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SUBMERSIONS, FIBRATIONS & BUNDLES
GAEL MEIGNIEZ
Mathematics Subject Classification : 55R05, 55R10
to appear in Transactions of the A.M.S.

Abstract — When does a submersion have the homotopy lifting property ¢ When is it a locally trivial fibre
bundle ¢ We establish characterizations in terms of consistency in the topology of the neighbouring fibres.

In differential topology, one meets nonproper submersive maps, and hope that they will be fibrations
(resp. fibre bundles) under hypotheses of consistency between the homotopy type (resp. topology) of the
neighbouring fibres. The aim of this paper is to give suitable characterizations.

I — Submersions & Fibrations.

This first part belongs to the most elementary homotopy theory. Our purpose is to establish the following
homotopy lifting characterization, and a few corollaries.

THEOREM A — A surjective map is a fibration if and only if it verifies those three conditions: it is
a homotopic submersion, all vanishing cycles of all dimensions are trivial, and all emerging cycles of all
dimensions are trivial.

Let us first specify definitions, conventions and notations.

1.1. — Definitions. Throughout this paper, “space” means Hausdorff topological space, “map” means
continuous map, “polytope” means finite simplicial complex. For every p > 0, denote BP the compact p-ball
and SP = 9BP*! the p-sphere. Fix a basepoint x € SP .

Let E, B be two spaces and 7 : £ — B a map.

As usually, by a homotopy for the map f : X — Y , we mean a map F : X x [0,1] = Y such that
F(z,0) = f(x) for every x € X ; and we call (E, ), or w, a fibration, or equivalently we say that it has the
homotopy lifting property, if for every map f : X — E whose source X is a polytope, every homotopy for
m o f lifts to a homotopy for f. More generally, call & a r-fibration if this is true for every polytope X of
dimension at most r . A O-fibration is also said to have the path lifting property.

Here is another generalization of fibrations. Two homotopies

FF :Xx[0,1]5Y

are said to have the same germ if they coincide in a neighborhood of the subspace X x {0} .

DEFINITION 1 — Call m o homotopic submersion, or equivalently say that it has the germ-of-homotopy
lifting property, if for every map f : X — E whose source X is a polytope, every germ-of-homotopy for mwo f
lifts to a germ-of-homotopy for f.

Every fibration is a homotopic submersion (obvious) as well as every smooth submersion in the sense of
Differential geometry, and more generally every topological submersion (after lemma 6 below.)
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A “fibre” is the inverse image in E of a point b € B, denoted E, = 7 1(b). A map X — E is vertical if
it sends X into a single fibre. A map f: X xY — E is fibred if for each point y in Y, the map

fy: X > E:zm f(z,y)

is vertical.

DEFINITION 2 — A vanishing p-cycle is a fibred map
f:8Px[0,1] = E

such that, for each t > 0, the map fy is null-homotopic in its fibre. Call f trivial if fo is also null-homotopic
in its fibre.

Observe that f has to be continuous, but that we don’t demand the homotopies the vertical maps
g¢ : BPY1 — E such that 0g; = f; , to depend continuously on ¢ . Dually,

DEFINITION 3 — An emerging p-cycle is a fibred map
f:8Px]0,1] - E

such that f(x,t) has a limit for t — O (recall that x denotes the basepoint in SP .) Call it trivial if there
exists € > 0 and a fibred map
'SP x[0,e[> E

such that for each 0 < t < €, one has f'(x,t) = f(x,t), and such that the maps f; and f| are homotopic to
each other in their common fibre, relatively to the basepoint f(x,t).

Here also, we don’t ask any continuity, relatively to ¢ , of the homotopy linking f; to f} .

Thus a nontrivial vanishing (resp. emerging) cycle is a lack of injectivity (resp. surjectivity) in the
homotopy groups of fibres, when moving from a given fibre to immediately neighbouring ones over some
path in the base.

Write V(X) for the space of vertical maps from X into E , with the compact-open topology. Thus there
is a canonical map :

7x :V(X)—> B

Obviously, every p-dimensionnal vanishing (resp. emerging) cycle for the map 7 can as well be considered
as a 0-dimensionnal vanishing (resp. emerging) cycle for the map 7s» . They are simultaneously trivial.

To end with precisions, the pullback of 7 by some map f : B’ — B is, as usually, defined as
f*m . f*E — B' , where f*E is the set of couples (e,b') € E x B’ such that w(e) = f(b') , and where
(frm)(e, b)) =b".

It is immediate that if 7 is a fibration, or a r-fibration, or a homotopic submersion, or has only trivial

p-vanishing, or emerging, cycles, then every pullback enjoys the same property.
EXAMPLE 4 — The three conditions in theorem A are independent. Indeed, let E C [0, 1]2 be defined by
the condition zy = 0 (resp. © # 1/2or y # 1/2) (resp. y=0o0r (y =1 and 2 # 0)). Let B =[0,1] and 7 be
simply (x,y) — « . Then the first (resp. second) (resp. third) condition is not verified, but the two other
ones are.

1.2 — Proof of theorem A.

I.2.1 : three general remarks about homotopic submersions.

An immediate and well-known fact about fibrations is that they automatically also have the relative
homotopy lifting property. The same argument proves that :

LEMMA 5 — FEvery homotopic submersion verifies the relative germ-of-homotopy lifting property : for every
polytope X , every subpolytope X'cX, every map f : X — E, every germ-of-homotopy F' for mo f and
every germ-of-homotopy F' for f|x' , if mo F' = F|x: then F' extends to a germ-of-homotopy F for f such
that to F = F .



LEMMA 6 — Assume that w is open and is a local homotopic submersion, i.e. that each x € E has a
neighborhood U(x) C E such that the restriction 7|y (y) is a homotopic submersion of U(x) onto n(U(x)) .
Then m is a (global) homotopic submersion.

Proof. Consider a polytope X , amap f : X — E and a germ-of-homotopy F' : X x [0,e[— B for
mo f . Proceed by induction on p = dim X . The case p = 0 is trivial. Subdividing X we can assume that
for each p-simplex o , its image f(o) is contained in an open subset U(c) C E such that 7|y(s) verifies the
germ-of-homotopy lifting property. By induction, we have a lifting F' for F restricted to the (p—1)-skeletton
of X . Since after the previous lemma 7|;(,) has the relative germ-of-homotopy lifting property, F' extends
to the interior of o . o

A second immediate corollary of lemma 5, is the following tool for handling sections.

LEMMA 7 — Let m : E — B be a surjective homotopic submersion whose base B is a polytope. Let Y C B
be a subpolytope. Denote T'(Y') the space of (continuous) sections of m over Y . Then :

(i: local section extension) Each s € T'(Y) extends over some neighborhood of Y ; in particular each
point of B has a meighborhood over which there exists a section;

(ii: sections pasting) Let s € T'(B) and let s' € T'(Y') be homotopic to s|y . Then there exists s" € I'(B)
which coincides with s over the complement of an arbitrary small neighborhood of Y , and with s' on'Y .

I1.2.2 : Haefliger’s lemma.

The following fact, due to Haefliger [4] , is central in the demonstration of theorem A. We give a proof
since it seems simpler than the original one.

LEMMA 8 — If a surjective homotopic submersion w : E — B has a polytope base B and weakly contractible
fibres Ey , then it has a section.

Proof. By induction on ¢ = dim B . Obvious if ¢ =0 . Assume that the lemma is true for ¢—1 . Since a
surjective homotopic submersion has local sections, subdividing B if necessary, every ¢-cell ¢ is the domain
of a section s, . On the other hand, the induction hypothesis gives a section s over the (g — 1)-skeletton.
Over the boundary of each g-cell o , the two sections s|p, and s,|s, are homotopic. Indeed, consider E'
the space of vertical paths ¢ : [0,1] — Ej such that b € do , ¢(0) = s,(b) and ¢(1) = s(b) . Obviously the
map ¢ — b is a homotopic submersion of E' onto do with weakly contractible fibres, so by the induction
hypothesis it admits a section, i.e. a homotopy between s|ss and ss|s, . Thus the section pasting property
of the homotopic submersion 7 gives an extension of s over o . o

I1.2.3 : About the sections of a homotopic submersion over the interval.
In this subparagraph, consider a surjective homotopic submersion whose base is the interval :

m: E— B=][0,1]

Fix a basepoint g € Ep . To be short, call a section pointed if s(0) = zo ; write I'(Y) (resp. To(Y) ) the
space of (pointed) sections over Y C I ; and call s e T'(Y), s’ € T(Y') compatible at point b € Y NY"' if s(b)
and s'(b) belong to the same arcwise connected component of Ej .

LEMMA 9 — Assume that all 0-vanishing cycles are trivial. If s, s' € T'([0,1]) are compatible at some point,
then they are compatible at every point.

Proof. Recall that if K C [0,1] is a compact subset, we call t € K a first-species point of K if ¢ is an
extremity of a nonempty open interval disjoint from K .

The set U C [0,1] of points where s and s’ are compatible is open since 7 is a homotopic submersion,
and its complement has no first-species point since 0-vanishing cycles are trivial. Thus U =[0,1] . e

LEMMA 10 — Assume that all 0-vanishing cycles and 0-emerging cycles are trivial. Then T'([0,1]) is not
empty.

Proof. Consider T the set of t’s such that there exists a pointed section over [0,¢] . It is open since 7
is a homotopic submersion. Thus by contradiction it would be of the form T = [0,T] with T' €]0,1] . Let
$n, € I'([0,T — 1/n]) be pointed. By the previous lemma, since $,(0) = sp41(0) , the sections s, and sp41
are also compatible at point T'— 1/n . Thus the sections pasting property gives a pointed s € T'([0,T]) . Let
s' € (T — ¢,T]) be any section over a left neighborhood of T'. Then s and s’ together form a 0-emerging
cycle at point T' . Since it must be trivial, there is a s" € T'([T' — €/, T']) compatible with s at ¢ — €' . The
sections pasting property gives a pointed section over [0,77] , contradiction. e
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LEMMA 11 — any surjective homotopic submersion all of whose vanishing 0-cycles and emerging 0-cycles
are trivial, is a 0-fibration.
Proof : immediate by lemma 10 and pullbacks. e

LEMMA 12 — Assume that all vanishing cycles and emerging cycles of all dimensions are trivial. Then
T ([0,1]) is weakly contractible.

Proof. For every polytope X, recall V(X) , the space of vertical maps X — E . The canonical map
wx : V(X) —[0,1] is a homotopic submersion, as well as the restriction map :

pP  V(BPT) - V(SP)

Since we assumed that all vanishing (resp. emerging) cycles of 7 of dimension p + 1 are trivial, it follows
that all O-dimensionnal vanishing (resp. emerging) cycles of p? are also trivial.

Indeed, let f: S% x [0,1] — V(BPT!) (resp. f:S°x]0,1] — V(BP*1)) be a vanishing (resp. emerging)
0-cycle for p? . Gluing, for each t € [0,1] (resp. each t €]0,1]) , f(—1,¢) and f(+1,¢) along their common
boundary, one gets a vanishing (resp. emerging) (¢ + 1)-cycle for 7 , the triviality of which implies that f is
also trivial.

Thus after lemma 11, p? is a O-fibration as a map V (BP*!) — VO(SP) , where VO(SP) is the image of
PP, i.e. the space of vertical p-cycles null-homotopic in their fibre.

Every given map g : S? — TI'¢([0,1]) , may as well be considered as a section s : [0,1] — V(SP) (set
s(t)(z) = g(z)(t) ). The set of t’s such that s(t) € V°(SP) is open since 7 is a homotopic submersion, and
has no first-species boundary point since p-vanishing cycles are trivial. Thus s is a path in V°(S?) , and
thus lifts to V/(BPT!) | i.e. g extends to BPT! . e

1.2./ : End of the proof of theorem A .

Given a map 7 : E — B verifying the three conditions of the theorem, a map f : X — FE and a
homotopy F for 7o f , consider E' the space of of pairs (z, c) where 2z € X and where ¢ : [0, 1] — E verifies
c(0) = f(z) and w(c(t)) = F(z,t) for every t € [0,1] . Then :

7 :E = X:(r,0)—~=z

is a homotopic submersion, as follows from lemma 5. It is surjective by lemma 10, and its fibres are weakly
contractible by lemma 12. After lemma 8, this map «’ admits a section; in other words F' lifts.

1.3 — Corollaries. The two first ones immediately follow from theorem A.

COROLLARY 13 — Let w : E — B be a surjective homotopic submersion. Under either of the following
assumptions, w is a fibration :

1. Each fibre is weakly contractible;

2. The inclusion of each fibre into E is a weak homotopy equivalence.

Surprisingly, point 1, essentially identic to Haefliger’s lemma, seems among our various corollaries, to
be the only one to have been previously known.
COROLLARY 14 — Let m : E — B be a surjective homotopic submersion. The following properties are
equivalent :

1. The map 7 is a fibration :

2. For each b in B, the map 7 induces a weak homotopy equivalence of pairs (E, Ey) — (B,b) ;

3. (dim-1 base principle for fibrations) For each path ¢ : [0,1] — B, the pullback ¢*E is a fibration over
[0,1] .

The dim-1 base principle allows us, whenever useful, to restrict our attention to the case B =[0,1] .

COROLLARY 15 — In a commutative diagram of maps :

EE
T\ 7
B
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assume that ™ and ©' are surjective homotopic submersions. For each b € B , consider E, = m 1(b) ,
E; =7'"Y(b) , and the restriction hy = h|g, : Ey — E} .

(i) (Fibrewise fibration principle) If w , ' and every hy, are fibrations and if h is a surjective homotopic
submersion, then h is a fibration;

(i) If 7 is a fibration and if every hy is a weak homotopy equivalence, then 7' is a fibration;

(i) If ' is a fibration and if every hy is a weak homotopy equivalence, then 7 is a fibration.

Proof. (i) We can assume, to simplify, that B is contractible (for example using the dim-1 base principle).
Fix ' € E' , write b = n'(2'), E,» = h~'(2') , and consider the inclusions j : E, — E, j' : E} — E' . We
have a commutative diagram of pairs :

(By,Ey) -5 (E,Ey)

(BL2') 25 (B2

Since 7w, ©' and h; are fibrations, j., j. and (hp). are weak homotopy equivalences, and thus so is hy .
Corollary 14 concludes.

(ii) Using the dim-1 base principle, we can assume, to fix ideas, that B = [0,1] . Then we have a
section-lifting lemma : for every subinterval I C [0,1] and every section s' : I — E' | there is a section
s : I — E compatible with s', i.e. such that for every t € I, the points h(s(t)) and s'(t) lie in the same
arcwise connected component of Ej .

Proof of this lemma : since every hy is a 0-homotopy equivalence, there exists a set-theoric (nonneces-
sarily continuous) section o : I — E compatible with s’ . Since 7 is a homotopic submersion, each ¢ € I has
a neighborhood U (t) in I with a (continuous) section s; : U(t) — E such that s;(t) = o(t) . Since 7’ is a
homotopic submersion, s; is compatible with s’ over some smaller neighborhood of ¢ . Thus I can be divided
into subintervals I; = [t;,t;+1] , domains of sections s; : I; — E compatible with s’ . In particular, since hy,
is a 0-homotopy equivalence, s; 1 (t;) and s;(¢;) lie in the same arcwise connected component of E;, . Thus
the section pasting tool (lemma 7) allows us to build a section s : I — E compatible with s’ . The lemma is
proved.

Since 0-vanishing and 0-emerging cycles of 7 are trivial, and since every h; is a 0-homotopy equivalence,
the section-lifting lemma gives straightforwardly that 0-vanishing and 0-emerging cycles of 7’ are trivial.

Changing E for V(SP) , the space of vertical maps S? — E , and changing E' for V'(S?) , the space
of vertical maps SP — E' , we get that p-vanishing and p-emerging cycles of 7’ are trivial, for every p > 0 .
Theorem A concludes.

(iii) Much like (ii), but simpler. e
COROLLARY 17 — Let 7 : E — B be a surjective homotopic submersion. The map 7 is a fibration if and
only if the canonical map from each fibre into the homotopy-theoric fibre of 7 is a weak homotopy equivalence.

Follows immediately from the preceding one, (iii).
We can also deduce two characterizations for product maps. Of course, we call 7 : E — B a fibration
over a given subset B’ C B if the restriction

7T|ﬂ.—1(B/) : 7T_1(BI) — BI

is a fibration.

COROLLARY 18 — Assume that 7 = (71,m) : E — B = By X Bs is a surjective homotopic submersion.
The three following properties are equivalent :

(i) The map © is a fibration;

(i) the map 7 is, for each by € By , a fibration over {b1} x B2 ; and 7y is a fibration;

(%) the map m is, for each by € By , a fibration over {b1} x B2 ; and, for each ba € By , a fibration
over By x {ba2} .

Proof. The equivalence of (i) and (ii) is a special case of the fibrewise fibration principle (corollary 15.)
It is obvious that (i) implies (iii).



Let us assume that (iii) is true. To prove (i),we can, using the dim-1 base principle, assume that
By =[0,1] . For every by € B; , since 7 is a fibration over {b;} X By which is contractible, 7—!(b,0) is a
deformation retract of 771 ({b1} x Ba) = m~1(b1) .

On the other hand, since 7 is a fibration over m3~1(0) , equivalently 7 restricted to m~1(0) is a
fibration.

It follows from corollary 15 (ii) that m; is also a fibration. Thus (ii) is verified. Thus (i) is also. e

The next and last corollary, two refined forms of the dim-1 base principle, will be a crucial tool in part
II :

COROLLARY 19 — Let m : E — B be a surjective homotopic submersion.

a) Assume that B =R? . Then 7 is a fibration if and only if it is a fibration over every straight line in
the base parallel to one of the axis;

b) Assume that B is a C*° (resp. real analytic) (resp. PL) manifold. Then w is a fibration if and only
if its pullback by every C (resp. real analytic) (resp. PL) path in B is a fibration over [0,1] .

Proof. a): immediate by the preceding corollary and an induction on ¢ ; b): immediate by a). e

ExXAMPLE 20 — in which © = (w1, m2) is not a fibration (its fibres don’t have the same homotopy type)
although it is a surjective submersion and 71 , w2 are both fibrations (their fibres are contractible) :

E={(2,y,2)€ER3/2#00r 2>y}
and 7: E— B=R2?: (z,y,2) = (2,9) .

IT — Submersions & Bundles.

In this second part we turn to submersions between manifolds, establish a necessary and sufficient
condition for such a map to be a (locally trivial fibre) bundle (theorem B below), and apply it to several
typical situations. The main tool is the analytic understanding of fibrations we got in §7 . It is applied to
spaces of embeddings of compact domains into the fibres.

The first question that raises is probably : for such a submersion, is it the same to be a fibration
or to be a bundle ? It was considered by Ferry [3], in a framework slightly different from ours; he built
counterexamples. On the other hand, Haefliger’s lemma allows much simple ones, e.g. :

ExAMPLE 21 — Let W C R3 be the Whitehead manifold — thus an open subset which is contractible, but
has some 7 at infinity, and in particular is not homeomorphic to R? . Let E C R* be the set of quadruples
(z,y,2,t) such that (z,y,2) € Wort#0. Let

m:E—B=R:(2,y,2,t) >t

Then p is a smooth submersion (since E is open in R*) and a fibration (since all fibres are contractible, see
§7 .) But it is certainly not a locally trivial fibre bundle, since one of the fibres is not homeomorphic to the
neighbouring ones.

I1.1. — Definitions. To fix ideas, work in the smooth (C* real) differentiability class. Let EPT4 B4
be manifolds — this means paracompact, not necessarily compact, real differential manifolds. For simplicity,
assume that E, B are without boundary. Let = : E — B be a surjective smooth submersion — that is, its
differential at every point of E is onto. Then each “fibre” Ej, = w~1(b) is a p-manifold.

Call a submanifold of E a product if it is the image of a fibred (see §I) smooth embedding X xY — E .
Recall 7 is a (locally trivial, fibre) bundle if every b € B has a neighborhood Y such that 7= (Y") is a product.

A popular sufficient condition for 7 to be a bundle is that 7 be a riemannian submersion [5], [10]. Recall
that a riemannian metric on E is called bundle-like if there exists a riemannian metric on the base B such
that, for each b € B and each x € Ej , the differential D7 establishes a linear isometry from the normal
vector space v, Ey onto the tangent vector space Tp B . It is easy, using a partition of the unity, to make a
(maybe noncomplete) bundle-like metric. The ’orthogonal geodesic lemma’ asserts that if any geodesic line
is once normal to the fibre it crosses, then it is forever. It follows easily that if X C Ej, is an open subset
(to fix ideas) such that the exponential exp(v,) is defined for all z € X and all v, € v, E, with norm less
than a uniform positive constant, then the set of all these exp(v,)’s is a product. In particular we get the
fundamental :



LEMMA 22 — FEwvery compact subset of every fibre has a product neighborhood.

One calls 7 riemannian if E admits a complete bundle-like metric, and, taking X = Ej; above, one sees
that every riemannian submersion is a bundle. There are many generalizations.

Our viewpoint is different: we look for purely differential-topologic conditions in terms of the topology
of the fibres. In this direction, very few seems to be known, namely :

1. If 7 is proper, then it is a bundle (Ehresmann). This follows at once from lemma 22.

2. If all the leaves are compact and have the same number of connected components, then 7 is a bundle.
Also obvious by lemma 22.

3. If each fibre is diffeomorphic to R, then 7 is a bundle. Proof: one may assume that B is orientable.
Using a partition of the unity, make a nonsingular vector field tangent to the fibres, make it integrable, and
integrate it.

4. Much less elementary is Palmeira’s lemma [9]: if each fibre is diffeomorphic to R? , p a nonnegative
integer, and if the base B has dimension ¢ = 1 , then 7 is a bundle.

A fibred embedding of X x Y into E can be considered as a section, over some subset of B , with values
in the space VE(X, E) of vertical embeddings of X into E . Thus an approach could be to start from a large
compact domain X in a fibre and from a ball Y C B ; to use our knowledge of the topology of the fibres to
compute as much as possible the homotopy type of the space of embeddings of X into each fibre, and to use
81 to get such sections. Of course there would remain the problem to engulf arbitrary large compact subsets
of #~1(Y) . For instance, in example 21, the canonical map VE(B3, E) — B is a fibration (see the proof of
corollary 31 below) and nevertheless the vertical embeddings of B? exhaust all fibres but Ey . This leads us
to the following notions.

By a vertical domain we mean a p-dimensionnal compact submanifold of a fibre, X C Ej , with a smooth
boundary. Endow VE(X,E) , the set of vertical embeddings of X into E , with the topology of smooth
uniform convergence. Let also V E°(X, E) be the connected component of VE(X, E) containing the original
inclusion X — Ej .

DEFINITIONS 23 — Let
VD = ]_[ VD,

beB

be a family of wertical domains. Call it :
a) exhaustive if every compact subset of every fibre is contained in some X € VD ;
b) isotopy invariant if for every X € VD and every ¢ € VE°(X, E) , we have ¢(X) € VD ;
¢) r-fibred if, for every two domains X, X' € VDy, such that X C Int(X') , the restriction map

px,x : VE*(X',E) - VE°(X,E)
is a r-fibration (i.e. has the homotopy extension property for polytopes of dimension at mostr , see § I.)

I1.2. — Characterizations and criteria for bundles.

THEOREM B — A surjective smooth submersion m : E — BY is a (locally trivial fibre) bundle if and only if
it admits an ezhaustive, isotopy invariant, (q — 1)-fibred family of vertical domains.

Before the proof, let us precise definitions and establish preliminary lemmas.

LEMMA 24 — For every pair of domains X C Int(X') , the restriction map px x: is a topological submersion.
This follows at once from lemma, 22.
For every vertical domain X € VD, and every subset Y C B homeomorphic to a contractible polytope
(in fact it will allways be homeomorphic to B¥ for some 0 < k < ¢), write I'(X,Y") for the space of continuous
sections v : Y — VE%(X, E) . Observe in particular that for v € T'(X,Y’) , the variable point v(z)(y) admits
continuous partial derivates of all order with respect to z , bur not necessarily with respect to y . Since we
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shall perform non strictly differentiable operations on the base, it is more convenient to consider all those
sections than merely smooth ones. Write :

Imy={@y)(z) /zeX,yeY }

Call v a parametrization of the VD-box Im 1~y .

Recall that X C Ep . Call v pointed (at point b) if b € Y and if v(b) = idx .

For every compact subset C' C E , write C < Im~ if C C Im v and if C N E, C Int(Imy N Ey) for every
yeyY.

Given two sections v € I'(X,Y) , v € T'(X',Y") , say of course that ' extends yif X Cc X', Y C Y/,
and if y(y)(z) = v'(y)(z) foreveryz € X ,y €Y .

LEMMA 25 — If v is pointed and if Im~y < Im~', then there exists a pointed reparametrization of Im~'
extending vy .
This is an exercise using the classical [1] :

PROPOSITION 26 — Let X, X' be compact manifolds with X C Int(X') . Let Dif fO(X') denote the group
of isotopies of X' and E°(X,X') denote the canonical connected component of the space of embeddings of
X — X' . Then the restriction map Dif fO(X') — E°(X, X") is a fibration (and even a principal bundle.)

Here is the main tool to engulf large compact subsets.

LEMMA 27 — Let K; C E (i = 1,2,3) be three VD-bozx with base Y; = w(K;) . Assume that Y1 NY; =Y3
that K; N7~ Y(Y3) < K3 for i = 1,2, and that VD is (dim Y3 )-fibred. Then there is a VD-box K, such that
K; <Ky fori=1,2.

Proof. Fix a basepoint b € Y3 . For i =1, 2, 3, let X; = K; N Ep and let v; € I'(X;,Y;) be a pointed
parametrization of K; . According to lemma 25, we can assume that 3 extends 71|y, -

Since VD is (dim Y3)-fibred, there exists a pointed v; € I'(X3,Y]) , extending v, , and which coincides
with v3 over Y3 . According to lemma 25, there is a reparametrization ;' of v such that |y, extends
72|Y3 :

In the same way, since VD is (dim Y3)-fibred, there exists a v4 € I'(X3,Y>) extending 72 and which
coincides with +{' over Y3 .

Since 41" and 4 coincide over Y3, they define together an element of I'(X3,Y; UY3), whose image K, is
obviously > K; and > Ky . e

Proof of theorem B. “Only if” is trivial: just take for VD the set of all vertical domains. Thus reciprocally
we assume that 7 : £ — B is a smooth surjective submersion which admits an exhaustive, isotopy invariant,
(¢ — 1)-fibred set VD of vertical domains, and let us prove that it is a fibration. For every b € B, let Y be a
neighborhood of b diffeomorphic to B? . We first claim :

Every compact subset C C w7 1(Y) is < some VD-boxz.

The proof is by induction on % , the smallest integer such that there exists Y* homeomorphic to B*
and verifying 7(C) CY* C Y .

For k = 0 the claim follows from the exhaustiveness of VD .

Assume That the claim is proved for k—1 . Identify Y* with [0, l]k . For each y € Y , by exhaustiveness
of VD there is a vertical domain belonging to VD and containing C'N Ej, in its interior. By lemma 24 this
domain is the intersection of E, with a VD-box K, whose base 7(K,) is a neighborhood of y . Since C' is
compact, y admits a smaller neighborhood W, such that C N7~ 1(W,) < K, . Thus dividing Y* = [0, l]k
into small enough cubes of equal size 1/N , say Q1, ..., @n*, each C N7 1(Q;) is < some VD-box, say K; ,
of base 7(K;) = Q; -

Consider U; = @1 U ... U @; the union of the 4 first small cubes (ranged of course in the natural
lexicographic order). Assume by induction on i that C N7 =1 (U;) is < some VD-box K! of base 7(K}) = U; .
The intersection U; N Q41 is obviously homeomorphic to BF~! | thus, by the induction (on k) hypothesis,
(K; UKD N7~ (U; N Qiy1) is < a VD-box. Since moreover U; and @;4; are contractible and since VD is
(k — 1) — fibred , lemma 27 assures the existence of a VD-box K[, ; > C N7 *(Uj}y) . Fori = N¥ — 1, we
are done : the claim is proved.



Fix (C,) an increasing sequence of compact sets whose union is 77 1(Y) . The previous claim gives a
sequence of pointed sections &, € T'(X,,,Y) , with X,, € VD, , such that :

Cn U Im é-nfl <Im é-n

Changing if necessary &, to another section close to it, we can assume that the embedding (z,y) +— &,(y)(z)
is smooth. After lemma 25, a convenient reparametrization of &, gives £, as an extension of &, 1 . Consider
¢ the inductive limit of the &,’s . Its image is 7 1(Y) since it contains every C,, . In other words £ is a
smooth trivialization of £ over Y . e

Of course, in practice it may be hard to verify that a map such as px, x+ is (¢ — 1)-fibred, since, after
part I, this is something like comparing the (g — 1)-homotopy type of the embedding spaces of domains into
the different fibres. So our next tasks will be to change this condition to more handy ones.

COROLLARY 28 (dim-1 base principle for bundles) —

a) A surjective smooth submersion m : E — B = RY is a bundle iff it is a bundle over each straight line
in the base parallel to one of the axis.

b) A surjective smooth submersion w: E — B is a bundle iff for every smooth path v :[0,1] — B, the
pullback v*7 : v*E — [0,1] is a bundle.

¢) Theorem B is still true if we change the hypothesis VD is (¢ — 1)-fibred’ to the weaker one VD is
0-fibred’.

Proof. To prove a), we make an induction on g . Assume That 7 : E — RY is a surjective submersion
and a bundle over each straight line L parallel to an axis . Let VD be the set of all vertical domains. After
theorem B, it is enough to prove that p : VE°(X',E) — VE°(X,E) is a fibration for every two vertical
domains X, X' € VD such that the first one is contained in the interior of the second one.

By assumption, for every L, our submersion 7 is a bundle over L , and in particular the map
VEY(X,71(L)) — L is a fibration. By corollary 19,

nx : VE°(X,E) — RY
is a fibration. Write mx = (7%,...,m%) . Thus the last factor,
7% :VE°(X,E) - R

is also a fibration.

In the same way, 7%, is also a fibration.

But by the induction hypothesis, p is a fibration over (r%,)~1(t) for each t € R . The fibrewise fibration
principle (corollary 15,i) concludes that p is actually a fibration.

Affirmation b) then follows immediately from a); and affirmation c) from theorem B and from b). e

Also, since our theorem A gave a satisfying analysis of fibrations, one can assume that 7 is a submersion
and a fibration, say a “submersion-fibration,” and ask for sufficient conditions which make it a bundle.

DEFINITION 29 —  Call VD engulfing when for every three domains X, X', X" € VD, such that
X CInt(X")NInt(X") , if, in the ambiant space Ey , the domain X' can be pushed into X" by a homotopy
relative to X , then it can also by an isotopy relative to X .

Observe that we only ask the homotopy, and the isotopy, to be the identity on X , rather than on the
whole of X'N X" .

COROLLARY 30 — Let 7w : E — BY be a (surjective, smooth) submersion-fibration. If it admits an exhaustive,
isotopy imvariant, engulfing set of vertical domains, then it is a bundle.

Proof. After the preceding corollary, we can assume that B = [0,1] . Given X , X’ € VDg such
that X C Int(X') € X' and £ € T'(X,]0,1]) pointed, we have to build a pointed £ € T'(X’,[0,1]) such
that px x/(§') = £ . Consider the set T of t’s such that there exists a pointed £ € I'(X’,[0,¢]) such
that px, x/ (&) = |0,y - Obviously T is an interval, open after lemma 24., and containing 0. Assume,
by contradiction, that T = [0,7[ . Since 7 is a fibration, there is a section 7 of the restriction map
VO9X',E) - VE°(X,E) , where V°(X', E) is the space of vertical maps X' — E homotopic to idx: . Since
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VD is exhaustive, there is a X" € VDr containing v(7')(X') in its interior. By lemma 24, for t < T close
enough to T there is a " € T'(X", [t,T]) such that £"(T) = idx» .

In the fibre E;, we have three domains £(¢)(X) , & (¢)(X"), &"(t)(X") ; and since 7 is a fibration, the
second one can be pushed into the third one by a homotopy relative to the first one. Since VD is engulfing,
it can also by an isotopy relative to the first one. In other words &'(t) is isotopic in Ey, relatively to £(¢)(X) ,
to some embedding ¢ : X' — £"(¢)(X") . The section :

s &"(s) 0" () oo

belonging to T'(X',[t,T]) , is homotopic to & at point ¢, thus after lemmas 7 and 24, there exists a pointed
section over [0,7] , contradiction. e

I1.3. — Applications. We show how the criteria established in the preceding paragraph apply in several
typical situations.

COROLLARY 31 — A surjective smooth submersion with each fibre diffeomorphic to RP is a bundle.

Proof. The family of all vertical domains diffeomorphic to the compact p-ball is exhaustive since each
fibre is diffeomorphic to R? .

This family is obviously isotopy invariant.

Recall Alexander’s trick : let MP? be any smooth manifold without boundary, let E(B?, M) be the space
of embeddings of the compact p-ball into M , and let F'(M) the space of frames of TM . Then the map :

Jy : E(B?, M) — F(M)

that to each embedding associates its 1-jet at the origin, is a homotopy equivalence.
It follows that the restriction map px,xs has contractible fibres. By lemma 8 it is a fibration. Thus
theorem B applies. o

COROLLARY 32 — Let w: EPT® — BY be a (surjective, smooth) submersion-fibration.

a) If p =2 then 7 is a bundle;

b) If p > 5, if each fibre Ey is topologically finite, i.e. diffeomorphic to the interior of a compact
p-manifold My with smooth boundary OMy, , and if every connected component of every OMy is simply
connected, then 7 is a bundle;

c) (Stabilization) The map E x R*®t1 — B : (z,2') = w(z) is a bundle.

Point ¢) answers a question of [3].

Proof. a) We can assume that the fibres are connected. Then the family of all connected vertical domains
is obviously exhaustive and isotopy invariant. The engulfing property is verified by connected domains in
surfaces — this is an exercise, using for example the results and methods of [2]. Thus corollary 30 applies.

b) The set of all vertical domains X C Ej such that X is a deformation retract of Ej is obviously
exhaustive and isotopy invariant. After Van Kampen'’s and Grushko-Neumann’s theorem, each component of
W = Ep\Int(X) is simply connected. After Poincaré duality and the h-cobordism theorem, W = 90X x [0, 1( .
The relative engulfing property follows immediately, and corollary 30 applies.

¢) Given a domain X and a polytope K C Int(X) , say that X shrinks to K if, for every neighborhood
U(K) , the whole domain X can be pushed into U(K) by an istopy of embeddings of X into X , relative to
a neighborhood of K .

For every b € B , define VD, the set of (4p + 1)-dimensionnal vertical domains X C Ej = E, x R3+!
with the two following properties :

1. X shrinks to a (p — 1)-dimensionnal polytope;

2. Every (p — 1)-dimensionnal subpolytope in Int(X) is contained in a (2p — 1)-dimensionnal polytope
to which X shrinks.

Obviously VD is isotopy invariant. To prove that it is also engulfing, let X, X', X" € VD, be as in
definition 29. Let K, K' be (p — 1)-dimensionnal polytopes on which X , X' respectively shrink (property
1.) Since dim K + dim K’ < dim E} , by a general position argument, we can chose K, K' disjoint. Since
X' € VD , by property 2 there is a (2p — 1)-dimensionnal complex L C Int(X') containing K U K’ and to
which X’ shrinks.
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By hypothesis, there is a homotopy that pushes X' into X" and is the identity on X . Again by
a general position argument, since 2(dim L + 1) < dim Ej , after a small perturbation if necessary, this
homotopy induces, in restriction to L , an isotopy of embeddings of L into E; , and remains the identity on
a neighborhood of K .

Since X' shrinks to L , we get an isotopy of embeddings of X' into Ej , that pushes it into X" . Moreover
it is the identity on a neighborhood of K .

Since X shrinks to K , we can chose this isotopy to be identity on the whole of X | and the engulfing
condition is established.

Finally, we prove that VD is exhaustive. It is enough to prove that for every domain DP C E , the
product D? x B3P+ is contained in a domain X € VD . Let X be a regular neighborhood of D? x B3P+1
In particular X shrinks to D? x B3P+!

If E, is compact, then, since 7 is assumed a fibration, all fibres are compact with the same 7 , thus, as
previously mentionned, 7 is already a bundle.

Thus we can assume that Fj is not compact, thus dDP? is not empty, and in particular DP shrinks to
some (p — 1)-subpolytope K . It follows obviously that X also shrinks to K .

Finally, let K C Int(X) be any (p—1)-polytope. We have to find a larger, (2p—1)-dimensionnal polytope
L to which X shrinks. After a first isotopy if necessary, we can assume that K is contained in DP x B3P+! |
Decompose E; = E, x R3*! as E, x RP™! x R?*2 | and consider the canonical projection of K into the
factor B, x RP~! . Since 2dim K < 2p— 1, after a small perturbation this projection become an embedding
of K into D? x BP~! . Thus we have an isotopy of embeddings pushing K into D? x BP~! . Thus we can
assume that K C DP x BP~! | Then L = DP x BP~! fits. In conclusion VD is exhaustive.

Thus corollary 30 applies. e

Question Assume That 7 : E — B is a submersion-fibration and that a group acts freely, cocompactly
and properly discontinuously on E and permutes the fibres. Does it follow that 7 is a bundle ?

As a last application, in corollary 31, R? can be replaced by any manifold bounded by the sphere and
of large enough dimension :

COROLLARY 33 — Let M be a compact manifold of dimension p > 5 and with smooth boundary
homeomorphic to SP~! . Then any (surjective, smooth) submersion all of whose fibres are diffeomorphic
to Int(M) , is a bundle.

Observe that here we don’t assume any more the submersion to be a fibration.

Proof. We first claim that for every submanifold X C Int(M) abstractly diffeomorphic with M, the
pair (M, X) is contractible.

Indeed, after Van Kampen’s and Grushko-Neumann’s theorems, W is simply connected. Also, the
Mayer-Vietoris sequence for M = X U W gives, for each 2 < k < p— 2, that H¥(X;Z) ® H¥(W;Z)
is isomorphic to H¥(M;Z) . Since H*(X;Z) is (abstractly) isomorphic to H*(M;Z), it follows from the
elementary theory of finitely generated abelian groups that W is (p — 2)-connected. Thus the pair (W, 9X) is
(p—2)-connected. On the other hand, by Poincaré duality, Hy (W, X ;Z) is isomorphic to H™ *(W,0M;Z),
thus null for £ > n — 1 since W is 1-connected and M is 2-connected.

To sum up, (W, 8X) has no homology. By excision principle, (M, X) doesn’t either. The claim is proved.

Fix b € B . Chose X C Ej a core. By lemma 24, there is a neighborhood Y of b in B and a section
v € I'(X,B) . By the claim, for every y € Y, the vertical domain v(y)(X) = Im~ U E, is a deformation
retract of E, . After corollary 15, w is a fibration over Y . Corollary 32, b) concludes. o

It follows that Palmeira’s conjugation theorem for open manifolds foliated by R? extends to more general
kind of leaves; the (long) proof is exactly as in [9] :

COROLLARY 34 — Let MP be as in the preceding corollary. Let (V,F) and (V',F') be foliated, simply
connected, (p + 1)-dimensionnal, open manifolds whose leaves are all diffeomorphic to M . Assume that the

(in general non-Hausdor(f) leaf spaces V/F , V'/F'" are diffeomorphic. Then this diffeomorphism can be
realized by a smooth conjugation between the foliations.

11.4. — FEnds of deformation-equivalent manifolds. What do two different fibres Ej, , Ej of a fibration-
submersion 7 : E — B must have in common, assuming of course that B is connected ?
Call two such open manifolds, say, deformation-equivalent. Compare [3].
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Of course they have the same homotopy type, but not necessarily the same proper homotopy type
(example 21.) In fact, every contractible p-manifold U is deformation-equivalent to R? : proceed as in
example 21, but change RP to U , and W to a small open p-ball in U .

Nevertheless, in dimension 2, deformation-equivalent manifolds are necessarily diffeomorphic (corollary
32))

The following proposition answers a question of [3], where some particular cases were obtained.

PROPOSITION 35 — Two deformation-equivalent manifolds necessarily : a) are diffeomorphic if one of
them is compact; b) have the same tangential homotopy type; c¢) have the same orientability property w.r.t.
every ring R ; d) have isomorphic algebras of compactly supported cohomology with coefficients in every ring
R that makes them orientable; e) have homeomorphic ends spaces.

Proof. a) If Ej is compact, then all fibres, having the same dimension and homotopy type as Ej , are
compact; moreover they have the same 7y ; and we have seen as a corollary of lemma 22 that 7 is necessarily
a bundle.

b) Because the tangent vector spaces T E, and T Ey are two pullbacks of a single p-dimensionnal vector
space over E : the kernel of dn .

c) Follows from b).

d) and e) One can assume that B = BY and that b , b € Int(B) . Thus E has a boundary
OF = n~1(0B) . We shall prove that Ej has the same cohomology algebra and the same ends space as
E ; of course the same will be true for Ey .

We have a commutative diagram :

H?(E; R) A H?(Ey; R)
! | !
Hyrq «(B,0B;R) 25 Hypy (B, E\EyR)

Vertical arrows are Poincaré and Alexander duality and they are one-to-one; i* is the morphism of restriction
to the properly embedded submanifold Ep ; and j, is the inclusion morphism, one-to-one because 0B is a
deformation retract of B\ {b} and because 7 is a fibration. Thus ¢* is one-to-one; and in the same time an
algebra morphism. This proves d).

For every locally compact space S, its space of ends can be defined as the spectrum of an algebra,
namely the algebra B(S) of germs, at the neighborhood of infinity, of locally constant functions with value
in R=7/2Z . On the other hand, we have a commutative diagram whose lines are exact :

0 — R — B(E) — H)NE;R) — H(E;R)

=] i i gl
0 — R — B(E,) — HNE;R) — HYE,;R)

where f , i* and g are restriction morphisms. Since 7 is a fibration, ¢ is one-to-one. By d), i* is one-to-one.
By the five lemma, f is also one-to-one. Thus the algebras B(E) , B(E;) are isomorphic, thus they have
homeomorphic spectra. e

I1.5. — More examples and questions. We end with a few (pleasant) monsters.

ExAMPLE 36. — Let again W be the Whitehead manifold, let V' C W be an open 3-ball, and let U C V be
an open subset diffeomorphic to W . Play the same game as in example 21, but with W instead of R? and
with U instead of W . Then again 7 is a fibration of R* onto R , but this time all fibres are diffeomorphic
to W . If it were a bundle, then there would be a 1-parameter family of embeddings i; : W — W such that
ip = idw and 41 (W) = U . But this would imply that every compact subset of W could be engulfed by the
3-ball V, and W would be diffeomorphic to R? , a contradiction. Thus = is not a bundle.

ExaMpPLE 37. — Let V C R* an open subset homeomorphic but not diffeomorphic to R* (Casson-
Friedman, see for example [6].) Play the same game as in example 21, but with R* instead of R® and with
V instead of W . The total space E is diffeomorphic to R® since it is 5-dimensionnal, contractible and
simply connected at infinity [12]. This (real-analytic !) submersion-fibration of R® onto R is not a bundle
in the C* (or even C'!) category, since one of the fibres is not diffeomorphic to the other ones. On the other
hand, all our work extends to the C" categories (r € N) . The reader will provide himself a proof of lemma
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22 in the C° and the C! differentiability class. In particular, corollary 31 is valid in class C° ; thus our
submersion-fibration is a bundle in the C° sense.
EXAMPLE 38 — Let :
E-E
'\ T
B

be a commutative diagram of (smooth, surjective) submersions. If ' and h are fibrations, then 7 is also
— obvious, since to be a fibration it is enough to have the homotopy lifting property for simplicies. Jean
Pradines asked if we can change “fibration” to “bundle”. The answer is negative, always with the same
counterexample: let E, B, m be as in the example 21, let E' = E x R and let h be the first projection.
Then h is a bundle. Also 7' is a bundle by corollary 31, since all its fibres are R® x R or W x R , thus
diffeomorphic to R* . But 7 is not. This phenomenon was already observed in [3].
ExaMPLE 39 — We can also answer negatively Pradines’ question with A a normal, infinite cyclic covering.
Let E*, B, 7* be as in example 21, let E = E* x S! | let w(x,y) = 7*(z) , let E' be the universal covering
of E and let h : E' — E be the canonical projection. Then h is a normal covering and again 7’ is a bundle
by corollary 31, since W x R is diffeomorphic to R* . But = is not, since W x S does not have the same
proper homotopy type as R® x S!.
EXAMPLE 40 — As Alan Weinstein points out [13], our results also allow to answer negatively Pradines’
question with E the quotient of E' by the free, fibrewise, action of a compact group. Actually, let E, B, w be
as in the example 37 (thus with a fibre being an exotic R*), let E' = E x S3 and let h be the first projection.
Then h is a bundle. Also, each fibre of 7' is S3x a topological R* , thus the interior of a 7-dimensionnal
compact manifold with (simply connected) boundary, by [11]. By corollary 32 b), «' is a bundle. But = is
not.

Question (Weinstein) What about Pradines’ question with h a finite covering ¢ Or equivalently, if one
likes better, a normal one, i.e. the quotient by the free fibrewise action of a finite group ?

Some of these results have been announced or conjectured in [7] and [8].
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