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Combined Grid and Feature-based Mapping of Metal Structures with
Ultrasonic Guided Waves

Othmane-Latif Ouabi1, Pascal Pomarede1, Neil Zeghidour2,
Matthieu Geist2, Nico F. Declercq1,3, Cédric Pradalier1

Abstract— The ultrasonic mapping of plate-based facilities
is an essential step towards the robotic inspection of large
metal structures such as storage tanks or ship hulls. This work
proposes a novel framework that exploits ultrasonic echoes to
recover grid-based and feature-based spatial representations
jointly. We aim to improve on a previous mapping method [1]
subject to errors due to interference, and which provides
plate geometry estimates without uncertainty assessment. The
grid can represent, all along the mapping process, both areas
identified as inside or outside the current plate and areas whose
state is still unknown, making it is suitable e.g. for detecting
a change of plate, or for use in a later active-sensing strategy.
We also leverage the resulting spatial information to filter out
candidate plate edges that are no longer relevant, mitigating
the detrimental effect of interference. We test the approach in
simulation, with acoustic data acquired manually and with a
real robot. Results show that it is effective for building combined
map representations and robust to echo misdetection, contrary
to a more standard mapping approach.

I. INTRODUCTION

This work4 presents a novel approach for mapping the
geometry of structures made of metal panels assembled out
together with Ultrasonic Guided Waves (UGWs) to enable
long-range acoustic inspection with robotic systems. Such
an application holds tremendous potential for industrial pur-
poses, such as the autonomous inspection of ship hulls and
storage tanks [2]. Indeed, mapping the edges of the individual
metal plates helps recover structure-bound landmarks that
can be subsequently used, in combination with external
measurements (e.g., accelerometers, ultra-wideband beacons,
or laser theodolite, among others), for robot localization
within a Simultaneous Localization and Mapping (SLAM)
framework. Furthermore, it is an essential step towards the
mapping of other acoustic scatterers, such as defects.

UGWs can be generated in metal plates by applying
piezoelectric transducers in contact with the surface. These
waves propagate radially around the emitter in a direction
parallel to the surface, and over long distances. When en-
countering the plate edges, they are reflected orthogonally,
and a receiver can collect the ultrasonic echoes. Thus, the
resulting acoustic data carry essential information on the
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source position and the plate geometry. Yet, relying on such
measurements for ultrasonic mapping is challenging due to
the dispersive nature of the waves, which causes wavepacket
deformation when the propagation distance increases [3], [4],
and due to the presence of multiple overlapping wavepackets
in the measurements.

In this work, we establish, through a thorough model-
ing of measurement errors and echo association, a robust
approach based on the Bayesian Occupancy Grid (OG)
framework [5] and beamforming [6] for simultaneously
recovering a feature-based representation of the geometry
of a single plate along with a grid-based representation,
given robot poses. The grid can depict areas identified as
either inside or outside the current plate and areas whose
state is still unknown all along the mapping process. Hence,
such a grid helps detect plate boundary-crossing on a large
structure and path planning for optimal information retrieval.
In our framework, the inverse sensor model of the Bayesian
filter is updated online from the feature-based representation.
We also derive binary masks from the available spatial
information to filter out candidate plate edges that are no
longer relevant to mitigate the ambiguity of the geometry
determination caused by interference. The results obtained
in simulation, with experimental measurements acquired by
hand, and with a real inspection robot demonstrate our
approach’s effectiveness and robustness.

II. RELATED WORK

Inspecting large metal structures usually consist in
deploying a mobile robot to perform point-by-point thickness
measurements with an acoustic probe [7]. However, the
entire surface cannot be inspected in a reasonable amount
of time due to the limited surface of the transducer.
Alternatively, UGWs can be deployed on static networks of
sensors for long-range defect detection and localization [8],
[9], [10], or for mapping various structural features such as
stiffeners [11], [12]. Nevertheless, they can only be used to
inspect local areas. Overall, UGWs have not been deployed
on a mobile unit to the best of the authors’ knowledge.

Recently, the potential of UGWs for robotic-oriented
applications has been demonstrated. In [13], the positions of
a co-located emitter/receiver pair of piezoelectric transducers
are recovered with a centimeter precision by relying on
ultrasonic reflections on metal plate boundaries. In [1], [14],
the sensor positions are estimated along with a feature-based
plate geometry within a FastSLAM [15] framework. In
particular, centimeter precision on the localization and



mapping results is achieved in [1] by relying on beamform-
ing. However, the mentioned approach does not tackle the
detrimental effect of interference (see next section), whereas
it is a well-known issue of basic beamformers. Furthermore,
due to the lack of uncertainty assessment and the time-
inconsistent map estimates provided in the early steps, the
approach is not suitable for mapping several metal plates on
a large structure, which necessitates robust detection of plate
boundary-crossing. Indeed, detection failures may result in
mapping inaccuracies, as one acoustic measurement contains
only information on the current plate. Overall, the method
is unsuitable for active sensing, whereas it is shown that the
robot trajectory significantly affects the estimation results [1].

Grid-based representations are useful for robotic
applications, in particular for exploration [5], [16], [17],
as they can explicitly account for explored and unexplored
areas. Guided wave-based exploration on a metal plate has
been investigated in [18] to autonomously map the inside
of a metal panel by relying on such grid representations.
However, the multiple echoes within the signals are not
exploited in the mapping procedure, and the presence of
echo measurement errors is not considered.

Several works have demonstrated the benefit of combining
grid and feature-based maps in the robotics literature [19],
[20], [21], and are found to surpass classical and single
representation-based approaches. This work establishes a
methodology to jointly recover a grid and a feature-based
representation of metal plates from UGWs measurements.
It is shown that such a strategy can mitigate the detrimental
effect of interference and overcomes the problems of echo
detection errors and echo labelling even in the presence of
multiple order reflections. At the same time, such issues are
often overlooked in recent works addressing the similar prob-
lem of room shape reconstruction from acoustic echoes in
the air [22], [23]. Our approach is tested with measurements
acquired both by hand and with a magnetic crawler. To the
best of the authors’ knowledge, this attempt is among the
first to successfully demonstrate the practical use of UGWs
for mapping plate-like structures with a real robotic platform.

III. METHOD

Our approach builds on feature-based maps estimated
via beamforming to construct inverse sensor models in an
online fashion, so that a grid representation of the plate can
be recovered within the OG framework. Simultaneously,
the beamforming maps are filtered with binary masks to
mitigate the detrimental effect of interference.

A. Feature-based ultrasonic mapping via beamforming

We consider a mobile unit equipped with co-located
piezoelectric transducers for signal emission and reception
and moving on a metal surface. During the measurement
step i at position xi, yi, guided waves are excited in the
plate material. The receiver collects the acoustic response,
which contains the reflections of the incident wave on
the plate boundaries. When a set of measurements have
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Fig. 1: Filtering beamforming maps with the first acoustic
echo for interference rejection. (a) depicts the acquisition
positions (red dots) used in the simulated scenario, along
with the plate geometry estimate (green lines) recovered from
the standard beamforming map shown in (b). The single edge
that differs when the geometry is recovered from the filtered
beamforming map shown in (c) is the red line in (a). Also,
the area identified as ”on the plate” with the ground-truth
first echo is represented by the lighter area in (a). The line
estimates overlay the true outline of the plate.

been acquired along a trajectory {xi, yi}i=1..t, Delay-and-
Sum (DAS) beamforming is applied to recover a plate
geometry from signals zi obtained through correlation of
the measurements with a wave propagation model [1]. This
yields beamforming maps that are computed with:

Lt(r, θ) =

t∑
i=1

zi(di(r, θ)) ,
t∑
i=1

zi(|xi ·cos θ+yi ·sin θ−r|)

(1)
where (r, θ) represent the polar coordinates of the line with
equation: x ·cos θ+y · sin θ−r = 0, while Lt(r, θ) indicates
the likelihood of the line existence. Next, a feature-based
estimate of the map M̂t = {rl, θl}l=1..4 is recovered by
extracting the local maxima of Lt [1] based on the constraint
of a rectangular shape (which is not a limitation for mapping
ship hulls and storage tanks, as they are almost entirely made
out of rectangular panels). However, the geometry retrieval
may often be ambiguous due to interference, as an infinity
of lines can equally account for one range measurement.
The effect of interference is further exacerbated by the
presence of multiple echoes and high-order reflections
that are not considered in Eq. (1). Fig.1-(a) illustrates
the interference effect in a simulated scenario, where a
mobile unit is driven to acquire acoustic measurements at
predetermined positions marked as red points. As most of
the measurements are acquired on a line parallel to an edge,
there is an ambiguity on which side the real edge is. This
results in the boundary on the right not being correctly
identified from the beamforming map shown in Fig.1-(b).

The intuition behind the developed approach is that,
when relying on detecting the earliest echo within the mea-
surements, which indicates the distance to the closest edge,
some information on the spatial environment can be directly
integrated into the mapping results. First, it can be inferred
that the disk centered at the sensor position whose radius
equals the detected range contains only points on the current
plate. Second, the lines that cross the total area identified as
“on the plate” can be filtered out on the beamforming map to
mitigate interference. This principle is illustrated in Fig. 1-



(a)-(c), where all the edges are now correctly identified after
applying the mask filter to the beamforming map. The main
issue of this approach is that the actual lines may be filtered
as well when the measured ranges are overestimated.

B. Grid representation and binary filtering

To obtain a more informative and time-consistent
representation of the environment, our approach is designed
to recover a grid representation of the 2D space,

O(x) =

{
0 if x = [x, y] is a point of the plate
1 otherwise

,

by constructing an estimate Ôt with posteriors Ôt(x) =
p(O(x) = 1|x1..t, z1..t) based on the detection of the closest
edge. However, as the single-use of the detected range cannot
be sufficient to recover areas outside the plate, the probability
model shall rely on the feature-based map determined via
beamforming to estimate the direction of arrival (DoA) of
the detected echo. Besides, the introduced representation can
be leveraged to filter out lines on Lt(r, θ) that are no longer
relevant because they cross the area identified as on the plate
with Ôt to mitigate interference. Hence, we formally intro-
duce the mask associated with the ground-truth grid O(x),

Q(r, θ) =

{
0 if ∃x of the line (r, θ) s.t. O(x) = 0

1 otherwise
,

(2)
so that the feature-based map M̂t can be retrieved from
the masked beamforming map, where the mask is to be
estimated as well: L̂t(r, θ) = Q̂t(r, θ)Lt(r, θ). It is critical
to rely on a probabilistic approach to avoid erroneously
filtering lines. In practice, echo mis-detection may occur
due to noise and the propagation model’s inaccuracy.

C. Binary filtering with adaptive inverse sensor models

The standard Occupancy Grid (OG) framework is
convenient for estimating grids of binary values. It relies on
the essential assumptions that the measurements are condi-
tionally independent given the grid state and that the states
of the individual grid cells are conditionally independent
given a measurement [24]. These assumptions, which are not
always realistic, yield a computationally efficient algorithm
that can run in real-time. Here, the filter involves an inverse
measurement model that will be estimated from all past
acoustic data based on the feature-based map retrieved via
beamforming: p(O(x)|xt, zt, M̂t). More specifically, as
M̂t, which represents the parameters of the inverse model,
is updated online, the interpretation of a measurement zt
can vary as well based on DoA estimates. In contrast, the
standard OG framework would only involve p(O(x)|xt, zt).
Eventually, the grid can be recursively estimated with the
standard Bayesian binary filter with log-odds ratios [5]
lt = log Ôt(x)

1−Ôt(x)
(and the assumption of a uniform prior):

lt = lt−1 + log
p(O(x)|xt, zt, M̂t)

1− p(O(x)|xt, zt, M̂t)

with initial cell values ∀x, Ô0(x) = 1/2. For computational
efficiency, the same approach is used to build Q̂t with
a second inverse model p(Q̂t(r, θ)|xt, zt, M̂t). Overall,
the major challenge is specifying the two inverse models
to determine the mapping strategy fully. In addition, this
strategy shall be designed to maintain sufficient consistency
between the grid Ôt and the mask Q̂t, as Q̂t(r, θ) should
formally depend on the full grid Ôt as in Eq. (2). However,
in our approach, it is computed independently of the later
given measurements and beamforming results.

D. Inverse model estimation in the Cartesian space

We first start the construction of a mixture model
p(O(x)|xt, zt, M̂t) through the modeling of imperfect echo
measurements. Let ρt be the range to the closest edge de-
tected from zt. We assume that the echo detection can com-
pletely fail with a probability α to construct a model robust to
measurement error. In that event, the cell distribution shall be
updated with a uniform distribution. With a probability 1−α,
the range is detected with a precision consistent with the
wavelength. This is accounted for by introducing the model
p (s|zt) that we model with a truncated Gaussian distribution
p (s|zt) = N[0,dmax](s|ρt, σ2) of support [0, dmax],

p (s|zt) =


1

η
√
2πσ2

exp
{
− (s−ρt)2

2σ2

}
, if s ∈ [0, dmax]

0 otherwise
,

where η is the normalizing factor and dmax is the maximum
detectable range that is introduced due to the finite
observation window of the signals. The variable s denotes
possible values for the range. Hence, the inverse model can
first be expressed as a mixture and using a convolution:

p(O(x)|xt, zt, M̂t) =
α

2

+ (1− α)

∫
p(O(x)|xt, M̂t, s)p (s|zt) ds. (3)

To build the model p(O(x)|xt, M̂t, s) which would state
how the probability is updated for a given detected range
s, we consider two scenarios. In the first one, the DoAs
provided by M̂t would not be taken into account because
the detected range would not be consistent with the expected
range: i.e the map M̂t is assumed to be erroneous as it does
not contain any line that is consistent with the range measure-
ment, given that echo misdetection is already modeled with
the probability α. To account for this scenario, we introduce
a model: p1(O(x)|xt, s) = H(|xt − x| − s)/2 where H
denotes the Heaviside’s function, H = 1s>0. Hence, only the
points closer than the presumed range s can be marked as “on
the plate”, while those further away would have unchanged
distribution. Let us first assume that p(O(x)|xt, M̂t, s) is
represented only by this model. As it is convolved in Eq. (3)
with the truncated Gaussian distribution, the distribution
updates are weighted with the range likelihoods. The convo-
lution can seamlessly be expressed with the error function:



∫
H(|xt − x| − s)N[0,dmax](s|ρt, σ

2)ds

=
Φt(|xt − x|)− Φt(0)

Φt(dmax)− Φt(0)
; Φt(z) = erf

(
z − ρt
σ
√

2

)
.

Nevertheless, only points that are believed to be on the
current plate are being recovered with the current model,
and there is no mechanism for estimating areas outside the
plate. To remedy that, we introduce a second model that will
be used to integrate the information from M̂t. Let’s consider
that the retrieval of a range s might originate from a reflection
of the incident wave on an edge with polar coordinates
(r̂, θ̂) from M̂t. We introduce a second model to update the
cells in the specific direction θ̂ and beyond the range s,

p2(O(x)|xt, (r̂, θ̂), s) =
1

2
β(r̂, θ̂, s,xt)×

H
(

(x− xt) cos θ̂ + (y − yt) sin θ̂ − s
)
,

so that the cell occupancy probability can also increase. As
the range-line association is not necessarily correct, we have
introduced an association coefficient β between 0 and 1
that will make the probability update effective only when
the considered range s matches with that expected from a
reflection on the edge (r̂, θ̂), and with Gaussian distribution
to model uncertainty on the line parameters: β(r̂, θ̂, s,xt) =
exp{− 1

2b2 (|xt ·cos θ̂+yt ·sin θ̂− r̂|−s)2}. For simplicity, the
two aforementioned sub-models are then assembled together
through averaging, yielding for a single line of the feature-
based map: p(O(x)|xt, (r̂, θ̂), s) = 1

2 (p1(O(x)|xt, s) +

p2(O(x)|xt, (r̂, θ̂), s)). This will result in Eq. (3) in the
convolution of the model p2 with the truncated Gaussian
which can also be expressed with the error function:∫

β(r̂, θ̂, s,xt)H
(

(x− xt) cos θ̂ + (y − yt) sin θ̂ − s
)
×

N[0,dmax](s|ρt, σ
2)ds

=
Γt,r̂,θ̂

(
(x− xt) cos θ̂ + (y − yt) sin θ̂

)
− Γt,r̂,θ̂(0)

Φ(dmax)− Φ(0)

where Γt,r̂,θ̂(z) = λt(r̂,θ̂)·σnew
σ erf

(
z−µnew

σnew
√
2

)
, µnew =

b2ρt+σ
2dt(r̂,θ̂)

b2+σ2 , σnew = σb√
b2+σ2

and λt(r̂, θ̂) =

exp(− (µnew−ρt)2
2σ2 − (µnew−dt(r̂,θ̂))2

2b2 ). Yet, we have so far
considered that only one line is available, whereas the full
feature-based map M̂t possesses four lines. Hence, for
updating the state of the cell Ôt(x), we take the maximum
value of the convolution terms over the lines, so that the
probability that x is outside the plate can be increased as
soon as there is at least one line estimate that is consistent
with the range measurement. Furthermore, we introduce a
coefficient C(x,xt, r̂l, θ̂l) = exp{−γ|(y − yt) · cos (θ̂l) −
(x − xt) · sin (θ̂l) − r̂l|} so that the update can be made
effective locally around the axis passing through x and its
projection on the line (r̂l, θ̂l). All brought together, the full
inverse model in the Cartesian space can be expressed with

p(O(x)|xt, zt, M̂t) =
α

2
+

1− α
4
×Φt(|xt − x|)− Φt(0)

Φt(dmax)− Φt(0)

+
1− α

4
max

(r̂l,θ̂l)∈M̂t

{
C(x,xt, r̂l, θ̂l)×

Γt,r̂l,θ̂l

(
(x− xt) cos θ̂l + (y − yt) sin θ̂l

)
− Γt,r̂l,θ̂l(0)

Φt(dmax)− Φt(0)

}
.

The first term of the sum accounts for echo mis-detection.
The second one updates on-plate points with the detected
echo up to a certain precision. The last term recovers areas
outside the plate based on the estimated feature-based map
which provides DoA estimates.

E. Inverse model estimation in the line space

As the mask Q̂t is determined independently of the
grid Ôt with another binary filter, it is necessary to ensure
sufficient consistency between the two grids so that the
filtered lines are consistent with the estimated on-plate
area. We propose an inverse model in the line space
which maintains exact agreement in range and approximate
consistency in angle from the former inverse model:

p(Q(r, θ)|xt, zt, M̂t) =
α

2
+

1− α
4
×Φt(dt(r, θ))− Φt(0)

Φt(dmax)− Φt(0)

+
1− α

4
max

(r̂l,θ̂l)∈M̂t

{
C′(θ, θ̂l)×

Γt,r̂l,θ̂l

(
|xt · cos θ̂l + yt · sin θ̂l − r̂l|

)
− Γt,r̂l,θ̂l(0)

Φt(dmax)− Φt(0)

}
where C′(θ, θ̂l) = exp{−µ|θ − θ̂l|}. The exact consistency
in range is indeed maintained as any line in the (r, θ)
space is uniquely mapped to the orthogonal projection
of the robot position on the line at each measurement
step. Such an approach is convenient as the overall
algorithm is computationally efficient and can run
in real-time. Finally, we decide to filter out, on the
beamforming maps, only the lines whose nonexistence is
certain enough. Thus, the features M̂t are retrieved from
L̂t(r, θ) = 1Q̂t(r,θ)>τ

·Lt(r, θ) where τ is chosen below 0.5.

IV. EXPERIMENTS AND RESULTS

We assess the performance of our approach in different
scenarios. Experimental acoustic measurements are acquired,
in the first one, by moving the transducers manually on an
aluminum plate of dimensions 600x450x6mm. In the second
scenario, the data are obtained in simulation for plates of
varying sizes and sensor trajectories. In the last scenario,
the measurements are acquired on a larger steel plate of
1700x1000x6mm with a magnetic crawler, manually driven
with a joystick. To acquire the experimental data, we use two-
tone bursts of a sinusoidal wave at 100kHz with an amplitude
of 100V peak to peak to excite the wave in the plate material.
Moreover, the incident signal is smoothly removed from the
measurements as it does not correspond to a reflection on
an edge. For all the trials, the parameters of the filter are:
α = 0.7, σ = 1cm, b = 2cm, γ = 3, µ = 2 and τ = 0.2. The



Step 1 Step 42

Step 108 Step 216

Fig. 2: Mapping results achieved on the aluminum plate during Steps 1, 42, 108 and 216. Each sub-figure depicts, on the
left, the sensor trajectory along with the detected range to the closest edge represented by the circles, and on the right, the
filtered beamforming maps during the same step, where the red rectangles indicate the retrieved edge estimates.

values of σ and b are consistent with the acoustic wavelength,
approximately 2cm in our setups. The parameter α is set
with a high value to limit the effect of one measurement
update and increase the algorithm’s robustness w.r.t. echo
misdetection. The detection of the range to the closest edge
is achieved with a standard peak detector applied to the cor-
relation signals. The resulting performance is compared with
that of a more standard mapping strategy [18] (that will serve
as a baseline for comparison), where all the points within
a given range are directly marked as inside the plate. The
corresponding lines on the beamforming map are filtered out.

A. Evaluation with experimental measurements acquired
manually and with simulated measurements

An emitter/receiver pair of transducers is placed by hand
on the vertices of a 9 × 12 regular grid whose positions
are carefully recorded on the aluminum plate. In total, 108
measurements were collected. We simulate a lawn-mower
trajectory by using the theoretic displacement between
measurement positions as flawless odometry. Fig. 2 shows
the qualitative mapping results obtained with our approach
at different steps of the scenario. The range to the closest
edge is retrieved during the first step, but its orientation is
ambiguous, resulting in a squared plate estimate. During
Step 42, an essential portion of the plate has been correctly
identified as “on the plate”. Besides, the top and bottom sides
of the plate have been marked as “outside the plate” based on
the edge estimates retrieved from the filtered beamforming
map. Nevertheless, the left edge has not been recovered
because of interference that caused a line further away to be
selected, as it cannot be filtered with our approach. During
Step 108, all the edges are correctly retrieved from the
filtered beamforming map. However, the area outside the
plate on the left side has not yet been recovered because
the edge estimation was incorrect when the mobile unit was
close to it. This is achieved after simulating backwards the
same trajectory, where the mapping is entirely achieved, as
shown in Step 216. Ultimately, despite an average error of

Fig. 3: Final mapping errors w.r.t. the noise level on the
echo detection assessed over 10 repetitions of the lawnmower
trajectory. The errors are determined both for our approach
and for the baseline one. The left plot shows the range errors,
while the orientation errors are shown on the right plot. The
solid lines represent the average values, while the upper and
lower bounds of the colored areas are situated respectively
above and below one standard deviation to the mean values.

4.3cm on range detection, the mean estimation errors on the
line parameters are 0.5cm for the ranges rl, and are inferior
to one degree for the orientations θl, l = 1...4. Furthermore,
the two map representations can be considered coherent
with each other, as only 7% of the plate points have been
incorrectly identified as outside of it.

Hence, the results demonstrate the efficiency of our
approach for mapping a plate structure with combined
representations, where the grid can account for plate edges
that are recovered at any time of the mapping process.
However, the detected edges often lie at the limit of the

Plate size [mm] Model Range error [cm] Angle error [degree]

600×450×6 Baseline 19.38± 4.83 33.46± 10.10

Ours 0.17± 0.09 0.44± 0.37

1000×600×6 Baseline 31.73± 14.72 13.62± 15.10

Ours 0.12± 0.11 0.37± 0.25

2000×1000×6 Baseline 69.62± 17.90 0.58± 0.89

Ours 1.59± 3.59 0.32± 0.2

TABLE I: Average estimation errors and standard deviations
on the lines parameters obtained in simulation, using our
approach (in bold) and the baseline method.
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Fig. 4: Combined feature-based and grid-based mapping
with a robotic platform relying on UGWs. (a) shows the
experimental setup. (b), (c), (d) and (e) present the mapping
results at different steps along the robot transect. The robot
pose (red arrow) and trajectory (red line) are also represented.

filtered area. To assess the robustness of our approach, we
evaluate the final average mapping errors over 10 repetitions
of the lawnmower trajectory for varying noise levels on the
echo detection. This is achieved by adding Gaussian noise
to the ground truth range, determined based on the known
acquisition positions. We do the same experience by using
the baseline approach. Fig. 3 shows the results. It can be
noticed that, with our approach, a range estimation error
close to 1 cm and an orientation error of a few degrees
at most are maintained for noise levels comparable to the
wavelength. This is not the case with the baseline approach,
where the estimation errors increase rapidly with the noise
level, which illustrates its lack of robustness to map the
inside of the plate with error-prone measurements.

To demonstrate that our method can generalize to various
setups, we run it in simulation using data from three plates
of different dimensions and a noise level of 5cm on echo
detection. For comparison, we also repeat the process with
the baseline approach. We provide the resulting average
errors and standard deviations assessed over 50 repetitions
of random paths (with a constant velocity) in Table I. It
can be observed that, for the three scenarios, our approach
achieves a higher precision than the baseline approach.

Overall, the results demonstrate the effectiveness of our
method for mapping a plate while filtering beamforming
maps to reduce the effect of interference (without completely
alleviating it), even in the presence of echo detection errors.

B. Evaluation with a magnetic crawler

We evaluate our approach with a real robotic system and a
large plate to demonstrate its viability for a practical robotic
inspection task. In our experimental setup shown in Fig. 4a,
the robot is equipped with an onboard accelerometer to pro-
vide accurate heading measurements and with a single trans-
ducer for both acoustic emission and reception. This setup re-
quires using an electric circuit (whose implementation is not
detailed here) for protecting the acquisition device during the
emission at the cost of additional measurement perturbations.
Also, a pump is activated to continuously bring water through

the tether at the interface between the sensor and the plate for
sufficient coupling. During the acquisition, the robot is driven
along a trajectory on the plate positioned nearly vertically,
and the acquisition of one measurement is triggered each
time the sensor has traveled 5 cm. For simplicity, we test our
approach by assuming flawless odometry data, even though it
is imperfect, and there may be slight errors in the kinematic
model. However, the mapping procedure is expected to inte-
grate seamlessly within a SLAM framework as in [1]. Figures
4b, 4c, 4d and 4e show the qualitative mapping results
obtained with our approach at different steps of the robot
transect. It can be observed that, at the early stage, the size of
the plate is almost recovered as the estimated dimensions are
1798×1012mm during step (c), and the estimated orientation
w.r.t. the robot is consistent with the reality (the full demon-
stration is available on the attached video). Besides, the
inside and outside of the plate are correctly recovered, except
for the regions near the corners, incorrectly marked as outside
the plate. This slight inconsistency might be caused by the
slight odometry errors and the increased complexity of the
acoustic signals. Overall, these results demonstrate the appli-
cability of our approach with a real robotic system. It may be
useful for mapping a large structure made of several plates,
as plate boundary detection is made robust, or by an active-
sensing strategy for an optimal and autonomous mapping.

One of the limitations of our approach is that the pa-
rameters may be tuned carefully. Otherwise, proper lines
may eventually be filtered on the beamforming map. In that
situation, it is preferable to increase the noise parameters so
that more measurements would be necessary before a line is
filtered out. Also, our approach is evaluated on an isolated
plate in a laboratory environment, while real metal structures
present complex structural features such as welds or stiffen-
ers. The constraint of rectangular shapes is not a limitation
for mapping storage tanks or ship hulls, as they are almost
entirely made of rectangular panels. However, extensions of
our approach may be investigated to work with more general
structures. It is expected it would only require an extension
of the optimization method presented in [1] to retrieve the
edges from the beamforming maps. At the same time, the
design of the Bayesian framework could be left unchanged.

V. CONCLUSION

This work presents a novel framework for mapping struc-
tures made of metal plates with combined representations and
UGW measurements. It is based on inverse sensor models
estimated online to build a grid representation, along with
a binary filter applied to the beamforming maps to mitigate
interference. The results demonstrate its effectiveness and
robustness to echo misdetection, while its practical use is
highlighted by using a real robotic platform. The approach
shall be evaluated in more realistic scenarios within a SLAM
framework, and the relaxation of the constraint of rectangular
shapes shall be considered. Also, active-sensing strategies
relying on such representations shall be investigated for
optimal and autonomous reconstruction, while the mapping
of defects must be integrated for inspection purposes.
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