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ABSTRACT

A three dimensional viscoelastic model at finite strain representing nonfactorizable behaviour
of rubber like materials is proposed. The model is based upon the internal state variables
approach within the framework of rational thermodynamics such that the second principle of
thermodynamics is satisfied. Motivated by experimental and rheological results, the nonfactor-
izable aspect of the behavior was introduced via strain dependent relaxation times which leads
to a reduced time with a strain shift function. The identification of the models parameters and
its capacity to predict the nonfactorizable behaviour of rubber like materials with respect to
experimental data and the multi-integral viscoelastic model of Pipkin have been addressed in
a previous work. The main concern of this work is the representation of the implementation
of constitutive equations following from this model into Abaqus finite element software via a
Fortran UMAT subroutine. To this end, the deformation gradient split into a volumetric and
isochoric parts was employed, then the so-called tangent module was computed for a Mooney-
Rivlin hyperelastic material. Finally, the computation of the integral in the model was computed
using midpoint method. The validation of the UMAT was carried using homogeneous transfor-
mations of simple extension and pure shear.
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1 INTRODUCTION

It is well known that rubber-like materials exhibit nonlinear viscoelastic behavior over a wide
range of strain and strain rates confronted in several engineering applications such as civil en-
gineering, automotive and aerospace industries. Further, the time dependent properties of these
materials, such as shear relaxation module and creep compliance, are, in general, functions of
the history of the strain or the stress [1]. Therefore, in a wide range of strain, a linear vis-
coelasticity theory is no longer applicable for such material and new constitutive equations are
required to fully depict the behavior of rubber-like.In this work we shall develop a nonlinear
model at finite strain for nonfactorizable viscoelastic materials within the framework of rational
thermodynamics and the approach of internal state variables, see [2], [3] and [4] taking into
account the dependence of the time dependent functions upon the state of the strain. The imple-
mentation of the model within Abaqus software is made thanks to a Umat subroutine Fortran.
This paper is organized as follows: in section 2 the mechanical framework and the model are
recalled. In section 3 the implementation in Matlab software is presented and validated by a
comparison to the results from Abaqus software and a summarize of the Umat for the imple-
mentation in Abaqus is provided.

2 MECHANICAL FRAMEWORK AND CONSTITUTIVE EQUATIONS

Consider a viscoelastic material with reference placement Ω0 in the reference configuration C0.
It occupies at the time t the placement Ω in the deformed configuration Ct. Let ϕ denote a
macroscopic motion between the two configurations, which maps any point X in the reference
configuration C0 to the point x in the deformed configuration. Let F (X, t) = ∂x/∂X be the
deformation gradient tensor. Likewise, let J = det (F ) be the jacobian of the deformation
gradient tensor. From the deformation gradient F (X, t), the right and left Cauchy-Green strain
tensors C = F tF and B = FF t are obtained. The formulation of the constitutive equations
in the nonlinear range of behavior is based upon the decomposition of the deformation gradient
tensor F (X, t) into volumetric and isochoric parts such that:

F = J−1/3F̄ where det
(
F̄
)

= 1 (1)

in which F̄ is the isochoric part of the deformation gradient tensor, the right and left Cauchy-
Green strain tensors associated with it reads:

C̄ = F̄ tF̄ = J−2/3C, B̄ = F̄ F̄ t = J−2/3B (2)

The free energy density according to [2] is expressed as follows:

Ψ
(
C̄, Q

)
= U0 (J) + Ψ̄0

(
C̄
)
− 1

2
Q : C̄ + ΨI (Q) (3)

in which Q is a second order tensor internal variable akin to the second Piola-Kirchhoff stress
tensor, its evolution law is expressed as follow:

∂Q

∂ξ
+

1

τ
Q =

γ

τ
DEV

[
2
∂Ψ0

(
C̄
)

∂C̄

]
with ξ (t) =

∫ t

0

dt′

a
(
C̄
) (4)

γ and τ are the viscoelastic parameter and the relaxation time of the Prony series respectively,
in relation 4 ξ denotes the reduced time which is an increasing function of real time t and
a(C̄) is a positive function of the left Cauchy-Green strain tensor called a strain-shift function.
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Application of the Clausius-Duhem inequality and the resolution of the evolution equation 4
along with the form of the free energy density of equation 3 lead to the expression of the second
Piola-Kirchhoff stress tensor.

S = J−2/3
∫ ξ

0

G (ξ − ξ′)
∂

∂ξ′
DEV

(
2
∂Ψ0

(
C̄
)

∂C̄

)
dξ′ + JpC−1 (5)

3 IDENTIFICATION OF THE PIPKIN MODEL

3.1 Pipkin isotropic model

Pipkin [5] proposed a third order development of the tensorial response function Q for an
isotropic incompressible material. The principle of material indifference requires that the Cauchy
stress tensor takes the following form:

σ = RQRt + pI (6)

R is the rotation tensor obtained from the polar decomposition of the transformation gradient
tensor F and p is the indeterminate parameter due to incompressibility. The third functional
development of Q reads

Q (t) =
∫ t
0
r1 (t− t′)Ė (t′) dt′ +

∫ t
0

∫ t
0
r2(t− t′, t− t′′)Ė (t′) Ė (t′′) dt′ dt′′+∫ t

0

∫ t
0

∫ t
0
r3 (t− t′, t− t′′, t− t′′′) tr

[
Ė (t′) Ė (t′′)

]
Ė (t′′′) dt′dt′′dt′′′+∫ t

0

∫ t
0

∫ t
0
r4 (t− t′, t− t′′, t− t′′′) Ė (t′) Ė (t′′) Ė (t′′′) dt′dt′′dt′′′

(7)

ri i = 1..4 are the relaxation kernels expressed by a decaying exponential functions and Ė (t)
is the time derivative of the Green-Lagrange deformation tensor E = 1/2 (C − I).

3.2 Identification of the model’s functions

The free energy density Ψ0, the viscoelastic kernel G(ξ) and the reduced time ξ(t) of relation
5 are identified separately. To this end data in pure shear and simple extension were generated
following relations 6 and 7.Equilibrium tests of simple extension and pure shear are used in
the identification of Ψ0, relaxation tests with small level of strain in pure shear are used in the
identification of G(ξ) and monotonic tests of simple extension are used in the identification of
ξ(t) and then the whole identification procedure is validated by predicting the response of the
model to a monotonic test of pure shear. Each identification procedure turns out to a least square
minimization problem.

4 CONCLUDING REMARKS

A nonlinear viscoelastic model at finite strain to describe nonfactorizable behavior of rubber
like materials has been proposed. The model is formulated using the decomposition of the de-
formation gradient tensor which make it applicable to both compressible and incompressible
materials. The implementation of the model is based on the application of the midpoint algo-
rithm to the convolution integral in the constitutive equation of the stress. This algorithm was
validated using homogeneous transformation of simple extension for several strain configura-
tions. Henceforth, the algorithm could be used in the Umat Fortran to implement the fully three
dimensional model within Abaqus software.
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