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Seminormalization and regulous functions on
complex affine varieties

FRANÇOIS BERNARD

Abstract

We study seminormalization of affine complex varieties. We show that polynomials on the
seminormalization correspond to the rational functions which are continuous for the Eu-
clidean topology. We further study this type of functions which can be seen as complex
regulous functions, a class of functions recently introduced in real algebraic geometry, or as
the algebraic counterpart of c-holomorphic functions.
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1 Introduction.

The present paper is devoted to the study of seminormalization of affine complex varieties, to
its link with continuous rational functions and to the study of those functions. The operation of
seminormalization was formally introduced around fifty years ago in the case of analytic spaces
by Andreotti and Norguet [1]. For algebraic varieties, the seminormalization of X in Y is the
biggest intermediate variety between X and its normalization which is bijective with X. Recently,
the concept of seminormalization appears in the study of singularities of algebraic varieties, in
particular in the minimal model program of Kollár and Kovács (see [11] and [12]).
Around 1970 Traverso [20] introduced the closely related notion of the seminormalization A+

B of
a commutative ring A in an integral extension B. The idea is to glue together the prime ideals
of B lying over the same prime ideal of A. The seminormalization A+

B has the property that it
is the biggest extension of A in a subring C of B which is subintegral i.e. such that the map
Spec(C) → Spec(A) is bijective and equiresidual (it gives isomorphisms between the residue
fields). We refer to Vitulli [21] for a survey on seminormality for commutative rings and alge-
braic varieties. See also [14], [22] and [19] for more detailed informations on seminormalization.
In the paper [14], the authors tried to identify the coordinate ring of the seminormalization of a
variety as the ring of rational functions which are continuous for the Zariski topology. Unfortu-
natly, the Zariski topology is not strong enough for this to be true. The first aim of this paper
is to show that the correct functions to consider are rational functions which are continuous for
the Euclidean topology. The idea of studying the concept of seminormalization with that kind
of functions comes from [8] and [15] in the context of real algebraic geometry. Those functions
appeared recently in real algebraic geometry (see [7] and [10]) under the name of "regulous func-
tions". They allow to recover some classical theorems of complex algebraic geometry, such as
the Nullstellensatz, which normally do not hold anymore in real algebraic geometry. A complex
analog of regulous functions has been studied in [4] and [3] in the point of view of complex ana-
lytic geometry. The second aim of this paper is to bring a study of complex regulous functions
in the point of view of complex algebraic geometry.

The paper is organized as follows. In the second section we recall Traverso’s [20] construction of
the seminormalization of a ring and its universal property regarding to subintegral extensions
of rings.
In the third section we look at the seminormalization of an affine variety and to its universal
property in the geometric case. The seminormalization of an affine variety X can be seen as the
biggest birational variety such that its closed points are in bijection with those of X.
In the fourth section we introduce continuous rational functions on a complex affine variety X.
More precisely we consider the functions f : X(C) → C which are rational on a Zariski dense
open set of X(C) and which are continuous, for the Euclidean topology, on all X(C). The ring
of those functions is denoted by K0(X(C)). The first result we obtain is that continuous rational
functions are regular on the smooth points of a variety. It allows us to see, in the beginning of
Subsection 4.1, that for X a normal variety, the thinness of Sing(X) implies K0(X(C)) = C[X].
In fact it is a particular case of our main result : for X a variety, we have K0(X(C)) = C[X+]
where X+ is the seminormalization of X. In order to prove it, we look at morphisms f 7→ f ◦ π
between rings of continuous rational functions where π : Y → X is a finite morphism. We show
that the image of such a morphism is

{f ∈ K0(Y (C)) with f constant on the fibers of πC : Y (C)→ X(C)}

It allows us to reinterpret subintegral extensions between cordinate rings of varieties. For X and
Y two varieties, one get that C[X] ↪→ C[Y ] is subintegral if and only if K0(X(C)) ' K0(Y (C)).
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The results of Subsection 4.1 can be summarized as follow: for every morphism π : Y → X such
that C[X] ↪→ C[Y ] is subintegral, we get

K0(X(C)) ' // K0(Y (C)) ' // K0(X+(C)) �
� // K0(X ′(C))

C[X]
?�

OO

� � subint. // C[Y ]
?�

OO

� � subint. // C[X+] �
� // C[X ′]

A consequence is that the restriction of a complex continuous rational function on a subvariety
is still a rational function. It is an interesting fact because it says that, unlike the real case,
continuous rational functions are regulous functions.
In the rest of the section, we are interesting in finding criteria for a continuous function to be
rational and then for a rational function to be continuous. In Subsection 4.3, we show that
a continuous function on X(C) which is a root for a polynomial with coefficients in C[X] is
necessarily rational. It implies two results. First, we get that K0(X(C)) is the integral closure
of C[X] in C0(X(C),C). Secondly, we get an algebraic version of Whitney’s theorem 4.5Q in
[23], saying that a continuous function on the closed points of an affine variety is rational if
and only if its graph is Zariski closed. The second point says that c-holomorphic functions
with algebraic graph studied in [4] and [3] correspond, for algebraic varieties, to the continuous
rational functions considered in this paper.
Finally, in Subsection 4.4, we give several nontrivial examples of continuous rational functions
thanks to the following criterion. A function f : X(C)→ C is a continuous rational function if
and only if it is rational, integral over C[X] and its graph is Zariski closed.
In section 5 we reinterpret several classical results about seminormalization in terms of rational
continuous functions. In the first subsection, we look at criteria for a variety to be seminormal
given by Leahy-Vitulli, Hammard and Swan (see the review [21]). To prove that those criteria
are sufficient, we show that if f is an element of K0(X(C)) \ C[X], then we can always find
a function g ∈ C[X][f ] \ C[X] such that gn ∈ C[X] for all n > 2. To see that they are
necessary, we construct explicit continuous rational functions from the relations appearing in
the different criteria. The second subsection is dedicated to see what the commutation between
the localization and the seminormalization means for the continuous rational functions.
In section 6 we define the sheaf K0

X of complex regulous functions and we generalize the main
result of this paper by showing that, for an affine variety X, the scheme (X,K0

X) is isomorphic
to the affine scheme (X+,OX+).

Acknowledgement : The author is deeply grateful to G. Fichou and J.-P. Monnier for their
precious help.

2 Universal property of the seminormalization.

We recall in this section the construction of the seminormalization introduced by Traverso [20]
for commutative rings. This construction is linked to the notion of subintegrality in the way
that the seminormalization of a ring is its biggest subintegral extension.

Let A be a ring, we note Spec(A) := {p ⊂ A | p is a prime ideal of A} the spectrum of A and
Spm(A) := {m ⊂ A | m is a maximal ideal of A} the maximal spectrum of A. Let p ∈ Spec(A),
then Ap := (A \ p)−1A is the localization of A at p and κ(p) := Ap/pAp the residue field of p.

Since the seminormalization is defined for integral extensions, we recall this notion here.
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Definition 2.1
Let A ↪→ B be an extension of rings.

1. An element b ∈ B is integral over A if there exists a monic polynomial P ∈ A[X] such
that P (b) = 0.

2. We call normalization of A in B and we write A′B the ring defined by

A′B := {b ∈ B | b integral on A}

3. The extension A ↪→ B is integral if A′B = B.

Now we define the seminormalization of a ring in an integral extension. The idea behind this
definition is to glue the prime ideals of B above those of A. If one thinks of it in terms of
algebraic varieties, it consists of gluing points in the fibers together.
Definition 2.2

Let A ↪→ B be an integral extension of rings. We define

A+
B := {b ∈ B | ∀p ∈ Spec(A), bp ∈ Ap + Rad(Bp)}

where Rad(Bp) :=
⋂

m∈Spm(Bp)
m is the Jacobson radical of Bp.

We say that A+
B is the seminormalization of A in B. If A = A+

B, then A is said to be
seminormal in B.

We introduce now the notion of subintegral extension which is strongly related with that of
seminormalization.
Definition 2.3

An extension of rings A ↪→ B is called subintegral if the two following conditions hold :

1. The induced map Spec(B)→ Spec(A) is bijective.

2. For all p ∈ Spec(A) and q ∈ Spec(B) with q ∩ A = p, the induced map on the residue
fields κ(p) ↪→ κ(q) is an isomorphism.

When the second condition holds, we say that A ↪→ B is equiresidual.

The following statement gives the link between the two last definitons. It gives us a universal
property of the seminormalization : the seminormalization of a ring in another one as its biggest
subintegral subextension.

Proposition 2.4
Let A ↪→ C ↪→ B be integral extensions of rings. Then the following statements are
equivalent :

1) The extension A ↪→ C is subintegral.

2) The image of C ↪→ B is a subring of A+
B.
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Before proving this, we give several lemmas. First, we recall some classical algebraic results.
Those are crucial to make things working, this is why most of the ring extensions we consider
are integral extensions.
Lemma 2.5 ([2])

Let A ↪→ B be an integral extension of rings. Then

1. (Lying-Over property) The map Spec(B)→ Spec(A) is surjective.

2. Let p ∈ Spec(A) and q ∈ Spec(B) such that q ∩ A = p. Then q ∈ Spm(B) if and only
if p ∈ Spm(A).

3. (Going-up property) Let p ⊆ p′ ∈ Spec(A) and q ∈ Spec(B) such that q∩A = p. Then
there exists q ⊆ q′ ∈ Spec(A) such that q′ ∩A = p′.

4. Let S be any multiplicative subset of A, then S−1A ↪→ S−1B is integral.

Now see that a subextension of a subintegral extension is necessarily subintegral.
Lemma 2.6

Let A ↪→ C ↪→ B be integral extensions of rings. Then the following properties are equivalent

1) The extension A ↪→ B is subintegral.

2) The extensions A ↪→ C and C ↪→ B are subintegral.

Proof : Let us prove that 1) implies 2). We start by showing the bijection between spectra. First, see
that the induced maps between Spec(C)→ Spec(A) and Spec(B)→ Spec(C) are surjective because the
extensions are integral ( Lemma 2.5, 2) ). Now let p ∈ Spec(C), suppose that there exists q1, q2 ∈ Spec(B)
such that q1 ∩ C = q2 ∩ C = p. In that case q1 ∩ A = q1 ∩ C ∩ A = p ∩ A and the same is true for q2.
Since A ↪→ B is subintegral, we have

q1 ∩A = q2 ∩A =⇒ q1 = q2

This shows that Spec(B) → Spec(C) is bijective. We now suppose that there exists p ∈ Spec(A) and
p1, p2 ∈ Spec(C) such that p1 ∩A = p2 ∩A = p. By what we’ve just shown, we can consider some unique
q1, q2 ∈ Spec(B) such that q1 ∩ C = p1 and q2 ∩ C = p2. Then q1 ∩ A = q2 ∩ A = p, so q1 = q2 and
finally p1 = p2. It shows that Spec(C)→ Spec(A) is bijective.
We now show the isomorphisms on the residue fields. Let’s consider the following commutative diagram

A �
� i1 //

π
����

C �
� i2 //

π′����

B

π′′����
A�p

� � f1 //
� _

��

C�p′
� � f2 //

� _

��

B�p′′� _

��
κ(p) �

� // κ(p′) �
� // κ(p′′)

The diagram is indeed commutative because the fi are obtained by the universal property of quotient
and their injectivity comes, for example with f1, from the following equality :

ker(π′ ◦ i1) = {a ∈ A such that i(a) ∈ p′} = p′ ∩A = p

By hypothesis, A ↪→ B is subintegral, so κ(p)→ κ(p′′) is an isomorphism. This implies that κ(p)→ κ(p′)
and κ(p′)→ κ(p′′) are also isomorphisms. The first implication is proved.
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We now show that 2) implies 1). Let’s suppose that A ↪→ C and C ↪→ B are subintegral. Let p ∈ Spec(A),
then there exists a unique element p′ ∈ Spec(C) above p. In the same way, there exists a unique element
p′′ ∈ Spec(B) above p′, so p′′ is the unique element of Spec(B) above p. The fact that we have κ(p′) ' κ(p)
and κ(p′′) ' κ(p′) gives us the equiresiduality. We have shown that A ↪→ B is subintegral.

The three following classical results brings a better understanding of the Jacobson radical in the
definition of the seminormalization.
Lemma 2.7

Let A ↪→ B be an extension of rings, p ∈ Spec(A) and q ∈ Spec(B). Then

q ∩A = p ⇐⇒ qBp ∩Ap = pAp

Lemma 2.8
Let A ↪→ B be an integral extension and p ∈ Spec(A). Then

Spm(Bp) = {qBp | q ∈ Spec(B) and q ∩A = p}

Remark. If A ↪→ B is an integral extension and p ∈ Spec(A), then

Rad(Bp) =
⋂

m∈Spm(Bp)
m =

⋂
q∈Spec(B),q∩A=p

qBp

Lemma 2.9
Let A ↪→ B be an integral extension of rings. Then

Rad(A) = Rad(B) ∩A

Now, we have all the tools to demonstrate that the seminormalization of a ring in another one is
its biggest subintegral subextension. But before that, we must check that the seminormalization
gives a subintegral extension.
Proposition 2.10

Let A ↪→ B be an integral extension of rings. Then

A ↪→ A+
B is subintegral

Proof : We recall that A+
B = {b ∈ B | ∀p ∈ Spec(A) bp ∈ Ap + Rad(Bp)} ⊂ B. To clarify the proof, we

will use the following rating abuse : A+ = A+
B and A+

p = (A+)p.
Let’s start by showing the bijection between spectra. In fact, we just have to show that Spec(A+) →
Spec(A) is injective since the extension is integral. Let p ∈ Spec(A) and q1, q2 ∈ Spec(A+) such that
q1 ∩ A = q2 ∩ A = p. Suppose that there exists b ∈ q1 ∩ qc2 and write bp = α + β ∈ Ap + Rad(Bp).
Then α = bp − β ∈ q1A

+
p ∩ Ap. But, by Lemma 2.7, we have q1A

+
p ∩ Ap = pAp = q2A

+
p ∩ Ap

and thus α ∈ q2A
+
p . Moreover β = bp − α ∈ A+

p and β ∈ Rad(Bp). So, by Lemma 2.9, we get
β ∈ Rad(Bp) ∩ A+

p = Rad(A+
p ) ⊂ q2A

+
p . It gives bp ∈ q2A

+
p which is not possible by hypothesis on b.

since q1 and q2 can be inverted in the proof, we obtain q1 = q2 and so Spec(A+)→ Spec(A) is bijective.
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We show now the equiresiduality. Let p ∈ Spec(A) and q ∈ Spec(A+) such that q ∩ A = p. Let
q′ ∈ Spec(B) such that q′ ∩ A = p. We can see that q′ ∩ A+ = q because q′ ∩ A+ is a prime ideal above
p and Spec(A+)→ Spec(A) is bijective. We obtain the following commutative diagram :

A �
� //
� _

��

A+ � � //� _

��

B� _

��
Ap
� � //

π
����

A+
p
� � //

π+

����

Bp

π′

����
Ap/pAp

� � f // A+
p /qA

+
p
� � //

� _

��

Bp/q
′Bp� _

��
Ap/pAp

� � // A+
q /qA

+
q
� � // Bq′/qBq′

We want to show that f is surjective. Let π+( bs ) ∈ A+
p /qA

+
p . Then b ∈ A+ so there exists α ∈ Ap and

β ∈ Rad(Bp) such that bp = α + β. The remark under Proposition 2.8 tells us that Rad(Bp) ⊂ q′Bp so
π′(bp) = π′(α) and since the diagram is commutative, we get π+(bp) = π+(α) = f ◦ π(α). Finally we
obtain

f

(
π(α)
π(s)

)
= π+(bp)

π+(s) = π+
(
b

s

)
which proves the surjectivity of f and gives us Ap/pAp ' A+

p /qA
+
p .

But we can see that A+
p /qA

+
p ' A+

q /qA
+
q because

A+
q /qA

+
q ' Frac(A+/q) and A+/q ↪→ A+

p /qA
+
p =⇒ A+

q /qA
+
q ↪→ A+

p /qA
+
p

This gives us the result
κ(p) ' Ap/pAp ' A+

q /qA
+
q ' κ(q)

Finally, we get the main result of this section that we have already stated in Proposition 2.4.

Proposition (Proposition 2.4). Let A ↪→ C ↪→ B be integral extensions of rings. Then the
following statements are equivalent :

1) The extension A ↪→ C is subintegral.

2) The image of C ↪→ B is a subring of A+
B.

Proof : Let’s prove that 1) implies 2). Suppose that A ↪→ C is subintegral, we want to show :

∀c ∈ C, ∀p ∈ Spec(A), cp ∈ Ap + Rad(Bp)

Let p ∈ Spec(A). We write q ∈ Spec(C) such that q ∩A = p and so we get the following diagram :

A� _

��

� � // C� _

��
Ap

π

����

� � i // Cp� _

ι

��
φ

��

Cq

π′

����
κ(p) ∼

f
// κ(q)

7



One can see that the diagram is commutative thanks to the following equality

Ker(φ) = {cp ∈ Cp such that π′ ◦ ι(cp) = 0} = {cp ∈ Cp such that ι(cp) ∈ qCq} = qCq ∩ Cp = qCp.

Thus, by Lemma 2.7, we have
ker(φ ◦ i) = qCp ∩Ap = pAp

We now consider c ∈ C and we want to show c ∈ A+
B . We have φ(cp) ∈ κ(q), so one can consider a

s ∈ Ap

such that f ◦ π
(
a
s

)
= φ(cp). Thanks to the diagram’s commutativity, we have f ◦ π = φ ◦ i, which gives

us
φ(cp) = f ◦ π

(a
s

)
= φ

(
i
(a
s

))
Thus φ(cp − i(as )) = 0 and so cp − i(as ) ∈ qCp. But, since q is the only ideal above p, we have qCp =
Rad(Cp). So, by Lemma 2.9, we get Cp − i(as ) ∈ Rad(Cp) = Rad(Bp) ∩ Cp ⊂ Rad(Bp). And so
cp ∈ Ap + Rad(Bp), which shows C ⊆ A+

B .
We now prove that 2) implies 1). Suppose we have A ↪→ C ↪→ A+

B ↪→ B. Those extensions are integral
and, by Proposition 2.10, the extension A ↪→ A+

B is subintegral. Then Lemma 2.6 tells us that A ↪→ C is
subintegral.

As said previously, Proposition 2.4 can be put into the form of a universal property. We rewrite
it in the following way :
Theorem 2.11 (Universal property of seminormalization)

Let A ↪→ B be an integral extension of rings. For every intermediate extension C of A ↪→ B
such that A ↪→ C is subintegral, the image of C by the injection C ↪→ B is contained in A+

B.

A s�

subint.
&&

� � // A+
B
� � inclusion // B

C
?�

OO

�+

88

Remark. Let A ↪→ B be an integral extension. We have A ↪→ A+
B subintegral by Proposition

2.10. So we can apply the universal property in the following way :

A s�

subint.
%%

� � // A+
A+

B

� � inclusion // A+
B

A+
B

?�

OO

�+

88

Thus A+
B ↪→ A+

A+
B

. But, by definition, A+
A+

B

is included in A+
B. We get the following idempotency

property
A+
B = A+

A+
B

8



3 Universal property of the seminormalization in the complex
geometric case.

Let X = Spec(A) be an affine algebraic variety with A a C-algebra of finite type. Let C[X] := A
denote the coordinate ring of X. We recall that X is irreducible if and only if C[X] is a domain.
A morphism π : Y → X between two varieties induces the morphism π∗ : C[X]→ C[Y ] which is
injective if and only if π is dominant. We say that π is of finite type (resp. is finite) if π∗ makes
C[Y ] a C[X]-algebra of finite type (resp. a finite C[X]-module).

The space X is equipped with the Zariski topology for which the closed sets are of the form
V(I) := {p ∈ Spec(C[X]) | I ⊂ p} where I is an ideal of C[X]. We define X(C) := {m ∈
Spm(C[X]) | κ(m) = C}. Thus, if we write C[X] = C[x1, ..., xn]/I, the elements of X(C) can
be seen as elements of Spm(C[x1, ..., xn]) containing I. The Nullstellensatz gives us a Zariski
homeomorphism between X(C) and the algebraic set Z(I) := {x ∈ Cn | ∀f ∈ I f(x) = 0} ⊂ Cn.
We will call πC : Y (C) → X(C) the restriction of π to Y (C). The set X(C) is also equipped
with the Euclidean topology induced by Cn. We will add the prefix «Z−» before a property if
it holds for the Zariski topology. If X is irreducible, then we write K(X) := Frac(C[X]).

If needed, for x ∈ X (resp. X(C)), we will write px (resp. mx) its associated ideal in C[X].

The goal of this section is to prove the following theorem and to write a universal property of
the seminormalization for affine varieties.
Theorem 3.1

Let π : Y → X be a finite morphism between affine varieties. Then the following properties
are equivalent.

1) The morphism πC : Y (C)→ X(C) is bijective.

2) The extension π∗ : C[X] ↪→ C[Y ] is subintegral.

3) The morphism π : Y → X is a Z-homeomorphism.

4) The morphism πC : Y (C)→ X(C) is a Z-homeomorphism.

The following classical result will be useful in the sequel.
Lemma 3.2

Let π : Y → X be a finite morphism between irreducible varieties. Then there exists a non
empty Z-open subset U of X such that

∀u ∈ U(C), #π−1
C (u) = [K(Y ) : K(X)]

Proof : Let U be a non empty Z-open set of X such that U is normal. Since the characteristic of C
is zero, the extension K(X) ↪→ K(U) is separable. So we can apply Theorem 7 p.117 from [17] on the
morphism π restricted to π−1(U).

The following proposition gives the main part of Theorem 3.1. The Nullstellensatz is the key to
prove it, which is not surprising for a statement of this kind.
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Proposition 3.3
Let π : Y → X be a finite morphism between affine varieties. The following properties are
equivalent

1) The extension π∗ : C[X] ↪→ C[Y ] is subintegral.

2) The morphism πC : Y (C)→ X(C) is bijective.

Proof : Suppose that C[X] ↪→ C[Y ] is subintegral, then Y → X is a bijection and as the extension is
integral, the inverse image of X(C) is Y (C) (cf. lemma 2.5). Therefore

πC : Y (C)→ X(C) is bijective

Conversely, suppose that Y (C) → X(C) is bijective. We start by checking that π is bijective. Let
y1, y2 ∈ Y such that π(y1) = π(y2) and write py1 , py2 for the associated prime ideals of C[Y ]. We want
to prove that y1 = y2. By the Nullstellensatz, it is equivalent to show

py1 =
⋂

py1⊆my∈Y (C)

my =
⋂

py2⊆my∈Y (C)

my = py2

Let y ∈ Y (C) such that py1 ⊂ my. We then have pπ(y1) ⊂ mπ(y), so pπ(y2) ⊂ mπ(y). Thus, by the going-up
property, we can consider y′ ∈ Y (C) such that py2 ⊆ my′ and π(y) = π(y′). As we have supposed that π
is injective on Y (C), we get y = y′.
Finally

∀y ∈ Y (C) py1 ⊆ my =⇒ py2 ⊆ my

The role of y1 and y2 can be inverted in the proof, so we get

py1 =
⋂

y∈Y (C),py1⊆my

my =
⋂

y∈Y (C),py2⊆my

my = py2 i.e. y1 = y2

It remains to check the equiresiduality. Let x ∈ X and y ∈ Y such that π(y) = x. We want to
prove κ(px) ' κ(py). If we write V = Spec(C[X]/px) and W = Spec(C[X]/py), we get the following
commutative diagram :

C[X]

πX

����

� � π∗ // C[Y ]

πY

����
C[V ]� _

��

� � (π|W )∗
// C[W ]� _

��
K(V ) �

� // K(W )

As C[Y ] is a finite C[X]-module, we have that C[W ] is a finite C[V ]-module. Thus π|W is a finite
morphism between two irreducible varieties. Therefore we can apply Lemma 3.2 to consider a non empty
Z-open set U of W such that

∀u ∈ U(C) #(π|W (C))−1(u) = [K(W ) : K(V )]

But we have previously shown that π is bijective so [K(W ) : K(V )] = 1 and so we get κ(px) ' κ(py).
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The following lemma completes the results needed to get Theorem 3.1.
Lemma 3.4

Let A ↪→ B be an integral extension of rings and π : Spec(B) → Spec(A) be the induced
map. If the morphism π is bijective, then π is a Z-homeomorphism.

Proof : Since π is Z-continuous, even when the extension is not integral, we just have to show that π is
Z-closed. Let p ∈ Spec(A) and q ∈ Spec(B) such that q ∩A = p. We have

π(V(q)) = {q′ ∩A | q ⊂ q′ ∈ Spec(B)}

so π(V(q)) ⊂ V(q∩A) = V(p). If p′ ∈ V(p), then the going-up property says that there exists q′ ∈ Spec(B)
such that q′ ∩A = p and q ⊂ q′. Therefore V(p) ⊂ π(V(q)) and so π(V(q)) = V(p) which is Z-closed.

We can finally prove the main theorem of this section.

Theorem (Theorem 3.1). Let π : Y → X be a finite morphism between two affine varieties.
Then the following properties are equivalent.

1) The morphism πC : Y (C)→ X(C) is bijective.

2) The extension π∗ : C[X] ↪→ C[Y ] is subintegral.

3) The morphism π : Y → X is a Z-homeomorphism.

4) The morphism πC : Y (C)→ X(C) is a Z-homeomorphism.

Proof : First of all, Proposition 3.3 gives us the first equivalence. Now suppose that C[X] ↪→ C[Y ] is
subintegral. Then π is bijective and since C[X] ↪→ C[Y ] is integral, we can apply Lemma 3.4 and get
that π is a Z-homeomorphism. Finally, if π is a Z-homeomorphism then πC is a Z-homeomorphism and
thus πC is bijective.

Before going further, we must define the seminormalization of an affine variety. If π : Y → X is
a finite morphism between two affine varieties, then C[X]+C[Y ] is a finite C[X]-module because it
is a submodule of C[Y ]. Thus C[X]+C[Y ] is a C-algebra of finite type because so is C[X].

Definition 3.5
Let π : Y → X be a finite morphism between two affine varieties. The affine variety defined
by

X+
Y = Spec(C[X]+C[Y ])

is called the seminormalization of X in Y .

As a consequence of the previous theorem, we are going to see that, in order to get the semi-
normalization of a variety in an other one, it is sufficient to glue together the closed points in
the fibers of πC .
Definition 3.6

Let A ↪→ B be an integral extension of rings.
We define

A+max
B = {b ∈ B | ∀m ∈ Spm(A), bm ∈ Am + Rad(Bm)}

11



Corollary 3.7
Let π : Y → X be a finite morphism between two affine varieties.
Then

C[X]+max

C[Y ] = C[X]+

C[Y ]

Proof : We write A := C[X] and B := C[Y ]. So we have to show A+max

B = A+
B . First of all, note that

the inclusion A+
B ⊆ A

+max

B is obvious.
In order to prove the other inclusion, we have to show that Spm(A+max

B ) → Spm(A) is bijective. If we
succeed, we will be able to deduce, thanks to Proposition 3.3, that A ↪→ A+max

B is subintegral and the
universal property of the seminormalization will give us the result.
Let m ∈ Spm(A) and m1,m2 ∈ Spm(A+max

B ) such that m1 ∩ A = m2 ∩ A = m. Suppose that there exists
b ∈ m1∩mc2 and write bm = α+β ∈ Am+Rad(Bm). Then β = bm−α ∈ A+max

B,m , so β ∈ Rad(Bm)∩A+max

B,m .
By Lemma 2.9, we get β ∈ Rad(A+max

B,m ) ⊂ m1A
+max

B,m ∩ m2A
+max

B,m . In particular, β ∈ m1A
+max

B,m and by
hypothesis on b, we also have bm ∈ m1A

+max

B,m . We then have α = bm − β ∈ m1A
+max

B,m ∩ Am and
m1A

+max

B,m ∩ Am = mAm = m2A
+max

B,m ∩ Am, by Lemma 2.7. Thus α ∈ m2A
+max

B,m and since β ∈ m2A
+max

B,m ,
we get bm ∈ m2A

+max

B,m which is not possible by assumption on b. Considering the fact that the role of m1
and m2 can be inverted in the proof, we get m1 = m2.

We are now able to write a geometric version of the universal property of seminormalization.
By just adapting the one we have obtained at the end of the first section with coordinate rings,
we get :

C[X] v�

subint.
))

� � // C[X]+C[Y ] ' C[X+
Y ] �
� // C[Y ]

C[Z]

OO

�(

55

This gives us the following statement for varieties :
Theorem 3.8 (Universal property of seminormalization)

Let Y → Z → X be finite morphisms of affine varieties. Then πC : Z(C)→ X(C) is bijective
if and only if there exists a morphism π+

Z : X+
Y → Z such that π ◦ π+

Z = π+. Moreover π+
Z is

unique and π+
Z(C) : X+

Y (C)→ Z(C) is bijective.

Y

&&

// X+
Y

π+
Z
��

π+
// X

Z

bij

π

88

Proof : We have the following equivalences :

πC : Z(C)→ X(C) bijective ⇐⇒ C[X] ↪→ C[Z] subintegral ( by Theorem 3.1 )
⇐⇒ C[Z] ⊂ C[X]+C[Y ] ' C[X+

C[Y ]] ( by Proposition 2.4 )
⇐⇒ ∃π+

Z : X+
Y → Z dominant, such that π ◦ π+

Z = π+

Since every morphism X+
Y → Z is finite, this concludes the existence. We get the uniqueness of π+

Z by
injectivity of π∗. Since C[X] ↪→ C[X+

Y ] is subintegral then Lemma 2.6 says that C[Z] ↪→ C[X+
Y ] is also

subintegral. So Theorem 3.1 tells us that π+
Z(C) : X+

Y (C)→ Z(C) is bijective.

12



4 Continuous rational functions on complex affine varieties.

This section is dedicated to the introduction and study of continuous rational functions and
how they are linked with the concept of seminormalization. The first subsection is dedicated
to the study of the ring of continuous rational functions on a variety. Concretely, we show
that this ring corresponds to the coordinate ring of the seminormalization of the variety in its
normalization. In the second subsection, we show that continuous rational functions are always
regulous in the case of complex affine varieties. The theory of regulous functions comes from
real algebraic geometry and was introduced in [7] and [10]. In this theory, continuous rational
functions and regulous functions are not the same on real singular algebraic sets. It is not true
anymore for complex affine varieties. In the third subsection we look at continuous functions
being a root of a polynomial in C[X][t]. This leads to identify continuous rational functions with
"c-holomorphic" functions with algebraic graphs on algebraic varieties. This kind of functions
are studied in [4] and [3] in the point of view of complex analytic geometry. We show, with
algebraic arguments, that they coincide on algebraic varieties. Finally, the fourth subsection
presents examples of continuous rational functions.

We begin by recalling classical results on the normalization of an affine variety.
Definition 4.1

Let A be a commutative ring. We note K the localization S−1A where S is the set of
non-zero-divisors A. The ring K is called the total ring of fractions of A.

If A is reduced with a finite number of minimal prime ideals p1, ..., pn, then

p1 ∩ ... ∩ pn =
⋂

p∈Spec(A)
p = (0)

We get the following injections :

A ↪→ A/p1 × ...×A/pn ↪→ K1 × ...×Kn where Ki := Frac(A/pi)

Then the total ring of fractions of A corresponds to the product of the fields Ki.

We define A′ to be the integral closure of A in K and we simply call it the integral closure of A.
In the same spirit, the seminormalization of A in K is denoted by A+ and is simply called the
seminormalization of A. Finally, we say that A is seminormal if A+ = A.

For X an affine variety, the total ring of fractions of C[X] is denoted by K(X). The ring K(X)
(which is a field when X is irreducible) is also the ring of classes of rational fractions on X and is
called the ring of rational functions on X. It means that it represents the set of classes of regular
functions f on a Z-dense Z-open set U of X(C) with the equivalence relation (f1, U1) ∼ (f2, U2)
iff f1 = f2 on U1 ∩ U2.

We say that a morphism ϕ : Y → X is birational if the associated morphism K(X) ↪→ K(Y ) is
an isomorphism.

The integral closure of C[X] being a finite C[X]-module ( see [6] Thm 4.14 ), it is also a C-algebra
of finite type. Thus we can define the normalization X ′ of X such that X ′ = Spec(C[X]′). We
get a finite and birational morphism π′ : X ′ → X. The normalization of X is the biggest affine
variety finitely birational to X. It means that for every finite, birational morphism ϕ : Y → X,
there exists ψ : X ′ → Y such that π′ = ϕ ◦ ψ.
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The seminormalization X+ of X is the variety X+
X′ defined in Definition 3.5. The seminormal-

ization X+ comes with a finite, birational and bijective morphism π+ : X+ → X whose universal
property is given by Proposition 3.8.

Finally for every affine variety X, we have the following extensions of rings :

C[X] ↪→ C[X+] ↪→ C[X ′] ↪→ K(X).

Definition 4.2
Let X be an affine variety. We write K0(X(C)) the set of continuous functions f : X(C)→ C
for the Euclidean topology which are rational on X(C).

Example. The most classical example of such a function is the following :
Let X = Spec(C[x, y]/ < y2 − x3 >), consider the function f defined on X(C) = Z(y2 − x3) by

f =
{

y
x if x 6= 0
0 else

First of all, we show that we will always be able to assume X to be irreducible thanks to the
following lemmas.
Lemma 4.3

Let E be a topological space and {Ei}i∈I be a covering of E. Let A be a subspace of E
such that A ∩ Ei is dense in Ei for all i ∈ I. Then A is dense in E.

Proof : Let U be a non-empty open set of E. Then there exists i ∈ I such that U ∩Ei 6= ∅. Since A∩Ei
is dense in Ei and U ∩ Ei is a non-empty open set of Ei, we get A ∩ U ∩ Ei 6= ∅. Then A ∩ U 6= ∅. So
A is dense in E.

Lemma 4.4

Let X be an affine variety and f : X(C) → C. We write X =
n⋃
i=1

Xi where the Xi are the

irreducible components of X. The following properties are equivalent

1) f ∈ K0(X(C))

2) ∀i ∈ J1;nK f|Xi(C) ∈ K0(Xi(C))

Proof : Let f ∈ K0(X(C)), we call U the Z-dense Z-open set on which f is regular. For j ∈ J1;nK, the
set X\

⋃
i 6=j Xi is a Z-open set contained in Xj , which is not empty because Xj *

⋃
i 6=j Xi. Thus, since

U is Z-dense, we have Xj(C) ∩ U 6= ∅. So f is regular on Xj(C) ∩ U which is Z-dense because Xj is
irreducible. Then, f|Xj(C) being clearly continuous, we have f|Xj(C) ∈ K0(Xj(C)).

Let f : X(C) → C such that f|Xi(C) ∈ K0(Xi(C)) for all i ∈ J1;nK. Then f is regular on a Z-dense
Z-open set of every component and since, by Lemma 4.3, a union of dense open sets of each irreducible
component of X is a dense open set of X, we get that f is regular on a Z-dense Z-open set of X(C). Let’s
show that f is continuous on X(C). First of all, f is clearly continuous on every point of the set

X(C)\

⋃
i 6=j

Xi(C) ∩Xj(C)


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which are the points that do not belong to any intersection of components. Now let’s take a look at
the continuity near the other points. Let x ∈

⋂
j∈J Xj(C) where J is a subset of J1;nK. Let ε > 0 and

j ∈ J . Since f is continuous on Xj(C), we can consider a Euclidean open set Uj containing x such that
∀y ∈ Xj(C) ∩ Uj we have |f(x)− f(y)| < ε. By doing the same for all j ∈ J , we obtain

∀y ∈ X(C) ∩

⋂
j∈J

Uj

 |f(x)− f(y)| < ε

Remark. Let X be an affine variety and X =
n⋃
i=1

Xi its decomposition into irreducible compo-

nents. Then

K0(X(C)) ' {(f1, ..., fn) ∈ K0(X1(C))× ...×K0(Xn(C)) | fi|Xi(C)∩Xj (C) = fj|Xi(C)∩Xj (C)}

The next proposition shows that the continuity allows us to be more precise concerning the
Z-open set where an element of K0(X(C)) is regular. We write Xreg (resp. Xsing) the set of
regular (resp. singular) points of X and Xreg(C) (resp. Xsing(C)) those of X(C).
Proposition 4.5

A function belongs to K0(X(C)) if and only if it is continuous for the Euclidean topology
and it is regular on Xreg(C).

Remark. Let x ∈ X, we write OX,x := C[X]px the ring of functions which are regular at x. If X
is irreducible and W is a subvariety of X, we write OX(W ) := ∩x∈WOX,x.

Proof : We assume X irreducible thanks to Lemma 4.4. Let f : X(C) → C be regular on the Z-dense
Z-open set U(C) and continuous on X(C). Then there exists q, p ∈ C[X] such that pf = q on U(C). As
a Z-dense Z-open set is dense for the Euclidean topology and pf − q is continuous, we get pf − q = 0 on
X(C).
Let x ∈ Xreg(C), we have to show f ∈ OX,x. If p is a unit in OX,x, then f = q.p−1 ∈ OX,x. Else,
since x ∈ Xreg(C), the Auslander-Buchsbaum theorem tells us that OX,x is a UFD. So, even if it means
multiplying q by some unit elements of OX,x, we can write

p =
n∏
i=1

psi
i

with pi some prime elements of OX,x. We now consider a Z-open neighbourhood W1(C) of x such that
pf = q on W1(C) and p1 is a prime element of OX(W1(C)). Thus q vanish on Z(p1) and since the
Nullstellensatz tells us that J (Z(p1)) = p1OX(W1(C)), we have q ∈ p1OX(W1(C)). So there exists
q1 ∈ OX(W1(C)) such that q = p1q1. Then we obtain

n∏
i=2

psi
i p

s1−1
1 f|W1(C) = q1|W1(C)

In the case where s1 > 1 we’ll have Z(p1) ⊂ Z(q1) so we can iterate the process and get qs1 ∈ OX(W1(C))
such that

n∏
i=2

psi
i f|W1(C) = qs1|W1(C)

If we take W2(C) a Z-open neighbourhood of x on which p2 is prime, we can the repeat the previous
argument on W1(C) ∩W2(C). Thus, by doing this n times, we can consider a Z-open neighbourhood
Wn(C) of x in X(C) and qΣs1 ∈ OX(Wn(C)) such that f|Wn(C) = qΣsi|Wn(C) . Then we finally conclude
that f ∈ OX,x.
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Remark. Note that the Euclidean continuity is essential in the proof to apply the argument
of density at the end of the first paragraph. In particular, the Zariski continuity used in [14]
wouldn’t be enough because it doesn’t allow us in general to extend an equality which is true
on a Z-dense set. As an example we can consider the function f defined on A1(C) by

f =
{

1
z if z 6= 0
0 else

This function is Z-continuous because it is a bijection and the Z-open sets of A1(C) are of
the form A1(C)\{finite nb of points}. However, even if zf(z) = 1 on the Z-dense Z-open set
A1(C)\{0}, this equality does not extend on the whole space A1(C).

4.1 Connection between continuous rational functions and seminormaliza-
tion.

The goal of this subsection is to study the ring K0(X(C)) for X an affine variety. The main
result being Proposition 4.13 which tells us that this ring is in fact the coordinate ring of the
seminormalization of X, in other words K0(X(C)) = C[X+]. To do this, we must look at how
the continuous rational functions behave when they are composed with finite morphisms of affine
varieties.

As we have seen previously, the functions in K0(X(C)) are regular on the regular points of X(C).
Thus, if X is normal, the singular locus is too thin for a continuous rational function not to be
polynomial. This allows us to identify the ring K0(X(C)) when X is normal.
Proposition 4.6

Let X be an affine normal variety. Then K0(X(C)) = OX(X(C)) = C[X].

Proof : First C[X] ⊂ K0(X(C)) is obvious. Conversely, let f ∈ K0(X(C)). By the previous proposition
we get f ∈ OX(Xreg(C)). But since X is normal we have codim(Xsing(C))> 2. Thus, by [9] p.124,
there exists a function f̃ ∈ OX(X(C)) which coincides with f on Xreg(C). As the function f − f̃ is
continuous for the Euclidean topology and vanish on Xreg(C) which is a dense open set of X(C), we get
f = f̃ ∈ OX(X(C)) = C[X].

In the following proposition, we improve the result of Proposition 4.5. We write Norm(X) :=
{x ∈ X | OX,x is integrally closed} and Norm(X(C)) = Norm(X) ∩X(C).
Proposition 4.7

Let X be an affine variety and f ∈ K0(X(C)). Then

∀x ∈ Norm(X(C)) f ∈ OX,x

Proof : Let π′ : X ′ → X be the normalization morphism of X and f ∈ K0(X(C)). Proposition 4.6 tells
us that f ◦ π′ ∈ C[X ′]. Let x ∈ Norm(X(C)), then there exists a unique x′ ∈ X ′ such that π′(x′) = x
and so OX,x ↪→ OX′,x′ . Since normalization commutes with localisation (one can see [2] for example),
we get O′X,x ' OX′,x′ . But x ∈ Norm(X(C)) implies OX,x = O′X,x so

OX,x ' OX′,x′

Finally, since f ◦ π′ ∈ OX′,x′ , we get f ∈ OX,x.
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Remark. A UFD being integrally closed, we have Xreg ⊂ Norm(X). So Proposition 4.7 implies
Proposition 4.5.

Before continuing the study of continuous rational functions, we have to establish some properties
of finite morphisms that we will need later.
Lemma 4.8

Let π : Y → X be a finite morphism of affine varieties. Then

πC : Y (C)→ X(C) is surjective and closed for the Euclidean topology.

Proof : Proposition 2.5 tells us that the morphism π is surjective and that the inverse image of X(C) is
Y (C). It gives us the surjectivity of πC : Y (C)→ X(C).
To show that πC is closed, we are going to prove that it is proper for the Euclidean topology. Let K
be a compact subset of X(C). We first have that π−1

C
(K) is closed because πC is continuous. Suppose

C[Y ] = C[y1, ..., yn]/IY and Y (C) ⊂ Cn. We write Yi : y 7→ yi the map giving the ith coordinate of an
element of Y (C). We then have Yi ∈ C[Y ] and, since by hypothesis C[Y ] is a finite C[X]-module, there
exists an identity of the form

Y ki + ak−1 ◦ πC .Y
k−1
i + ...+ a0 ◦ πC = 0 with ai ∈ C[X]

Let y ∈ π−1
C

(K). We write πC(y) = x. If yi 6= 0, then

Y ki (y) + ak−1 ◦ πC(y).Y k−1
i (y) + ...+ a0 ◦ πC(y) = 0

=⇒ yki + ak−1(x)yk−1
i + ...+ a0(x) = 0

=⇒ 1 + ak−1(x)/yi + ...+ a0(x)/yki = 0

As K is a compact set, the aj(K) are bounded. So

∀(yn)n ∈ π−1
C

(K)N Yi(yn) 9 +∞

This means that Yi(π−1
C

(K)) is bounded for all i and so that π−1
C

(K) is a compact set. More generally,
we have shown :

πC : Y (C)→ X(C) is proper for the Euclidean topology.

Since a proper continuous map is closed, the lemma is proved.

Remark. What we have just shown implies that for every finite morphism π : Y → X of affine
varieties with πC bijective, the morphism πC is an Euclidean homeomorphism.

Henceforth, for any given morphism π : Y → X of affine varieties, we shall write ϕ : K0(X(C))→
C(Y (C),C) the map f 7→ f ◦ πC . The purpose of this notation is to differentiate this map from
the morphism π∗ : C[X]→ C[Y ]. We will see that if π is a finite morphism we can determine the
image of ϕ. This will be useful for us since the normalization and seminormalization morphisms
are finite.
Lemma 4.9

Let π : Y → X be a surjective morphism of affine varieties. Then ϕ is injective and

Im(ϕ) ⊂ {f ∈ K0(Y (C)) with f being constant on the fibers of πC}
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Proof : If f ∈ K0(X(C)) then we can consider p, q ∈ C[X] with q a non-zero-divisor such that q.f−p = 0
on X(C). Write Y =

⋃n
i=1 Yi the decomposition in irreducible component of Y . Then, for all i ∈ J1;nK,

we get q ◦ π|Yi(C) .f ◦ π|Yi(C) − p ◦ πC |Yi(C) = 0 on Yi(C). Thus f ◦ π|Yi(C) ∈ K(Yi) and since πC is continuous,
we have f ◦ πC |Yi(C) ∈ K0(Yi(C)). By Lemma 4.4, we get f ◦ πC ∈ K0(Y (C)). Moreover

∀y1, y2 ∈ Y (C) πC(y1) = πC(y2) =⇒ f ◦ πC(y1) = f ◦ πC(y2)

which shows the lemma’s inclusion. It remains to prove the injectivity of ϕ :
Let f ∈ K0(X(C)) be such that ϕ(f) = f ◦ πC = 0 and take x ∈ X(C). As π is surjective, there exists
y ∈ Y (C) such that π(y) = x. So we can write f(x) = f ◦ πC(y) = 0. Thus we get f = 0 which shows
that ϕ is injective.

We deduce from Lemma 4.9 that continuous rational functions on an affine variety can be seen
as polynomial functions on its normalization.
Proposition 4.10

Let X be an affine variety and f ∈ K0(X(C)). Then f is integral on C[X].

Proof : Let f ∈ K0(X(C)) and π : X ′ → X be the normalization morphism of X. Since π is a finite
morphism, the previous lemma gives us K0(X(C)) ↪→ K0(X ′(C)). But, by Proposition 4.6, we get
K0(X ′(C)) = C[X ′] so K0(X(C)) ↪→ C[X ′] and so f ◦ πC ∈ C[X ′]. By definition of C[X ′], we can
consider a relation of the form (f ◦ πC)n + (an−1 ◦ πC)(f ◦ πC)n−1 + ... + (a0 ◦ πC) = 0 on X ′(C) with
a0, ..., an−1 ∈ C[X]. Since πC is surjective, we get that fn + an−1f

n−1 + ... + a0 = 0 on X(C). Hence f
is integral on C[X].

Remark. In general, a function f : X(C)→ C is integral on C[X] if and only if it is rational and
locally bounded on X(C).

We obtain the following commutative diagram which sums up the situation :

K0(X(C)) �
� ϕ // K0(X ′(C))

C[X]
?�

OO

� � // C[X ′]

As previously announced, we are going to give a description of the image of ϕ in the case π is
finite.
Proposition 4.11

Let π : Y → X be a finite morphism of affine varieties. Then the image of ϕ : K0(X(C))→
K0(Y (C)) is

Im(ϕ) = {f ∈ K0(Y (C)) with f constant on the fibers of πC}

Proof : Let f ∈ K0(Y (C)) be such that

∀y1, y2 ∈ Y (C) πC(y1) = πC(y2) =⇒ f(y1) = f(y2)

We consider
g : X(C) −→ C

x 7→ f(yi) with yi ∈ π−1
C

({x})
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The map is well defined by hypothesis and because π is surjective. Moreover we have f = g ◦ πC and
f ∈ C0(Y (C),C) so g ◦ πC ∈ C0(Y (C),C).
We now show that g ∈ C0(X(C),C). Let F be a closed subset of C. Then (g ◦ πC)−1(F ) = π−1

C
(g−1(F ))

is closed because g ◦πC = f is continuous and πC(π−1
C

(g−1(F ))) = g−1(F ) because πC is surjective. Thus,
since πC is closed (see lemma 4.9), the set g−1(F ) is closed and so g is continuous.
It remains to prove that g is a rational function. We have

g ◦ πC ∈ K0(Y (C)) =⇒ g ◦ πC is integral on C[Y ] by Proposition 4.10
=⇒ g ◦ πC is integral on C[X] by [2] Corollary 5.4 p.60
=⇒ g is integral on C[X] because π is surjective
=⇒ g ∈ K0(X(C)) by Proposition 4.18 that we prove further away.

This shows f ∈ Im(ϕ). So we have proved that the set of functions in K0(Y (C)) which are constant on
the fibers of πC is included in Im(ϕ). The reverse inclusion being given by Lemma 4.9, we finally get

Im(ϕ) = {f ∈ K0(Y (C)) with f constant on the fibers of πC}

Now, considering the last proposition, it is natural to wonder what happens when there is only
one element in every fiber of πC . The answer is given in the following proposition.
Proposition 4.12

Let π : Y → X be a finite morphism of affine varieties. Then the following properties are
equivalent :

1) The extension π∗ : C[X] ↪→ C[Y ] is subintegral.

2) The morphism ϕ : K0(X(C))→ K0(Y (C)) is an isomorphism.

Proof : Suppose C[X] ↪→ C[Y ] is subintegral, by Theorem 3.1 it means that πC : Y (C) → X(C) is
bijective. So, in this case, every function of K0(Y (C)) is clearly constant on the fibers of πC . So, by
Proposition 4.11, the map ϕ is surjective and Lemma 4.9 gives us the injectivity.

Conversely, if πC is not bijective, there exists y1 6= y2 ∈ Y (C) such that π(y1) = π(y2) and we can find
f ∈ C[Y ] such that f(y1) 6= f(y2). Thus f ∈ K0(Y (C)) but f /∈ Im(ϕ).

Finally

ϕ : K0(X(C))→ K0(Y (C)) is an isomorphism ⇐⇒ πC : Y (C)→ X(C) is bijective
⇐⇒ π∗ : C[X] ↪→ C[Y ] subintegral

Let X be an affine variety, the coordinate ring of X+ is the largest ring subintegral over C[X].
Thus for every finite morphism between two varieties π : Y → X with C[X] ↪→ C[Y ] subintegral,
we obtain the following commutative diagram :

K0(X(C)) ' // K0(Y (C)) ' // K0(X+(C)) �
� // K0(X ′(C))

C[X]
?�

OO

� � subint. // C[Y ]
?�

OO

� � subint. // C[X+]
?�

OO

� � // C[X ′]

We will complete the diagram by showing C[X+] = K0(X+(C)). We prove it in the next theorem
by saying that the polynomial functions on the seminormalization are the polynomial functions
on the normalization which are constant on the fibers of π′C : X ′(C)→ X(C).
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Theorem 4.13
Let X be an affine complex variety and π+ : X+ → X be the seminormalization morphism.
We have the following isomorphism

ϕ : K0(X(C)) ∼−→ C[X+]
f 7→ f ◦ π+

C

Proof : We have shown in Corollary 3.7 that

C[X+] = C[X+max ] = {f ∈ C[X ′] / ∀x ∈ X(C) fx ∈ OX,x + Rad(OX′,x)}

Let π′ : X ′ → X be the normalization morphism of X. We want to show

C[X+max ] = {f ∈ C[X ′] / f constant on the fibers of π′
C
}

Let x ∈ X(C) and f ∈ C[X+max ]. We write π′−1
C

({x}) = {x′1, ..., x′n}. The goal is to show f(x′i) = f(x′j)
for all i, j ∈ J1, nK. First, the ideals of OX′,x above mx are of the from mx′

i
OX′,x :

OX,x ↪→ OX′,x
mxOX,x ← [ mx′1OX′,x

...
mx′nOX′,x

By definition, we have fx ∈ OX,x + Rad(OX′,x). So we can write fx = α+β with α ∈ OX,x ⊂ OX′,x and
β ∈ mx′1OX′,x ∩ ... ∩mx′nOX′,x. Thus, for all i ∈ {1, ..., n}

fx(x′i) = α(π′(x′i)) + β(x′i)

But β(x′i) = 0 because β ∈ mx′
i
OX′,x and α(π′(x′i)) = α(x). So α(x) = f(x′1) = ... = f(x′n) and we obtain

C[X+max ] ⊂ {f ∈ C[X ′] / f constant on the fibers of π′
C
}.

Conversely, let f ∈ C[X ′] be constant on the fibers of π′
C
. Let x ∈ X(C), then ∀y ∈ π′−1

C
(x), f(y) = α ∈ C.

We then have
fx − α ∈

⋂
y∈π′−1

C (x)

myOX′,x = Rad(OX′,x)

and so f ∈ C[X+max ]. We have proved

C[X+max ] = {f ∈ C[X ′] / f constant on the fibers of π′
C
}.

But since K0(X ′(C)) = C[X ′] by Proposition 4.6 and since

ϕ : K0(X(C)) ∼−→ {f ∈ K0(X ′(C)) / f constant on the fibers of π′
C
}

by Proposition 4.11, we get
ϕ : K0(X(C)) ∼−→ C[X+max ] = C[X+].

We have managed to identify the ring of continuous rational functions of an affine complex
variety : it corresponds to the coordinate ring of its seminormalization. We can now complete
the previous diagram.

For every morphism π : Y → X of affine varieties such that C[X] ↪→ C[Y ] is subintegral, we get

K0(X(C)) ' // K0(Y (C)) ' // K0(X+(C)) �
� // K0(X ′(C))

C[X]
?�

OO

� � subint. // C[Y ]
?�

OO

� � subint. // C[X+] �
� // C[X ′]
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4.2 Continuous rational functions and regulous functions.

As said before, continuous rational functions are of particular interest in real algebraic geometry.
They are very related to an other kind of functions : the regulous functions. Let X be a real
algebraic set and let f : X → R be continuous. We say that f is regulous on X if for every
algebraic subset Z ⊂ X, the restriction f|Z has a rational representation. This is why they
are sometimes called "hereditarily rational functions". Those two types of functions are not the
same in the case of real singular algebraic sets. One can consider the following example (from
[10]) of a continuous rational function which is not regulous.
Example. Let X := {x3 − (1 + z2)y3} ⊂ R3 be an real algebraic set. Consider f : X → R such
that f(x, y, z) = (1 + z2)

1
3 . See that, although f is continuous on X and f = x/y if y 6= 0, the

function f is not rational on {y = 0}.

For more details, one can see [13] section 3 for a review on these notions. We show, in the follow-
ing proposition, that these two kinds of functions are the same in complex algebraic geometry.
Proposition 4.14

Let f ∈ K0(X(C)). Then for every subvariety V ⊂ X, we have

f|V (C) ∈ K
0(V (C))

Proof : As usual, Lemma 4.4 allows us to suppose V irreducible. Let’s considerate π+ : X+ → X the
seminormalization morphism of X and V = V(p) an irreducible subvariety of X. Like in Proposition 3.3,
we have the following commutative diagram :

C[X]

����

� � (π
+)∗ // C[X+]

����
C[V ]� _

��

� �
(π+
|W )∗
// C[W ]� _

��
κ(V ) κ(W ),

with W = V(q) where q is the unique prime ideal of C[X+] above p. By the going-up property and the
description of prime ideals for quotient rings, one can see that W → V is a bijection. Thus Theorem 3.1
tells us that C[V ] ↪→ C[W ] is subintegral. Since C[W ] is a finite C[V ]-module, we can apply Proposition
4.12 and get that K0(V ) ↪→ K0(W ) is an isomorphism. Thus

f ∈ K0(X(C)) =⇒ f ◦ π+
C
∈ OX+(X+(C)) =⇒ f ◦ π+

|W (C) ∈ OX+(W (C))

=⇒ f|V (C) ◦ π+
|W (C) = f ◦ π+

|W (C) ∈ K
0(W (C)) =⇒ f|V (C) ∈ K0(V (C))

Remark. In real algebraic geometry, regulous functions can also be defined in the following
equivalent way. Let f : X → R be a continuous function on a real algebraic set. We say that f
is regulous ( or sometimes stratified-regular ) if there exists a finite stratification S of X, with
Zariski locally closed strata (i.e. the intersection of a closed and an open set), such that for all
S ∈ S the restriction f|S is regular. It also applies in our case, if f : X(C)→ C is a continuous
rational function, then we can write
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f =


p1/q1 if q1 6= 0
p2/q2 if q1 = 0 and q2 6= 0
p3/q3 if q1 = q2 = 0 and q3 6= 0
...

and for every n > 1, we have Z(qn) ⊂ Sing(Z(qn−1)).

4.3 The ring of continuous rational functions seen as an integral closure and
algebraic Whitney theorem.

In Whitney’s book [23], one can find a chapter dedicated to a certain type of functions : the
"c-holomorphic" functions. The c-holomorphic functions are defined as continuous functions
on an analytic variety which are holomorphic on the smooth points of the variety. Note that,
by Proposition 4.5, continuous rational functions are c-holomorphic. A characterization of c-
holomorphic functions, given by Whitney, is that a continuous function is c-holomorphic if and
only if it has an analytic graph. This theorem naturally leads to wonder if we can have the same
characterization for continuous rational functions. In other words, do we have, on an affine
algebraic variety, that a continuous function is rational if and only if its graph is algebraically
closed ? The answer is yes and a proof with arguments from analytic geometry can be found in
[4]. The goal of this section is to prove a slightly stronger version with arguments from algebraic
geometry.
More precisely we aim to show that, if X is an affine variety, then every continuous function
from X(C) to C, for which there exists P (t) ∈ C[X][t] such that P (f) = 0, is rational.
It allows us to deduce the algebraic version of Whitney’s theorem discussed above but also to
identify the ring in which K0(X(C)) is the integral closure of C[X].

We start by proving the theorem in the case where X is irreducible and where the polynomial,
for which the continuous function is a root, is irreducible in K(X)[t]. With those hypothesis
we can give a proof similar to the one given in [18] (theorem 8.4 p.176). It is very important
for the polynomial to be irreducible in K(X)[t] otherwise the new variety created from it won’t
necessarily be irreducible, whereas the key argument uses the irreducibility of this new variety.
Notation. Let P be a polynomial, we note disc(P ) its discriminant.
Lemma 4.15

Let X be an irreducible affine variety and f : X(C)→ C be a continuous function. Suppose
there exists an irreducible polynomial P ∈ K(X)[t] such that

∃U a Z-open set ∀x ∈ U(C) P (x, f(x)) = 0

then
f ∈ K0(X(C))

Proof : First we consider the affine Z-open set X1 such that P is a monic polynomial of C[X1][t]. Then
we write Y1 = Spec(C[X1][t]/ < P >), which is irreducible because P is irreducible in K(X)[t] = K(X1)[t],
and π : Y1 → X1 the induced finite morphism. We note X2 the affine Z-open set where disc(P ) does
not vanish. Finally we write Y2 = π−1(X2). Now X2 and Y2 are two irreducible affine varieties with
π : Y2 → X2 finite and

∀x ∈ X2(C) #π−1
C

(x) = [K(Y2) : K(X2)] = deg(P ).

We write m := deg(P ) and we prove by contradiction that m = 1. Let’s suppose m > 1.

22



Let x ∈ X2(C), we can consider Ux a Euclidean open set such that X2(C) ∩ Ux is connected and

π−1(X2(C) ∩ Ux) =
m⊔
i=1

V ix where V ix ⊂ Y2(C) are two by two disjoint connected open sets

We note
ϕ : X2 → Y2

x 7→ (x; f(x))

which is, by hypothesis on f , a continuous section of π. Thus ϕ(X2(C) ∩ Ux) is connected and so it
corresponds to one of the V ix which we denote V i0x . We then have that ϕ(X2(C)) and Y2(C)\ϕ(X2(C))
are open sets because

ϕ(X2(C)) =
⋃

x∈X2(C)

V i0x

and
Y2(C)\ϕ(X2(C)) =

⋃
x∈X2(C)

⊔
i 6=i0

V ix

Moreover, since m > 1, we clearly have ϕ(X2(C)) 6= Y2(C). But since Y2 is irreducible, the set Y2(C)
must be connected, a contradiction. So m must be equal to 1 and then f is rational.

In order to prove the desired theorem with Lemma 4.15, we need to find an irreducible polynomial
of K(X)[t] for which the continuous function is a root. This is what Lemma 4.16 gives us.
Lemma 4.16

Let X be an affine irreducible smooth variety and f : X(C)→ C be continuous with respect
to the Euclidean topology. Suppose there exists a monic polynomial P ∈ C[X][t] such that

∀x ∈ X(C) P (x, f(x)) = 0

Then f is a root of an irreducible polynomial of K(X)[t].

Proof : Since X is supposed to be smooth and P to be a monic polynomial, we can apply [23] Lemma
2J Chapter 4 to get that f is holomorphic on X(C). In particular, we get f ∈M(X(C)) which is a field
because X is irreducible (see [18] Theorem 7.1). Now consider the morphism

evf : K(X)[t] → M(X(C))
Q(t) 7→ Q(f)

We have that K(X)[t] is a principal ideal ring because K(X) is a field. Since P (f) = 0 in M(X(C)),
then ker(evf ) 6= 0. So there exists F 6= 0 such that ker(evf ) =< F >. SinceM(X(C)) is a domain, the
polynomial F is irreducible in K(X)[t].

We now have all the arguments we need to demonstrate the main theorem of this section.
Theorem 4.17

Let X be an affine variety and f : X(C) → C be a function continuous for the Euclidean
topology. Suppose there exists a polynomial P ∈ C[X][t] which is non-zero on each irre-
ducible component of X(C) and such that

∀x ∈ X(C) P (x, f(x)) = 0

then
f ∈ K0(X(C))
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Proof : Let X =
⋃n
i=1Xi be its decomposition into irreducible components. Let i ∈ J1, nK then f|Xi(C)

is a root of the polynomial P with its coefficients restricted to Xi(C). Thus, by Lemma 4.4, it is enough
to prove the theorem for an irreducible affine variety.
If Xsing(C) = Z(< q1, ..., qs >) and an is the leading coefficient of P , we can replace X by D(q1an) and
then suppose that X is smooth and that P is a monic polynomial. It allows us to use Lemma 4.16 and to
get an irreducible polynomial F ∈ K(X)[t] such that there exists a Z-open set U where for all x ∈ U(C),
F (x, f(x)) = 0. The conclusion is now given by Lemma 4.15.

Thanks to Theorem 4.17 we can now see the ring of continuous rational functions as an integral
closure of C[X].
Corollary 4.18

Let X be an affine variety. Then

K0(X(C)) = C[X]′C0(X(C),C)

Proof : The result follows from Proposition 4.10 and Theorem 4.17.

Remark. By using Corollary 4.18, one can give a very short proof of Proposition 4.14. Indeed,
if V is a subvariety of X and if f ∈ K0(X(C)), then there exists a monic polynomial in C[X][t]
for which f is a root. So f|V (C) is a root of the same polynomial with its coefficients restricted
to V (C). Since f|V (C) is continuous, we get f|V (C) ∈ C[V ]′C0(V (C),C) = K0(V (C)).

Let’s conclude this section by proving the algebraic version of Whitney’s Theorem 4.5Q in [23]
introduced at the beginning of this section.
Corollary 4.19

Let X be an affine variety and f : X(C) → C be a continuous function. We note
Γf := {(x, f(x)) | x ∈ X(C)} ⊂ X(C)× A1(C) the graph of f . Then the following properties
are equivalent :

1) The graph Γf is Z-closed.

2) f ∈ K0(X(C))

Proof : The implication 1) implies 2) comes from Theorem 4.17. Conversely, we suppose f ∈ K0(X(C))
and we note π : X+ → X the seminormalization morphism. By Proposition 4.13, we have f ◦π ∈ C[X+].
Thus

Γf◦π = {(y, f ◦ π(y)) | y ∈ X+(C)}

is Z-closed. Moreover the map π× Id is Z-closed because, by Theorem 3.1, π is a Z-homeomorphism. So
π × Id(Γf◦π) = {(π(y), f ◦ π(y)); y ∈ X+(C)} is Z-closed. Finally, since π is bijective, we get{

(π(y), f ◦ π(y)) | y ∈ X+(C)
}

= {(x, f(x)) | x ∈ X(C)} = Γf

Remark. In [3] and [4], the authors consider c-holomorphic functions with an algebraic graph.
Corollary 4.19 tells us that those functions are the same as the ones considered in this paper
when we work on algebraic varieties.
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Remark. In real algebraic geometry, the zero sets of regulous functions are the closed sets of a
thinner topology than the Zariski topology called the regulous topology. In [7], the authors show
that we can recover some classical theorems of complex algebraic geometry if we work with the
regulous topology instead of the Zariski topology. In our case, if f ∈ K0(X(C)) then Corollary
4.18 tells us that {x ∈ X(C) | f(x) = 0} = Γf ∩ (X(C)× {0}) is a Zariski closed set.

4.4 Examples of continuous rational functions.

In general, it is not easy to determine the seminormalization of a variety. We present in this
subsection several examples of continuous rational functions and also some explicit seminormal-
izations of affine varieties. In order to do this we give a pleasant criterion to identify continuous
rational functions.

Proposition 4.20
Let X be an affine variety and f : X(C)→ C. Then f ∈ K0(X(C)) if and only if it verifies
the following properties :

1. f ∈ K(X)

2. There exists a monic polynomial P (t) ∈ C[X][t] such that P (f) = 0 on X(C).

3. Γf is Zariski closed.

Proof : The direct implication is given by Propositions 4.10 and 4.19. Conversely, suppose that f verifies
the three properties above. We consider the map

ψ : C[X][t] → K(X)
Q(t) 7→ Q(f)

and write C[Y ] ' C[X][t]/ kerψ ' C[X][f ] with π : Y → X the morphism induced by C[X] ↪→ C[Y ]. We
then have

C[X] ↪→ C[Y ] ' C[X][f ] ⊂ K(X)

So K(X) ' K(Y ) and π is birational. Moreover C[Y ] is a finite C[X]-module because so is C[X][t]/ <
P (t) > and

C[Y ] ' C[X][t]/ kerψ ' (C[X][t]/ < P (t) >)/(< P (t) > / kerψ)

Hence π : Y → X is a finite birational morphism. We want to show that πC is bijective. By Corollary
4.19 there exists an ideal If ⊂ C[X][t] such that Γf = Z(If ). We have If ⊂ kerψ because ∀Q ∈ If ,
Q(f) = 0. So

Y (C) = Z(kerψ) ⊂ Z(If ) = Γf = {(x, f(x)) | x ∈ X(C)}

Then
∀x ∈ X(C), π−1

C
(x) = ∅ or {f(x)}.

Since π is finite, πC is surjective. So, for all x ∈ X(C), π−1
C

(x) is not empty, which means that π−1
C

(x) =
{f(x)}. We have shown Y (C) = Γf thus πC is bijective with the inverse map x 7→ (x; f(x)). Thus πC is a
finite birational and bijective morphism. From the universal property of the seminormalization, we get

C[X] ↪→ C[Y ] ↪→ C[X+]

that induces
X+ π+

Y−−→ Y
π−→ X
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So, if we note t ∈ C[Y ] such that t : (x, f(x)) 7→ f(x), Theorem 4.13 gives us the existence of g ∈ K0(X(C))
such that t◦ (π+

Y )C = g ◦πC ◦ (π+
Y )C so t = g ◦πC . Therefore, since πC is surjective, we get for all x ∈ X(C)

g(x) = g ◦ πC(x; f(x)) = t(x; f(x)) = f(x)

Thus f = g ∈ K0(X(C)) which concludes the proof.

Example. Let V = Spec(C[x, y]/ < y2 + (x2 − 1)x4 = 0 >) and

f : V (C) → C

(x; y) 7→
{
y/x if x 6= 0
0 else

The function f is a root of the polynomial P(x;y)(t) = t2 + x2(x2 − 1). Since P(0;0)(t) = t2, all
the values of f are given by the roots of xt− y = 0 on {x 6= 0} and else by the root of P(0;0)(t).
Thus we have Γf = Z(< y2 + (x2 − 1)x4;xt− y; t2 + x2(x2 − 1) >) which is a Zariski closed set.
So the previous proposition tells us that f ∈ K0(V (C)).
Remark. The key thing in the criterion we gave is that f is defined on all V (C). When one
add rational functions to the coordinate ring of a variety to get its normalization, the functions
are only defined on a Z-open set. Consider again the previous example but with the fraction
y
x2 ∈ K(V ). It is a root of P(x;y)(t) = t2 +(x2−1) on {x 6= 0}. But P(0;0) = t2−1 as two distinct
roots, so Z(< y2 + (x2 − 1)x4;x2t− y; t2 + (x2 − 1) >) cannot be the graph of a map on V (C).

Example. Now we give an example which illustrates the fact that a continuous rational function
is a stratified-regular function (see remark after Proposition 4.14). Let V be a variety such that
the set of its closed points, seen in A4(C), is defined by the following equations

V (C) :


x2 + zyx+ ty2 = 0 (1)
z2 + z2t+ t3 + yt = 0 (2)
t2x2 + x2y − y2z2 = 0 (3)

Let f : V (C)→ C such that

f =


x/y if y 6= 0
z/t if y = 0 and t 6= 0
0 else

To show that f is indeed a continuous rational function on V (C), we show that f satisfies the
three properties of Proposition 4.20. In particular we look at its graph Γf and show that it is
the following Z-closed set in A5(C) defined by

Γf =



x2 + zyx+ ty2 = 0 (1)
z2 + z2t+ t3 + yt = 0 (2)
t2x2 + x2y − y2z2 = 0 (3)
yX − x = 0 (4)
X2 + zX + t = 0 (5)
t2X2 + xX − z2 = 0 (6)

First of all, let’s verify that f is indeed a root of the polynomials (4), (5) and (6) on V (C). We
start by looking on D(y) ⊂ V (C) where f = x/y :
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(4) : y
(
x
y

)
− x = 0

(5) :
(
x
y

)2
+ z

(
x
y

)
+ t = x2+zyx+ty2

y2 = 0 by (1)

(6) : t2
(
x
y

)2
+ x

(
x
y

)
− z2 = t2x2+x2y−y2z2

y2 = 0 by (3)

Now we check that it is still true on Z(y) ∩ D(t) :

(5) :
(
z
t

)2 + z
(
z
t

)
+ t = z2+z2t+t3+yt

t2 = 0 by (2)

(6) : t2
(
z
t

)2 + x
(
z
t

)
− z2 = t2z2+xzt−z2t2

t2 = 0 since y = 0 implies x = 0 by (1).

We get that f is a root of the polynomials (4), (5) and (6). It remains to see if the values of f
are completely determined by those polynomials.

If y 6= 0, then the equation (4) forces the value of f to be x/y on D(y). If y = 0 and t 6= 0, then

the system (4), (5), (6) becomes
{
X2 + zX + t = 0
X2 = z2/t2

which forces the value of f to be z/t on

Z(y) ∩ D(t). Finally if y = t = 0, then the system becomes X2 = 0.

We have shown that Γf is completely described by the system given above. Thus Γf is Z-closed.
By (5) then f is integral on C[X]. By (4) then f is rational on V (C). So Proposition 4.20 tells
us that f ∈ K0(V (C)).

Remark. The jacobian matrix of the equations defining V is

Jac(V ) =

 2x+ yz zx+ 2ty xy y2

0 t 2z + 2zt z2 + y
2t2x+ 2yx x2 − 2yz2 −2y2z 2tx2


and, if y = 0, it becomes :

Jac(V )|{y=0} =

0 0 0 0
0 t 2z + 2zt z2

0 0 0 0


So we have {y = 0} ⊂ Vsing(C) which is coherent with Proposition 4.5.

Remark. In the equations defining Γf , we could replace (6) by (x− zt2)X − (t3 + z2).
Example. It is shown in [5] that, for plane curves, the seminormality can be read on the geometry
of the singularities. A curve in A2(C) is seminormal if and only if its singularities are double
points whose tangents are linearly independent. We illustrate this by looking at the example of
three lines crossing at the origin in A2(C).
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Let V = Spec(C[X;Y ]/ < XY (Y − X) >). It is clear that V is not seminormal because the
lines are not linearly independent.
Let f : V (C)→ C be such that

f =
{ 2xy

x+y if (x; y) 6= (0; 0)
0 else

We can see that f is a root of the polynomial P(x;y)(t) = t2 − xy and that Γf is equal to
Z(xy(y−x); (x+y)t−2xy; t2−xy) because 0 is the only root of P(0;0). So, by Proposition 4.20,
we have f ∈ K0(V (C)). Furthermore, we have Γf = V +(C) because the graph corresponds to
three linearly independent lines in A3(C). Indeed it is the union of three lines crossing at the
origin with direction vectors (1,0,0), (0,1,0) and (1,1,1).
Another way to see that f is continuous is that f|x=0 = 0, f|y=0 = 0 and f|x=y = x. So f is a
continuous rational function on each irreducible component of V (C). Thus f ∈ K0(V (C)) by
Lemma 4.4.

4.5 Nullstellensatz for complex regulous functions.

A very important property of the regulous functions in real algebraic geometry is the regulous
version of the Nullstellensatz ([7] Theorem 5.24). We give here a regulous version of the Null-
stellensatz for complex affine varieties. One can also find a proof of this result for c-holomorphic
functions with algebraic graph in [3].

We consider the same notations as in Theorem 4.13. So, ifX is an affine variety and π : X+ → X
is its seminormalization morphism, we consider the isomorphism

ϕ : K0(X(C)) ∼−→ C[X+]
f 7→ f ◦ πC

Let I ⊂ K0(X(C)). We write

Z0(I) := {x ∈ X(C) | ∀f ∈ I, f(x) = 0}

Let E ⊂ X(C). We write

J 0(E) := {f ∈ K0(X(C)) | ∀x ∈ E, f(x) = 0}

Let I be an ideal of K0(X(C)), then I is of the form I =< g1, ..., gn > by noetherianity. So

π−1
C (Z0(I)) = π−1

C (∩Z0(gi)) = ∩π−1
C (Z0(gi)) = ∩Z(gi ◦ πC) = Z(ϕ(I))

Theorem 4.21 (Nullstellensatz)
Let X be an affine complex variety and I be an ideal of K0(X(C)). Then

J 0(Z0(I)) =
√
I

Proof : One of the inclusion is clear. For the other inclusion, we consider f ∈ J 0(Z0(I)). It is equivalent
to say that Z0(I) ⊂ Z0(f). Then Z(ϕ(I)) = π−1

C
(Z0(I)) ⊂ π−1

C
(Z0(f)) = Z(f ◦ πC). Then, by the

classical Nullstellensatz on C[X+], we can consider n ∈ N such that (f ◦ πC)n ∈ ϕ(I). So we get
fn = ϕ−1(ϕ(f)n) ∈ ϕ−1(ϕ(I)) = I and finally f ∈

√
I.
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We also get a version of the Nullstellensatz where we want to study only one element of
K0(X(C)). We will need this result in Section 5.1. One can do the exact same proof as Theorem
4.21 by adapting it with the following notations. For f ∈ K0(X(C)), I ⊂ C[X][f ] and E ∈ X(C),
consider Zf (I) := {x ∈ X(C) | ∀g ∈ I, g(x) = 0} and J f (E) := {g ∈ C[X][f ] | ∀x ∈ E, g(x) =
0}. Also, consider C[Y ] = C[X][t]/If , π : Y → X and ϕ : C[X][f ] ∼−→ C[Y ].
Theorem 4.22

Let X be an affine complex variety. Let f ∈ K0(X(C)) and I be an ideal of C[X][f ] then

J f (Zf (I)) =
√
I

5 Proofs of classical results on seminormality with regulous
functions.

We revisit several results on seminormality using regulous functions. In this section X will
be an affine variety. If f ∈ K0(X(C)), then we have shown in the previous section that Γf ,
the graph of f , is a Z-closed set of X(C) × A1(C). So there exists an ideal If ⊂ C[X][t] such
that Γf = Z(If ). Moreover, we have C[X][t]/If ' C[X][f ] and, since f is integral over C[X],
the ring C[X][f ] is a C[X]-module of finite type. We note Cond(f) := (C[X] : C[X][f ]) =
{p ∈ C[X] | p.C[X][f ] ⊆ C[X]} the conductor of C[X] in C[X][f ].

5.1 Definitions and criteria of seminormality in commutative algebra.

In this paper we have used Traverso’s definition of the seminormalization [20] where, for an
integral extension of rings A ↪→ B, the seminormalization of A in B is given by

A+
B = {b ∈ B | ∀p ∈ Spec(A), bp ∈ Ap + Rad(Bp)}

But, as explain in [21], there are several definitions of the seminormalization for commutatives
rings. For Hamann a ring A is seminormal in B if, for n ∈ N∗, A contains all the elements b ∈ B
such that bn, bn+1 ∈ A. The equivalent definition used by Leahy and Vitulli consist in replacing
n and n + 1 by any positive relatively prime integers. Finally Swan gave an other definition
of the seminormalization which is not equivalent to the previous ones for general commutative
rings. Our goal in this section is to reinterpret those definitions in term of regulous functions
and to see that they are all equivalent for affine rings.
Definition 5.1

Let A ↪→ B be an extension of rings and b ∈ B be such that b2, b3 ∈ C[X]. In this case, we
say that A ↪→ A[b] is an elementary subintegral extension.

It is shown in [19] that, if a ring A is not seminormal in an other ring B, then we can always
find a proper elementary subintegral subextension of A ↪→ B. The following proposition gives a
similar result with regulous functions.
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Proposition 5.2
Let X be a complex affine variety and f ∈ K0(X(C)) \C[X]. Then there exists an element
g ∈ C[X][f ] \ C[X] such that gn ∈ Cond(f) ⊂ C[X], for all integer n > 2.

Proof : We know by Proposition 4.14 that f can be writen in the following way

f =



p1/q1 if q1 6= 0
p2/q2 if q1 = 0 and q2 6= 0

...
pn−1/qn−2 if q1 = ... = qn−2 = 0 and qn−1 6= 0

pn if q = q1 = ... = qn−1 = 0

We consider the minimal integer s such that qs+1f /∈ C[X]. If s exists, we continue the proof with
qs+1f − ps+1 /∈ C[X]. If s doesn’t exists, we take f − pn. So we can suppose that

f =



p1/q1 if q1 6= 0
p2/q2 if q1 = 0 and q2 6= 0

...
ps/qs if q1 = ... = qs−1 = 0 and qs 6= 0

0 if q = q1 = ... = qs = 0

with qif ∈ C[X] and so qi ∈
√

Cond(f) for all i 6 s. Let’s consider I =< qn1
1 , ..., qns

s > with ni ∈ N such
that qni

i ∈ Cond(f). See that Zf (I) ⊂ Zf (f). So, by Theorem 4.22, we have f ∈
√
I. Since I ⊂ Cond(f),

we get f ∈
√

Cond(f). So we can consider the minimal integer m > 1 such that fm /∈ Cond(f) and
fm+1 ∈ Cond(f). The fact that fm /∈ Cond(f) means that there exists h = a0+a1.f+...+adfd ∈ C[X][f ],
where d := deg(f) − 1, such that fm.h = a0.f

m + a1.f
m+1 + ... + am+df

m+d /∈ C[X]. But since
fm+1 ∈ Cond(f), we get a1.f

m+1 + ... + am+df
m+d ∈ C[X]. It implies that a0f

m /∈ C[X] and so
fm /∈ C[X]. Finally, we write g := fm and we have find an element g ∈ C[X][f ] \ C[X] such that
gn ∈ Cond(f) ⊂ C[X], for all integer n > 2.

We prove now that Traverso, Hamann and Leahy-Vitulli’s definitions of the seminormalization
are equivalent. In order to do this with regulous functions, we show the following Lemma.
Lemma 5.3

Let f ∈ K(X) such that there exists n,m ∈ N∗ with gcd(n,m) = 1 and fn, fm ∈ C[X].
Consider u, v ∈ Z such that un+ vm = 1 and assume that u > 0 and v < 0. Then

g =
{
f if fm 6= 0
0 else ∈ K0(X(C))

Proof : Let Xi be an irreducible component of X. If fm|Xi(C)
= 0, then f|Xi(C) = 0 so we define g|Xi(C) = 0.

So, by Lemma 4.4, we can suppose that X is irreducible and that fm 6= 0. We have

g =
{
f if fm 6= 0
0 else =

{
(fn)u/(fm)−v if fm 6= 0

0 else

So the graph of g is Γg = Z((fm)−vt− (fn)u; tm − fm) and, by Proposition 4.20, we get g ∈ K0(X(C)).

The Lemma tells us that a fraction with one of the property appearing in the following criteria
extend into a regulous function. So if X is seminormal it has to contain the elements mentioned
in criteria 3),4) and 5). Moreover Proposition 5.2 shows that the seminormalization is the
reunion of all of this kind of elements. So it is sufficient for X to contain those elements in order
to be seminormal. This is how we obtain the following Proposition.
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Proposition 5.4 (Hamann and Leahy-Vitulli’s criteria)
Let X be an affine complex variety. Then the following statements are equivalent :

1. X is seminormal.

2. ∀f ∈ C[X ′] the conductor of C[X] in C[X][f ] is a radical ideal of C[X][f ].

3. ∀f ∈ K(X) f2, f3 ∈ C[X] =⇒ f ∈ C[X].

4. ∀f ∈ K(X) fn, fm ∈ C[X] =⇒ f ∈ C[X], for some m,n ∈ N relatively prime.

5. ∀f ∈ K(X) fn, fn+1 ∈ C[X] =⇒ f ∈ C[X], for some n ∈ N.

Proof : 2) =⇒ 1). If X is not seminormal, then there exists f ∈ K0(X(C)) \ C[X]. So Proposition
5.2 gives an element g ∈ C[X][f ] such that g belongs to the radical of (C[X] : C[X][f ]) but not to the
conductor itself. The fact that g /∈ C[X] and gn ∈ C[X] for all n > 2, shows that 3), 4) or 5) =⇒ 1).

1) =⇒ 2). Suppose there exists f ∈ K(X) and g ∈
√

Cond(f) \ Cond(f). We can consider n ∈ N∗
such that gn−1 /∈ Cond(f) and gn ∈ Cond(f). So there exists h ∈ C[X][f ] such that gn−1h /∈ C[X] and
(gn−1h)2, (gn−1h)3 ∈ C[X]. Then, by Proposition 5.3, we get

ψ =
{
gn−1h if (gn−1h)2 6= 0

0 else ∈ K0(X(C))

So ψ ∈ K0(X(C)) \ C[X] which means that X is not seminormal.

1) =⇒ 4). Take n,m ∈ N such that gcd(n;m) = 1 and assume X is seminormal. Consider f ∈ K(X)
such that fn, fm ∈ C[X]. Then, by Proposition 5.3, we can extend f to a regulous function. So we get
f ∈ K0(X(C)) = C[X]. Since, for all n ∈ N, we have gcd(n;n+ 1) = 1, we also get 1) =⇒ 3) and 5).

We now show that Traverso and Swan’s definitions of the seminormalization are equivalent for
affine rings by using regulous functions. First we get the following Proposition which gives us a
way to construct regulous functions from polynomials that respect a certain type of relation.
Proposition 5.5

Let p, q ∈ C[X] be such that there exists n ∈ N∗ with pn ∈< qn+1 >. Then

f =
{
p/q if q 6= 0
0 else ∈ K0(X(C))

Proof : Consider n ∈ N∗ such that pn ∈< qn+1 >. Then there exists h ∈ C[X] such that pn = hqn+1.
So, if Xi is an irreducible component of X such that q = 0, we get that p = 0 and so we define f|Xi(C) = 0.
Then, by Lemma 4.4, we can suppose X irreducible and q 6= 0. In this case, the graph of f is given by
Γf = Z(IX ; qt− p; tn − qh) and we can apply Proposition 4.20 to conclude.
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Lemma 5.6
Let X be an affine variety and p, q ∈ C[X]. We write

f =
{
p/q if q 6= 0
0 else

Then
p2 = q3 if and only if f2 = q and f3 = p

In this case f ∈ K0(X(C)) and

Γf = Z(IX ; qt− p; t2 − q) = Z(IX ; t2 − q; t3 − p)

Proof : Let Xi be an irreducible component of X such that q = 0. Then f|Xi(C) = 0 and the lemma
becomes trivial. So, by Lemma 4.4, we can suppose X irreducible with q 6= 0. In this case, if p2 = q3

then f2 = p2/q2 = q3/q2 = q and f3 = p3/q3 = p3/p2 = p if p, q 6= 0. Moreover, if q = 0, then
f2 = q = f3 = p = 0. So f2 = q and f3 = p on X(C). Conversely, if f2 = q and f3 = p then
p2 = (f3)2 = (f2)3 = q3. We get that f ∈ K0(X(C)) by Proposition 5.5.

The Lemma shows that the relations of the form p2 = q3 produce regulous functions and
Proposition 5.2 tells us that the seminormalization is the reunion of all of this kind of functions.
Hence we obtain Swan’s criterion.
Proposition 5.7 (Swan’s criterion)

Let X be an affine complex variety. Then the following statements are equivalent :

1. X is seminormal.

2. For all p, q ∈ C[X] such that p2 = q3 there exists f ∈ C[X] with f2 = q and f3 = p.

Proof : 1) =⇒ 2). Suppose X is seminormal and let p, q ∈ C[X] with p2 = q3. Then by Lemma 5.6
we get an element f ∈ K0(X(C)) such that f2 = q and f3 = p. Since X is seminormal, we have f ∈ C[X].

2) =⇒ 1). Suppose that X is not seminormal, then Proposition 5.2 gives us an element g ∈
K0(X(C))\C[X] with g2, g3 ∈ C[X]. So if we write q := g2 and p := g3, Lemma 5.6 tells us that
p2 = q3. Thus, if there exists f ∈ C[X] with f2 = q and f3 = p, we get f = g on D(q). By continuity,
we get f = g on X(C) which is impossible because g /∈ C[X].

5.2 Localization and seminormalization.

It is shown, for general rings, that the operation of localization and seminormalization commute.
In Traverso [20], it is proved by considering special subextensions between the seminormaliza-
tion and the normalization of the ring. In Swan [19], it is proved by considering elementary
subintegral extensions of the ring (see Definition 5.1). We propose here, because we will need it
in Proposition 6.5, a proof with regulous functions but only in the case of the localization by a
single element because we need S−1C[X] to be affine.
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Proposition 5.8 (Seminormalization and localization by a single element)
Let X be a complex affine variety and S be a multiplicative set of C[X] such that S =
{1, q, q2, ...} with q ∈ C[X] . Then

S−1C[X+] = (S−1C[X])+

Proof : First, see that it is equivalent to show

S−1K0(X(C)) = K0(D(q))

The inclusion S−1K0(X(C)) ⊂ K0(D(q)) is clear because if f ∈ K0(X(C)), then for all s ∈ S the function
f/s is still rational and continuous on D(q). To get the other inclusion, we must show

∀g ∈ K0(D(q)) ∃s ∈ S sg =
{
s(x)g(x) if x ∈ D(q)
0 else ∈ K0(X(C))

So let g ∈ K0(D(q)). Then, by Proposition 4.20, it verifies the three following properties :

1. g ∈ K(D(q))
2. g is the root of a monic polynomial whose coefficients are in S−1C[X].
3. The graph Γg ⊂ D(q)× A1(C) of g is Z-closed.

In other words, g ∈ K(D(q)) and there exists a system of polynomials

(∗) :



P (x, t) = td + ad−1
sd−1

.td−1 + ...+ a0
s0

= 0

F1(x, t) = a1,d1
s1,d1

.td1 + a1,d1−1
s1,d1−1

.td1−1 + ...+ a1,0
s1,0

= 0
...
Fn(x, t) = an,dn

sn,dn
.tdn + an,dn−1

sn,dn−1
.tdn−1 + ...+ an,0

sn,0
= 0

such that, for all x ∈ D(q), the element g(x) is its only solution. We have to see if there exists an s ∈ S
such that sg verifies a system of the similar form on C[X]. Lets consider

s =
(
d−1∏
k=0

sk

)2

.

 ∏
i,j∈J1;nK×J0;diK

si,j

2

We show that sg is the only solution of the following system whose coefficients are in C[X] :

(∗∗) :



P̃ (x, t) = td + s
sd−1

ad−1.t
d−1 + ...+ s

s0
a0.s

d−1 = 0

F̃1(x, t) = s
s1,d1

a1,d1 .t
d1 + s

s1,d1−1
a1,d1−1.s.t

d1−1 + ...+ s
s1,0

a1,0.s
d1 = 0

...

F̃n(x, t) = s
sn,dn

an,dn .t
dn + s

sn,dn−1
an,dn−1.s.t

dn−1 + ...+ s
sn,0

an,0.s
dn = 0

Indeed, for all x ∈ D(q), we have{
P̃ (x, sg(x)) = sd(x)P (x, g(x)) = 0

F̃i(x, sg(x)) = sdi+1(x)Fi(x, g(x)) = 0

So sg(x) is the only solution of the system (∗∗) for all x ∈ D(q). Now see that, in the definition of s, we
carefully took squared elements so that if x ∈ Z(s) = Z(q) then all the coefficients in (**) vanish except
td in P (x, t). Thus, for all x /∈ D(q), we get t = 0 and so sg(x) is the only solution of the system (∗∗) for
all x ∈ X(C).
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The fact that localization and seminormalization commute leads to look at seminormality di-
rectly at the points of a variety.
Definition 5.9

Let X be an affine variety. We define the set of seminormal points in X by

SN(X) := {x ∈ X | OX,x is seminormal}

and the seminormal points of X(C) by SN(X(C)) = SN(X) ∩X(C).

Now we can improve proposition 4.7 and be more precise about the points where regulous
functions are regular.
Proposition 5.10

Let X be an affine variety and f ∈ K0(X(C)). Then f ∈ OX,x for all x ∈ SN(X(C)).

Proof : We prove 1) =⇒ 2). Let f ∈ K0(X(C)) and x ∈ SN(X(C)), we consider π+ : X+ → X the
seminormalization morphism of X and x+ ∈ X+(C) such that π+(x+) = x. By Theorem 4.13, we have
f ◦ π+

C ∈ C[X+]. Since seminormalization and localization commute, we have f ◦ π+
C
∈ OX+,x+ = O+

X,x

and since x ∈ SN(X(C)), we have that OX,x ↪→ O+
X,x is an isomorphism. So f ∈ OX,x.

Remark. An element in
⋂
x∈SN(X(C))OX,x does not always extends by continuity. One can take

the example X = Spec(C[x, y]/ < y2 + (x2 − 1)x4 >) given after Proposition 4.20. We have
SN(X(C)) = {(0; 0)} = {x = 0} but the fraction y

x2 cannot be continuously extended on X(C).

We can deduce from Proposition 5.10 a classical result about seminormalization.
Corollary 5.11

Let X be an affine variety. Then X is seminormal if and only if SN(X(C)) = X(C).

Proof : Suppose that X is seminormal, then C[X+] = C[X]. So it is clear that OX,x = OX+,x+ for all
x ∈ X(C). Conversely, suppose that SN(X(C)) = X(C) and let f ∈ K0(X(C)). Then, by Proposition
5.10, we have f ∈

⋂
x∈X(C)OX,x = C[X]. So K0(X(C)) = C[X] and X is seminormal.

6 The sheaf of complex regulous functions.

In the paper [7] introducing the regulous functions on real algebraic varieties, the authors define
the sheaf of regulous functions because they wanted to recover some classical theorems from
complex algebraic geometry for real varieties equipped with the sheaf of regulous functions. In
the same spirit, we look at the sheaf of complex regulous functions and we will notably show
that, if X is an affine variety, then (X,K0

X) is isomorphic to (X+,OX+). In particular (X,K0
X)

is an affine scheme.

Definition 6.1
Let X be an affine variety and U be a Z-open set of X(C). Then we write K0

X(U) the set of
continuous functions f : U → C for the Euclidean topology which are regular on a Z-open
Z-dense subset of U .
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By doing the exact same proof as that of Lemma 4.4, we get the following result.
Lemma 6.2

Let X be an affine variety, U be a Z-open set of X(C) and f be an element of K0
X(U).

We note {Xi}i∈J1;nK the irreducible components of X. Then the following statements are
equivalent :

1) f ∈ K0
X(U)

2) ∀i ∈ J1;nK f|U∩Xi(C) ∈ K0
X(U ∩Xi(C))

Definition 6.3
Let X be an affine variety. The sets Z0(I) where I is an ideal of K0(X(C)) introduced in
Theorem 4.21 define the same topology as the Zariski topology. Despite this fact, it is still
interesting to define the regulous topology on X(C) whose open sets are generated by the
sets

D0(f) := {x ∈ X(C) | f(x) 6= 0}

where f is an element of K0(X(C)).

Now that we have a local definition for regulous functions, we define the sheaf K0
X .

Proposition 6.4
Let X be an affine variety. The presheaf defined by

K0
X : { regulous open sets of X(C)}op → Ring

U 7→ K0
X(U)

is a sheaf

Proof : It is a presheaf because if V ⊂ U are regulous open sets, we have a restriction morphism

K0
X(U) → K0

X(V )
f 7→ f|V

In order to prove that it is a sheaf, we consider a regulous open set U and an open cover {Ui}i∈I of U .
By Lemma 6.2, we can suppose that X is irreducible. Let {fi}i∈I be such that fi ∈ K0

X(Ui) for all i ∈ I
and such that for all i, j ∈ I

(fi)|Ui∩Uj
= (fj)|Ui∩Uj

Then we can define the continuous function

f : U → C
x 7→ f(x) if x ∈ Ui

Moreover, for all i ∈ I, there is a Z-open set Vi ∩ Ui which is Z-dense for the induced topology on Ui, on
which fi is regular. Since X is irreducible, all the Z-open sets are Z-dense so one can take any i0 ∈ I and
get that f is regular on the Z-open Z-dense set Vi0 ∩ Ui0 .

Thanks to Proposition 5.8, we get the following extension theorem for regulous functions defined
on a principal open set of an affine variety.
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Proposition 6.5
Let f ∈ K0(X(C)) and let g : D0(f) → C be an element of K0

X(D0(f)). Then there exists
N ∈ N such that the function

fNg :=
{
fN (x)g(x) if x ∈ D0(f)

0 else

is an element of K0(X(C)).

Proof : Let f ∈ K0(X(C)) and g : D0(f)→ C. We write π : X+ → X the seminormalization morphism.
Since π−1(D0(f)) = D(f ◦ π), we get

g ◦ π : D(f ◦ π)→ C ∈ K0
X+(D(f ◦ π))

Moreover, by Theorem 4.13, we have f ◦π ∈ C[X+]. Then D(f ◦π) is affine and we can apply Proposition
5.8 with q := f ◦ π. So we obtain an integer N such that (f ◦ π)Ng ◦ π ∈ K0(X+(C)) = C[X+]. Finally,
thanks to Theorem 4.13 again, we get

∃N ∈ N fNg ∈ K0(X(C))

The previous proposition allows us to described the structure of a ring of regulous functions
defined on a principal open set.
Proposition 6.6

Let X be an affine variety and let U := D0(f) be a regulous open set with f ∈ K0(X(C)).
Then, the restriction morphism from K0

X(X(C)) to K0
X(U) induce an isomorphism

K0
X(X(C))f ' K0

X(U)

Proof : Let ψ : K0
X(X(C))→ K0

X(U) be the restriction morphism. Since the restriction of f to U doesn’t
vanish, we get the induced morphism

ψf : K0
X(X(C))f → K0

X(U)

Let g ∈ K0
X(U). Then, by Proposition 6.5, there exists N ∈ N such that fNg ∈ K0

X(X(C)). So ψf is
surjective.
Let g/fn ∈ K0

X(X(C))f such that ψf (g/fn) = 0. Then (g/fn)|U = g|U/f
n
|U = 0 implies that g vanish on

the dense set U . So g vanish on all X(C) because it is continuous for the euclidean topology and we get
g/fn = 0. Hence ψf is injective.

We now get the main result of this section which is a generalization of Theorem 4.13 for schemes.
Theorem 6.7

Let X be an affine variety and π : X+ → X be its seminormalization morphism. Then
(π, π∗) is an isomorphism of ringed spaces between (X,K0

X) and (X+,OX+).

Proof : Let f ∈ K0(X(C)) and g : D0(f) → C ∈ K0
X(D(f)). By Proposition 6.6, we have g ∈

K0
X(X(C))f , so there exists h ∈ K0(X(C)) and N ∈ N such that g = h/fN on D0(f). Then, by

Theorem 4.13, we get g = h ◦ π/f ◦ πN ∈ OX+(D(f ◦ π)).
Now, let g : U → C ∈ K0

X(U) with U a regulous open set. Then we can write U =
⋃s
i=1D(fi)

with fi ∈ K0(X(C)). Then g|D(fi) ∈ K0(D(fi)), so g ◦ π|D(fi◦π) ∈ OX+(D(fi ◦ π)) and finally we get
g ◦ π ∈ OX+(U) because OX+ is a sheaf.
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Conversely, if U+ is a Z-open set of X+(C) and f ∈ OX+(U+), then f ◦ π−1 : U → C ∈ K0
X(U) because

π is a bicontinuous birational morphism.

Remark. A part of the paper [7] is dedicated to prove Cartan’s theorems A and B for real alge-
braic varieties with the sheaf of regulous functions. Since those theorems are true for complex
algebraic varieties with the sheaf of regular functions (see [16] Theorem 2 section 45 and The-
orem 3 section 3), then Theorem 6.7 says that those results are also true for complex algebraic
varieties with the sheaf of regulous functions.

Corollary 6.8
Let p ⊂ C[X+] and q ∈ C[X] be prime ideals such that p ∩ C[X] = q. Then

OX(D(q))+ ' K0
X(D(q))

Proof : By Theorem 6.7 and since localization and seminormalization commute ([20]), we have

OX(D(q))+ ' (C[X]q)+ ' C[X+]p ' OX+(D(p)) ' K0
X(D(q))
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