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Abstract. Complete Max-SAT solvers are able to return the optimal
value of an input instance but they do not provide any certificate of
its validity. In this paper, we introduce for the first time a Max-SAT
proof builder, called MS-Builder, which generates Max-SAT proofs under
the particular form of a sequence of Max-SAT equivalence-preserving
transformations. To generate a Max-SAT proof, MS-Builder iteratively
calls a SAT oracle to get a SAT refutation which is handled and adapted
into a sound refutation for Max-SAT. We also propose an extendable
tool, called MS-Checker, able to verify the validity of any proof using
Max-SAT inference rules.
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1 Introduction

Given a Boolean formula in Conjunctive Normal Form (CNF), the Maximum
Satisfiability (Max-SAT) problem consists in determining the maximum number
of clauses that it is possible to satisfy by an assignment of the variables. Max-
SAT is an optimization extension of the Satisfiability (SAT) problem and a
natural way to model many real world and crafted problems [32,15,12] making it
a well studied problem in theory as well as in practice. Different complete solving
paradigms for Max-SAT have seen the day in recent years including Branch and
Bound algorithms [1,23,18], SAT-based algorithms [2,26,27] and reduction to
other problems (such as ILP [13], Max-ASP [3] and WCSP [14]).

Recent years have also witnessed a particular interest in proof systems for
Max-SAT [10,11,19,20,21,9,28]. In particular, Max-SAT resolution [10,11,19] was
one of the first known complete systems for Max-SAT and was later extensively
used in the context of Max-SAT solving [23,1,27]. However, generating proofs
establishing the optimum cost of Max-SAT formulas remains an unexplored topic
in practice. Indeed, current Max-SAT solvers are not able to output certificates as
it is the case for SAT solvers. This is in part due to the variety of paradigms and
techniques for Max-SAT solving which make it difficult to devise a generalized
approach to compute certificates.

In this paper, we devise an independent proof builder for Max-SAT, called
MS-Builder, which builds proofs for Max-SAT by iteratively calling a SAT oracle
to get a resolution refutation. The builder relies on recent work [28] to adapt the
SAT refutation into a Max-SAT refutation which is then applied to the current



formula. Moreover, we introduce an extendable Max-SAT proof checker, called
MS-Checker, to verify the validity of any proof using Max-SAT inference rules.
Both tools are experimentally evaluated on the unweighted partial benchmark
of the 2020 Max-SAT Evaluation [4].

This paper is organized as follows. Section 2 includes some necessary defi-
nitions and notations. Section 3 recalls related work on the adaptation of SAT
refutations to Max-SAT refutations. MS-Builder and MS-Checker are respec-
tively presented in Sections 4 and 5 and their experimental evaluation is detailed
in Section 6. Finally, we conclude and discuss future work in Section 7.

2 Preliminaries

2.1 Definitions and Notations

Let X be a set of propositional variables. A literal l is a variable x ∈ X or its
negation x. A clause c is a disjunction of literals (l1∨ l2∨· · ·∨ lk). A formula φ in
Conjunctive Normal Form (CNF) is a conjunction of clauses φ = c1∧c2∧· · ·∧cm.
An assignment I : X −→ {true, false} maps each variable to a boolean value
and can be represented as a set of literals. A literal l is satisfied (resp. falsified)
by I if l ∈ I (resp. l ∈ I). A clause c is satisfied by I if at least one of its literals
is satisfied by I, otherwise it is falsified by I. The empty clause � contains zero
literals and is always falsified. A clause c opposes a clause c′ if c contains a
literal whose negation is in c′, i.e. ∃l ∈ c, l ∈ c′. For a given CNF formula,
solving the Satisfiability (SAT) problem consists in determining whether there
exists an assignment I (called model) that satisfies it. The cost of an assignment
I is the number of clauses falsified by I. For a given CNF formula φ, solving
the (plain) Max-SAT problem consists in determining the maximum number of
satisfied clauses in φ.

2.2 Resolution Refutations in SAT

To certify that a CNF formula is satisfiable, it is sufficient to exhibit a model of
the formula. On the other hand, to prove that a CNF formula is unsatisfiable,
we need to refute the existence of a model. A well-known SAT refutation sys-
tem is based on an inference rule for SAT called resolution [29]. The resolution
rule, defined below, deduces a clause called resolvent which can be added to the
formula from two opposed clauses.

Definition 1 (Resolution [29]). Given two clauses c1 = (x ∨ A) and c2 =
(x ∨B), the resolution rule is defined as follows:

c1 = (x ∨A) c2 = (x ∨B)
c3 = (A ∨B)

A resolution refutation is a sequence of resolutions leading to an empty clause.
Many restricted classes of resolution refutations have been studied in the liter-
ature namely linear resolution [24], unit resolution [16], input resolution [16],



regular resolution [31], read-once resolution [17] and tree (or tree-like) resolution
refutations [5] among others. In particular, a resolution refutation is tree-like if
every intermediate clause, i.e. resolvent, is used at most once in the proof. Sim-
ilarly, a resolution refutation is read-once if each clause is used at most once in
the proof. Clearly, read-once resolution refutations are also tree-like since they
form a restricted class of tree resolution refutations. It was shown in [17] that
there exists unsatisfiable CNF formulas which cannot be refuted using read-once
resolution. Finally, a resolution is regular if each branch (path from a clause of
the initial formula to the empty clause) contains at most one resolution per
variable.

Example 1. We consider the CNF formula φ = (x1∨x3)∧ (x1)∧ (x1∨x2)∧ (x2∨
x3). The resolution refutation of φ, represented in Figure 1, is tree-like (and)
regular, but not read-once because of clause (x1).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Fig. 1. Resolution refutation

2.3 Proofs for Max-SAT

In the last fifteen years, the study of inference rules for Max-SAT has led to
major results in Max-SAT theory and solving. In particular, one of the first proof
systems for Max-SAT is based on an inference rule called Max-SAT resolution,
which is an extension of the resolution rule. Max-SAT resolution was shown
sound and complete for Max-SAT, i.e. it is sufficient to prove the optimum cost
of a given CNF formula.

Definition 2 (Max-SAT resolution [10,11,19]). Given two clauses c1 =
x∨a1∨· · ·∨as and c2 = x∨b1∨· · ·∨bt with A = a1∨· · ·∨as and B = b1∨· · ·∨bt,
the Max-SAT resolution rule is defined as follows:

c1 = x ∨A c2 = x ∨B
c3 = A ∨B

cc1 = x ∨A ∨ b1
. . .

cct = x ∨A ∨ b1 ∨ · · · ∨ bt−1 ∨ bt
cct+1 = x ∨B ∨ a1

. . .
cct+s = x ∨B ∨ a1 ∨ · · · ∨ as−1 ∨ as



where c3 is the resolvent clause and cc1, . . . , cct+s are compensation clauses.

In recent work, Max-SAT resolution was augmented with other rules such as
the split rule [21,28] defined below or the extension rule [20]. It was shown that
the addition of such rules to Max-SAT resolution can improve its efficiency in
generating shorter proofs [21,20] or allow, given a resolution refutation for SAT,
to generate a Max-SAT resolution refutation [28].

Definition 3 (Split rule). Given a clause c1 = (A) where A is a disjunction
of literals and x a variable, the split rule is defined as follows:

c1 = (A)
c2 = (x ∨A) c3 = (x ∨A)

Remark 1. Unlike the resolution rule, the Max-SAT resolution rule and the split
rule replace the premise(s) by the conclusion(s).

To be more exhaustive, we must also mention that other Max-SAT proof
systems exist like the Clause Tableau Calculus [22]. If these proofs systems have
been extensively studied in theory, generating proofs remains an unexplored
topic in practice. Hence, this work aims to contribute to this topic by proposing
tools to build and check Max-SAT proofs.

3 Related work

In this section, we briefly recall recent results established in [28] on the adap-
tation of resolution refutations to Max-SAT refutations. One of the main re-
sults deals with tree resolution refutations showing that a linear adaptation to
a Max-SAT refutation is possible in this case. Indeed, if the resolution refuta-
tion is tree-like, it is possible to transform it into a smaller refutation which is
tree-like regular by iteratively eliminating irregularities (sequences of successive
resolutions whose first and last are on the same variable) [30]. To adapt tree
regular refutations, Max-SAT resolution is augmented with the split rule to fix
the non-read-once clauses, i.e. clauses which are used more than once in the
proof. The split rule is applied on a non-read-once clause to augment it with
the variable resolved on in the junction point of all the branches starting from
it. Thus, the obtained clauses can replace the non-read-once clause as a premise
without affecting the validity of the proof. The same treatment is applied until all
non-read-once clauses are fixed. Finally, when the proof becomes read-once, it is
sufficient to replace each resolution step by a Max-SAT resolution to get a valid
Max-SAT refutation [17]. An adaptation of tree regular resolution refutation is
showcased in Example 2.

Example 2. We consider the tree regular resolution refutation in Example 1,
represented in Figure 1. We observe that the clause (x1) is used two times as a
premise of a resolution step. The junction point of the left and right branches
eliminates variable x3. Thus, we apply the split rule on clause (x1) to get (x1∨x3)



and (x1∨x3) and we replace (x1) by (x1∨x3) and (x1∨x3) respectively on the left
and right branches. Finally, we replace all resolutions by Max-SAT resolutions
to obtain the complete Max-SAT refutation represented in Figure 2.

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 2. Adaptation of a tree-like regular resolution refutation

In the generic case where the resolution refutation is not tree-like, it is also
possible to adapt it into a Max-SAT refutation but with an exponential cost. To
adapt the refutation, the entire proof leading to each non-read-once intermediate
clause is duplicated, thus generating as many copies of the clauses as needed to
render the proof tree-like. Then, the tree refutation is adapted into a Max-SAT
refutation as explained above.

4 MS-Builder

In this section, we describe a Max-SAT proof builder, called MS-Builder based
on the adaptation of resolution refutations for Max-SAT recalled in Section 3.
The idea is to iteratively call a SAT oracle in order to get a resolution refutation
for the current formula, adapt it into a Max-SAT refutation and apply it to the
formula. The proof builder repeats this step until the SAT oracle returns a model
for the final formula.

For practical reasons, we add an additional treatment to the Max-SAT proof
builder. If the resolution refutation is not read-once, we first try to fix the ef-
fect of unit propagation in the non-read-once part of the proof. To do that,
we discard the non-read-once unit clauses and we re-inject them at the end of
the resolution refutation. Indeed, some resolution refutations are non-read-once
simply because of the effects of unit propagation. It is the case of the resolution
refutation proposed in Example 1, which is in fact read-once after fixing the unit
propagation as showcased in the following example.

Example 3. We consider the tree regular resolution refutation in Example 1 (rep-
resented in Figure 1). We fix the unit propagation by discarding (x1) and re-
injecting it at the end of the resolution refutation to get the read-once resolution
refutation represented in Figure 3.



x1 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3

x1

�

Fig. 3. Fixing unit propagation to get a read-once resolution refutation

The adaptation of any resolution refutation into a Max-SAT refutation is
integrated into MS-Builder which can be seen as a core-based Max-SAT proof
builder whose correctness is guaranteed by the correctness of the adaptation
proposed in [28].

Example 4. Let φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3). The SAT oracle
returns the resolution refutation in Figure 1 which is adapted into the read-once
one in Figure 3 and to a Max-SAT one (by replacing resolutions by Max-SAT
resolutions) and then applied to the formula. Now we have φ = � ∧ (x1 ∨ x2 ∨
x3)∧(x1∨x2∨x3) and the SAT oracle returns that the current formula (without
considering the empty clause) is satisfied by the assignment I(x1) = I(x2) =
I(x3) = 0. MS-Builder thus returns the proof described in Figure 5.

5 MS-Checker

In this section, we present our extendable Max-SAT checker, called MS-Checker,
which requires two input files: a formula and a proof. The formula has to be
given in the standard WCNF format, either in the old or new format [4]. The
proof file must start with a sequence of Max-SAT transformation lines. A Max-
SAT transformation line must start with ’t’ and must include the name of the
inference rule (msres for Max-SAT resolution and split for the split rule) and
its premise(s) (between ’< >’). For the split rule, the variable to split on is
specified as a parameter after its name. Then, the proof file must contain a line
(starting with ’o’) with the announced optimum cost of the formula. Finally, it
must contain a line (starting with ’v’) with a truth assignment satisfying the
final formula (without the empty clauses).

c Formula of Example 1
1 -1 3 0
1 1 0
1 -1 2 0
1 -2 -3 0

Fig. 4. Formula file format

t msres < 1 -1 -2 | 1 -2 -3 >
t msres < 1 -1 3 | 1 -1 -3 >
t msres < 1 1 | 1 -1 >
o 1
v 000

Fig. 5. Proof file format



After reading the formula, MS-Checker verifies that the proposed inference
rules are correct and that the premises are still in the formula then applies
the transformation. Finally, it checks if the truth assignment satisfies the final
formula without considering the empty clauses.

6 Experiments

We have implemented MS-Builder and MS-Checker in C++1. Resolution Refu-
tations are computed using Booleforce [6] and Tracecheck [7,8]. We consider the
benchmark of the unweighted partiel track of the 2020 Max-SAT Evaluation
[4]. The experiments are performed on Dell PowerEdge M620 servers with Intel
XeonSilver E5-2609 processors (clocked at 2.5v2.6 GHz) under Ubuntu 18.04.
Each solving process is allocated a slot of 1 hour and at most 16 GB of memory
per instance.

MS-Builder has succeeded to construct full proofs for 163 instance while MS-
checker has succeeded to check 575 complete or partial proofs over 576 in total.
The running time for building and checking instances are plotted respectively
in Figures 6 and 7. Proof checking is obviously much easier than proof building
except on rare formulas with an important number of clauses (in the input
file or after applying some transformations) which can make difficult the linear
operation of extracting a premise to the formula used in MS-Checker.

Fig. 6. Running time (in seconds) for
building complete proofs

Fig. 7. Running time (in seconds) for
checking proof

MS-Builder has also succeed to build at least half of the proofs (with respect
to the number of empty clauses) of 302 instances over 463 instances for which
the optimum cost is known. This is illustrated in Figure 8 which reports the
percentage of empty clauses built per solved instance. The sizes of the computed
proofs vary from few bytes to 1 Gigabyte as illustrated in Figure 9. Notice how
empty (incomplete) proofs are computed for some very hard instances for which
the timeout is not sufficient to even compute the first Max-SAT refutation. On
the other hand, there are some instances, usually with an optimum cost of 1,
which have very small proofs.
1 The source code is available on https://pageperso.lis-lab.fr/matthieu.py/en/software.html.

https://pageperso.lis-lab.fr/matthieu.py/en/software.html


Fig. 8. Percentage of proved � per in-
stance

Fig. 9. Size of proof per instance (in
logarithmic scale)

Finally, we can observe in Table 1 that read-once resolution refutations and
resolution refutations which are read-once after fixing unit propagation appear
very often. However, there are many instances such that the last resolution refu-
tation met are the largest and the hardest (i.e. unrestricted) and that is why the
last resolution refutations are often the most difficult to adapt and the timeout
often stops on these resolution refutations.

Type of resolution refutation Number Percentage
read-once 169,239 83.7 %
read-once after UP-fixing 24,556 12.1 %
tree-like regular 2,879 1.4 %
tree-like 1,795 0.9 %
unrestricted 3,799 1.9 %

Table 1. Encountered types of resolution refutations in the whole benchmark

7 Conclusion

In this paper, we proposed two tools, MS-Builder and MS-Checker, to respec-
tively generate and check Max-SAT proofs. MS-Builder builds proofs by itera-
tively calling a SAT oracle and adapting the obtained SAT refutations into Max-
SAT refutations. MS-Builder has succeeded in building a substantial amount of
proofs for unweighted partial instances of the 2020 Max-SAT Evaluation. How-
ever, unrestricted resolution refutations are usually hard to adapt due to the
exponential overhead caused by duplicating parts of the proofs.

As future work, it would be interesting to include more advanced techniques
such as core reduction or minimization [2,25] in order to improve the efficiency
of these tools. Furthermore, It would be relevant to study the possibility of
extending the UP-fixing mechanism to non-unit clauses. Finally, we are also
working on extending our tools to build and check proofs for weighted partial
Max-SAT formulas.
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