

Av
∞ =

∞∑
i=0

iρ̃ exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 ≥ ∞∑
i=0

iφ(1+ρ̃)−1 exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 ,
since φ(1 + ρ̃) − 1 = α + (1 − β)ρ̃ − 1 ≤ ρ̃. Thus,

φ(1 + ρ̃)C1−β
ρ

√
πv
∞

NtµCγ

t∑
i=1

iφ(1+ρ̃)−1 exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 ≤ φ(1 + ρ̃)C1−β
ρ

√
πv
∞Av
∞

NtµCγ
.

Furthermore, with the help of an integral test for convergence, we have

φ(1 + ρ̃)2
1+φ(1+ρ̃)

2 σC
1−β

2 1{ρ≥0}
ρ

µ3/2
√

CγNt

t∑
i=1

i
φ(1+ρ̃)

2 −1 ≤
2

3+φ(1+ρ̃)
2 σC

1−β
2 1{ρ≥0}
ρ t

φ(1+ρ̃)
2

µ3/2
√

CγNt
≤

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√

CγN1−φ/2
t

.
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Summarising, with use of φ(1 + ρ̃) < 2, we obtain

1
Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ ≤φ(1 + ρ̃)C1−β
ρ

√
πv
∞Av
∞

NtµCγ
+

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√

CγN1−φ/2
t

≤
2C1−β

ρ

√
πv
∞Av
∞

µCγNt
+

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√

CγN1−φ/2
t

.

Similarly, for nt
Ntγtµ

δ1/2
t , one have

nt

Ntγtµ
δ

1
2
t ≤

C1−β
ρ

√
πv
∞tφ(1+ρ̃)

NtCγµ
exp

−µCγC
β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 +
2

1+φ(1+ρ̃)
2 σC

1−β
2 1{ρ≥0}
ρ t

φ(1+ρ̃)
2

µ3/2
√

CγNt
≤

C2−φ−β
ρ

√
πv
∞Av
∞

µCγN2−φ
t

+
2

1+φ(1+ρ̃)
2 σC

1−φ−β
2 1{ρ≥0}

ρ

µ3/2
√

CγN1−φ/2
t

.

For n1
Ntµ

(γ−1
1 + Cl)δ

1/2
0 , we insert the definition of our learning functions, giving us

n1

Ntµ

(
1
γ1

+ Cl

)
δ1/2

0 =
Cρ

Ntµ

 1

CγC
β
ρ

+ Cl

 δ1/2
0 .

Bounding Cl
Ntµ

(
∑t−1

i=1 ni+1δi)1/2, follows the ideas from above, using that nt+1 ≤ 2ρ̃nt, to obtain

Cl

Ntµ

 t−1∑
i=1

ni+1δi


1
2

≤
2ρ̃/2Cl

Ntµ

Cρ

t∑
i=1

iρ̃
exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

 πv
∞ +

21+φ(1+ρ̃)σ2Cγ

µC(1−β)1{ρ≥0}
ρ iφ(1+ρ̃)




1
2

=
2ρ̃/2Cl

Ntµ

Cρπ
v
∞

t∑
i=1

iρ̃ exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

 +
21+φ(1+ρ̃)σ2CγC

β1{ρ≥0}
ρ

µ

t∑
i=1

iβρ̃−α


1
2

≤
2ρ̃/2Cl

Ntµ

Cρπ
v
∞Av
∞ +

2φ(1+ρ̃)σ2CγC
β1{ρ≥0}
ρ t(1−φ)(1+ρ̃)

µ


1
2

≤
2ρ̃/2Cl

√
Cρ

√
πv
∞

√
Av
∞

µNt
+

2
φ(1+ρ̃)

2 Clσ
√

CγC
β/21{ρ≥0}
ρ t

(1−φ)(1+ρ̃)
2

µ3/2Nt

≤
2ρ̃/2Cl

√
Cρ

√
πv
∞

√
Av
∞

µNt
+

2
φ(1+ρ̃)

2 Clσ
√

Cγ

µ3/2C
1−φ−β

2 1{ρ≥0}
ρ N

1+φ
2

t

.

Likewise, for C′
∇

Ntµ

∑t−1
i=0 ni+1∆

1/2
i , we get

C′
∇

Ntµ

t−1∑
i=0

ni+1∆
1
2
i ≤

2ρ̃C′
∇
Cρ

Ntµ

t−1∑
i=1

iρ̃
exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

2(1−φ)(1+ρ̃)

 Πv
∞ +

22φ(1+ρ̃)32σ4C2
γC

2β
ρ

µ2C21{ρ≥0}
ρ i2φ(1+ρ̃)

+
23φ(1+ρ̃)−ρ̃162σ4C3

γC
3β
ρ

µC21{ρ≥0}
ρ i3φ(1+ρ̃)−ρ̃


1
2

≤
2ρ̃C′

∇
Cρ

Ntµ

t−1∑
i=1

iρ̃
exp

−µCγC
β1{ρ≥0}
ρ i(1−φ)(1+ρ̃)

21+(1−φ)(1+ρ̃)

 √
Πv
∞ +

2φ(1+ρ̃)6σ2CγC
β
ρ

µC1{ρ≥0}
ρ iφ(1+ρ̃)

+
23φ(1+ρ̃)/2−ρ̃/213σ2C3/2

γ C3β/2
ρ

µ1/2C1{ρ≥0}
ρ i3φ(1+ρ̃)/2


≤

2ρ̃C′
∇
Cρ

√
Πv
∞Av
∞

µNt
+

2φ(1+ρ̃)+ρ̃C′
∇
σ2CγC

1+β
ρ

µ2C1{ρ≥0}
ρ Nt

t−1∑
i=1

iβρ̃−α +
23φ(1+ρ̃)/2+ρ̃/2C′

∇
σ2C3/2

γ C1+3β/2
ρ

µ3/2C1{ρ≥0}
ρ Nt

t−1∑
i=1

i3(βρ̃−α)/2,

where the second term can be bounded as

2(1+φ)(1+ρ̃)−1C′
∇
σ2CγC

1+β
ρ

µ2C1{ρ≥0}
ρ Nt

t−1∑
i=1

iβρ̃−α ≤
2(1+φ)(1+ρ̃)−1C′

∇
σ2CγC

1+β
ρ t1+βρ̃−α

(1 + βρ̃ − α)µ2C1{ρ≥0}
ρ Nt

≤
2(1+φ)(1+ρ̃)−2C′

∇
σ2Cγ

µ2C1−φ−β
ρ Nφ

t

,
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and the third term by

23(1+φ)(1+ρ̃)/2C′
∇
σ2C3/2

γ C1+3β/2
ρ

µ3/2C1{ρ≥0}
ρ Nt

t−1∑
i=1

i3(βρ̃−α)/2 ≤
23(1+φ)(1+ρ̃)/2C′

∇
σ2C3/2

γ C1+3β/2
ρ ψ

ρ̃
3(α−βρ̃)/2(Nt/Cρ)

µ3/2C1{ρ≥0}
ρ Nt

.

By collecting these bounds, we get

C′
∇

Ntµ

t−1∑
i=0

ni+1∆
1
2
i ≤

2ρ̃C′
∇
Cρ

√
Πv
∞Av
∞

µNt
+

2(1+φ)(1+ρ̃)−2C′
∇
σ2Cγ

µ2C1−φ−β
ρ Nφ

t

+
23(1+φ)(1+ρ̃)/2C′

∇
σ2C3/2

γ C1+3β/2
ρ ψ

ρ̃
3(α−βρ̃)/2(Nt/Cρ)

µ3/2C1{ρ≥0}
ρ Nt

.

Combining our findings from above, we have

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
2C1−β

ρ

√
πv
∞Av
∞

µCγNt
+

2
3+φ(1+ρ̃)

2 σC
1−φ−β

2 1{ρ≥0}
ρ

µ3/2
√

CγN1−φ/2
t

+
C2−φ−β
ρ

√
πv
∞Av
∞

µCγN2−φ
t

+
2

1+φ(1+ρ̃)
2 σC

1−φ−β
2 1{ρ≥0}

ρ

µ3/2
√

CγN1−φ/2
t

+
Cρ

Ntµ

 1

CγC
β
ρ

+ Cl

 δ 1
2
0 +

2ρ̃/2Cl
√

Cρ

√
πv
∞

√
Av
∞

µNt
+

2
φ(1+ρ̃)

2 Clσ
√

Cγ

µ3/2C
1−φ−β

2 1{ρ≥0}
ρ N

1+φ
2

t

+
2ρ̃C′

∇
Cρ

√
Πv
∞Av
∞

µNt

+
2(1+φ)(1+ρ̃)−2C′

∇
σ2Cγ

µ2C1−φ−β
ρ Nφ

t

+
23(1+φ)(1+ρ̃)/2C′

∇
σ2C3/2

γ C1+3β/2
ρ ψ

ρ̃
3(α−βρ̃)/2(Nt/Cρ)

µ3/2C1{ρ≥0}
ρ Nt

.

This can be simplified to the desired using Γv given by (1/CγC
β
ρ + Cl)δ

1/2
0 + 2ρ̃Cl

√
πv
∞Av
∞/C

1/2
ρ + 2

√
πv
∞Av
∞/CγC

β
ρ +

2ρ̃C′
∇

√
Πv
∞Av
∞, consisting of the finite constants πv

∞, Πv
∞ and Av

∞.

7.2.2. Proofs for Section 4.2
Theorem 3 (APSSG). Denote δ̄t = E[‖θ̄t − θ

∗‖2] with (θ̄t) given by (4) using (θt) from (3). Under Assumption 1,
Assumptions 2-p and 3-p with p = 4, Assumptions 4 and 5, we have for any learning rate (γt) that

δ̄1/2
t ≤

Λ1/2

N1/2
t

+
1

Ntµ

t−1∑
i=1

∣∣∣∣∣ni+1

γi+1
−

ni

γi

∣∣∣∣∣ δ1/2
i +

nt

Ntγtµ
δ1/2

t +
n1

Ntµ

(
1
γ1

+ Cl

)
δ1/2

0 +
Cl

Ntµ

 t−1∑
i=1

ni+1δi


1/2

+
C′′
∇

Ntµ

t∑
i=0

ni+1∆
1/2
i

where Λ = Tr(∇2
θL(θ∗)−1Σ∇2

θL(θ∗)−1) and C′′
∇

= C′
∇

+ 22GΘ/D2
θ .

Proof of Theorem 3. Denote E[‖θ̄t − θ
∗‖2] by δ̄t with (θ̄t) given by (4) using (θt) from (3). As in the proof Theorem 2,

we follow the steps of Polyak and Juditsky [26], in which, we can rewrite (3) to

1
γt

(θt−1 − θt) = ∇θlt (θt−1) −
1
γt

Ωt,

where ∇θlt(θt−1) = n−1
t

∑nt
i=1 ∇θlt,i(θt−1) and Ωt = PΘ(θt−1 − γt∇θlt(θt−1)) − (θt−1 − γt∇θlt(θt−1)). Thus, summing the

parts, using the Minkowski’s inequality, and bounding each term gives us the same bound as in Theorem 2, but with
an additional term regarding Ωt, namelyE


∥∥∥∥∥∥∥∇2

θL (θ∗)−1 1
Nt

t∑
i=1

ni

γi
Ωi

∥∥∥∥∥∥∥
2


1
2

≤
1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
]

=
1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
1{θi−1−γi∇θ li (θi−1)<Θ}

]
, (42)

using Godichon-Baggioni [9, Lemma 4.3]. Next, we note that E[‖Ωt‖
2
1{θt−1−γt∇θ lt (θt−1)<Θ}] = 4γ2

t G2
Θ
P[θt−1 − γt∇θlt(θt−1) <

Θ], since

‖Ωt‖
2 ≤2 ‖PΘ (θt−1 − γt∇θlt (θt−1)) − θt−1‖

2 + 2γ2
t ‖∇θlt (θt−1)‖2 = 2 ‖PΘ (θt−1 − γt∇θlt (θt−1)) − PΘ (θt−1)‖2 + 2γ2

t ‖∇θlt (θt−1)‖2

≤2 ‖θt−1 − γt∇θlt (θt−1) − θt−1‖
2 + 2γ2

t ‖∇θlt (θt−1)‖2 = 4γ2
t ‖∇θlt (θt−1)‖2 ≤ 4γ2

t G2
Θ,
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as PΘ is Lipschitz and ‖∇θlt,i(θ)‖2 ≤ G2
Θ

for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and Portier [10, Theorem
4.2], we know that P[θt−1 − γt∇θlt(θt−1) < Θ] ≤ ∆t/D4

θ , where Dθ = infθ∈∂Θ‖θ − θ
∗‖ with ∂Θ denoting the frontier of

Θ. Thus, (42) can then be bounded by

1
µNt

t∑
i=1

ni

γi

√
E

[
‖Ωi‖

2
1{θi−1−γi∇θ li (θi−1)<Θ}

]
≤

2GΘ

µD2
θNt

t∑
i=1

ni∆
1/2
i ≤

22GΘ

µD2
θNt

t∑
i=1

ni+1∆
1/2
i ,

using that the sequence (nt) is either constant or time-varying, meaning nt+1/nt ≤ 2.

Proof of Corollary 5. The proof follows directly from Corollary 3 but with use of Theorem 3.

Proof of Corollary 6. The proof follows directly from Corollary 4 but with use of Theorem 3.

A. Technical Proofs

Appendix A contains purely technical results used in the proofs presented in Section 7. In what follows, we use
the convention inf ∅ = 0,

∑0
t=1 = 0, and

∏0
t=1 = 1.

Proposition 1. Let (γt)t≥1 be a positive sequence. For any k ≤ t, and ω > 0, we have

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
γi ≤

1
ω

t∏
j=k

[
1 + ωγ j

]
≤

1
ω

exp

ω t∑
j=k

γ j

 . (A.1)

Proof of Proposition 1. We begin with considering the first inequality in (A.1), which follows by expanding the sum
of product:

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
γi =

1
ω

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
ωγi =

1
ω

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

] [
1 + ωγi − 1

]
=

1
ω

t∑
i=k

 t∏
j=i+1

[
1 + ωγ j

] [
1 + ωγi

]
−

t∏
j=i+1

[
1 + ωγ j

] =
1
ω

t∑
i=k

 t∏
j=i

[
1 + ωγ j

]
−

t∏
j=i+1

[
1 + ωγ j

] .
As the (positive) terms cancel out, we end up with the first inequality in (A.1):

1
ω

t∑
i=k

 t∏
j=i

[
1 + ωγ j

]
−

t∏
j=i+1

[
1 + ωγ j

] =
1
ω

 t∏
j=k

[
1 + ωγ j

]
−

t∏
j=k+1

[
1 + ωγ j

]
+ · · · −

t∏
j=t+1

[
1 + ωγ j

]
=

1
ω

 t∏
j=k

[
1 + ωγ j

]
−

t∏
j=t+1

[
1 + ωγ j

] =
1
ω

 t∏
j=k

[
1 + ωγ j

]
− 1

 ≤ 1
ω

t∏
j=k

[
1 + ωγ j

]
,

as
∏t

t+1 = 1 for all t ∈ N. Using the (simple) bound of 1 + t ≤ exp(t) for all t ∈ R, we obtain the second inequality of
(A.1):

1
ω

t∏
j=k

[
1 + ωγ j

]
≤

1
ω

t∏
j=k

exp
(
ωγ j

)
=

1
ω

exp

ω t∑
j=k

γ j

 .

Proposition 2. Let (γt)t≥1 be a positive sequence. Let ω > 0 and k ≤ t such that for all i ≥ k, ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

]
γi ≤

1
ω
. (A.2)
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Proof of Proposition 2. We start with expanding the sums of products term in (A.2), given us

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

]
γi = −

1
ω

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

] [
1 − ωγi − 1

]
= −

1
ω

t∑
i=k

 t∏
j=i+1

[
1 − ωγ j

] [
1 − ωγi

]
−

t∏
j=i+1

[
1 − ωγ j

]
= −

1
ω

t∑
i=k

 t∏
j=i

[
1 − ωγ j

]
−

t∏
j=i+1

[
1 − ωγ j

] =
1
ω

t∑
i=k

 t∏
j=i+1

[
1 − ωγ j

]
−

t∏
j=i

[
1 − ωγ j

] .
As we only have positive terms, we can upper bound the term:

1
ω

t∑
i=k

 t∏
j=i+1

[
1 − ωγ j

]
−

t∏
j=i

[
1 − ωγ j

] ≤ 1
ω

1 − t∏
j=k

[
1 − ωγ j

] ≤ 1
ω
,

using
∏t

j=k[1 − ωγ j] ≥ 0, showing the inequality in (A.2).

Proposition 3. Let (γt)t≥1 and (ηt)t≥1 be positive sequences. For any k ≤ t, we can obtain the (upper) bounds:

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
ηiγi ≤

1
ω

max
k≤i≤t

ηi exp

ω t∑
j=k

γ j

 , (A.3)

with ω > 0. Furthermore, suppose that for all i ≥ k, ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

]
ηi ≤

1
ω

max
k≤i≤t

ηi. (A.4)

Proof of Proposition 3. We obtain the inequality in (A.3) directly by Proposition 1:

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
ηiγi ≤ max

k≤i≤t
ηi

t∑
i=k

t∏
j=i+1

[
1 + ωγ j

]
γi ≤

1
ω

max
k≤i≤t

ηi

t∏
j=k

[
1 + ωγ j

]
≤

1
ω

max
k≤i≤t

ηi exp

ω t∑
j=k

γ j

 .
Similarly, for the inequality in (A.4), we have

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

]
ηiγi ≤ max

k≤i≤t
ηi

t∑
i=k

t∏
j=i+1

[
1 − ωγ j

]
γi ≤

1
ω

max
k≤i≤t

ηi,

by Proposition 2.

Proposition 4. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying the recursive relation:

δt ≤ (1 − 2ωγt + ηtγt) δt−1 + νtγt, (A.5)

with δ0 ≥ 0 and ω > 0. Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0 + 1, one has ωγt ≤ 1. Then,
for γt and ηt decreasing, we have the upper bound on (δt):

δt ≤ exp

−ω t∑
i=t/2

γi


exp

 t0∑
i=1

ηiγi

 (δ0 + max
1≤i≤t0

νi

ηi

)
+

t/2−1∑
i=t0+1

νiγi

 +
1
ω

max
t/2≤i≤t

νi, (A.6)

for all t ∈ N with the convention that
∑t/2

t0 = 0 if t/2 < t0.

Proof of Proposition 4. Applying the recursive relation from (A.5) t times, we derive:

δt ≤

t∏
i=1

[
1 − 2ωγi + ηiγi

]
︸                    ︷︷                    ︸

Bt

δ0 +

t∑
i=1

t∏
j=i+1

[
1 − 2ωγ j + η jγ j

]
νiγi︸                                  ︷︷                                  ︸

At

,
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where Bt can be seen as a transient term only depending on the initialisation δ0, and a stationary term At. The transient
term Bt can be divided into two products, before and after t0,

Bt =

t∏
i=1

[
1 − 2ωγi + ηiγi

]
=

 t0∏
i=1

[
1 − 2ωγi + ηiγi

]
 t∏

i=t0+1

[
1 − 2ωγi + ηiγi

] .
Using that t0 = inf {t ≥ 1 : ηt ≤ ω}, and since for all t ≥ t0 + 1, we have 2ωγt − ηtγt ≥ ωγt, it comes

Bt ≤

 t0∏
i=1

[
1 − 2ωγi + ηiγi

]
 t∏
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[
1 − ωγi

] ≤
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exp (−2ωγi + ηiγi)


 t∏
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exp (−ωγi)
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−2ω
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γi

 exp
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ηiγi

 exp

−ω t∑
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γi

 ≤ exp

−ω t∑
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γi

 exp

 t0∑
i=1

ηiγi


by applying the (simple) bound 1 + t ≤ exp(t) for all t ∈ R. We derive that

Bt ≤ exp

−ω t∑
i=t/2

γi

 exp

 t0∑
i=1

ηiγi

 . (A.7)

Next, the stationary term At can (similarly) be divided into two sums (after and before t0):

At =

t∑
i=t0+1

t∏
j=i+1

[
1 − 2ωγ j + η jγ j

]
νiγi︸                                    ︷︷                                    ︸
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+

t0∑
i=1

t∏
j=i+1

[
1 − 2ωγ j + η jγ j

]
νiγi︸                                  ︷︷                                  ︸

At,2

.

The first stationary term At,1 (with t > t0) can be bounded as follows: if t/2 ≤ t0 + 1, we have

At,1 ≤ max
t0+1≤i≤t

νi

t∑
i=t0+1

t∏
j=i+1

[
1 − ωγ j

]
γi =

1
ω

max
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νi ≤
1
ω

max
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νi,

by Proposition 3. Furthermore, if t/2 > t0 + 1, we get

At,1 ≤

t∑
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[
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]
νiγi =
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≤
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νi,

where
∏t

j=t/2[1 − ωγ j] ≤ exp(−ω
∑t

j=t/2 γ j) as 1 + t ≤ exp(t) for all t ∈ R. Thus, for all t ∈ R,

At,1 ≤ exp

−ω t∑
j=t/2

γ j

 t/2−1∑
i=t0+1

νiγi +
1
ω
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νi, (A.8)

where
∑t/2

t0 = 0 if t/2 < t0. The second stationary term At,2 can be bounded, thanks to Proposition 1, as follows:

At,2 =

t0∑
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t∏
j=i+1

[
1 − 2ωγ j + η jγ j

]
νiγi =

 t∏
j=t0+1

[
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] t0∑
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[
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[
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[
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]
νiγi ≤ exp
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[
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]
ηiγi

≤ exp
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by the definition of t0, thus

At,2 ≤ exp

−ω t∑
j=1

γ j

 max
1≤i≤t0

νi

ηi
exp

2 t0∑
i=1

ηiγi

 ≤ exp

−ω t∑
j=t/2

γ j

 max
1≤i≤t0

νi

ηi
exp

2 t0∑
i=1

η jγ j

 . (A.9)

Then, using the bound for At,1 in (A.8) and At,2 in (A.9), we can bound At by

At ≤ exp

−ω t∑
j=t/2

γ j


exp

2 t0∑
i=1

η jγ j

 max
1≤i≤t0

νi

ηi
+

t/2−1∑
i=t0+1

νiγi

 +
1
ω

max
t/2≤i≤t

νi. (A.10)

Finally, combining the bound for Bt in (A.7) and At in (A.10), we achieve the bound for δt ≤ Btδ0 + At, namely the
upper bound in (A.6).

The following proposition is a more simplistic but rougher version of the bound in Proposition 4.

Proposition 5. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying the recursive relation in
(A.5). Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0 + 1, one has ωγt ≤ 1. Then, for γt and ηt

decreasing, we have for all t ∈ N,

δt ≤ exp

−ω t∑
i=t/2

γi

 exp

2 t∑
i=1

ηiγi

 (δ0 + 2 max
1≤i≤t

νi

ηi

)
+

1
ω

max
t/2≤i≤t

νi. (A.11)

Proof of Proposition 5. The resulting (upper) bound in (A.11) follows directly from (A.6) by noting that t0 ≤ t, giving
us

∑t/2−1
i=t0+1 νiγi ≤

∑t
i=1 νiγi ≤ max1≤i≤t(νi/ηi)

∑t
i=1 ηiγi ≤ max1≤i≤t(νi/ηi) exp(2

∑t
i=1 ηiγi), as (νt) and (γt) are positive

sequences.
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