Adel Tayeb 
  
Makrem Arfaoui 
  
Abdelmalek Zine 
  
Adel Hamdi 
  
Jalel Benabdallah 
  
Mohamed Ichchou 
  
Tayeb Adel 
  
Arfaoui Makrem 
  
Zine Abdelmalek 
  
Hamdi Adel 
  
Benabdallah Jalel 
  
Ichchou Mohamed 
  
Identification of nonlinear viscoelastic model

Keywords: modelling, identification, linear least square, reduced time

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The behaviour of rubber-like materials is known to be hyperviscoelastic at different deformation levels. In this paper we carry out a systematic identification procedure of fitting an incompressible hyperviscoelastic constitutive law [START_REF] Adel | Mohamed: modeling and identification of a class of hyperviscoelastic material behaviour[END_REF] to experimental data. To this end we use an experimental characterization performed with Bromobutyl rubber (BIIR) [START_REF] Jridi | Predeformation and frequency-dependence Experiment and FE analysis[END_REF] and a linear and nonlinear least square optimization tool in Matlab and Abaqus. Thus, a numerical discretization of the stress-strain integral relation was performed and validated with homogeneous transformation tests. Shear relaxation tests were used to identify the relaxation shear module, tests of simple shear and simple extension at equilibrium were exploited to identify the hyperelastic part of the behaviour whereas monotonic tests were utilized to identify the strain shift function. Results of the identification are highlighted and capacity of the model to predict the behaviour of the material of interest is discussed.

Hyperviscoelastic model

In figure 1 is plotted the shear relaxation module for two different levels of deformation: 10% and 50% . The material of interest shows a significant dependence of the relaxation shear module upon deformation level. Motivated by this fact, we developed a nonlinear viscoelastic model taking into account the dependence upon the deformation via a deformation shift function and thermodynamic principles [START_REF] Adel | Mohamed: modeling and identification of a class of hyperviscoelastic material behaviour[END_REF]. In what follows we expose a systematic procedure to identify these three functions.

Identification procedure

The identification procedure contains three main steps:  Identification of the shear relaxation module G using shear relaxation tests  Identification of the hyperelastic potential 0  using equilibrium curves for pure shear and simple extension experiments  Identification of reduced time function  using monotonic tests of simple extension and the discretized stress-strain relation.

Identification of the shear relaxation module

In literature there are several decay functions to describe the shear relaxation module. In this work we adopted the decay exponential functions (equation ( 2)). For a nonlinear viscoelastic model it's more convenient to identify the relaxation function at low level of deformation [seddiq]. Thus, the shear relaxation at 10% and the identification module of Abaqus software are used to fit the relaxation module.
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In expression (2) 0 G is the initial shear module whereas i g and i  are the coefficients of the Prony series, these coefficients are reported in figure 1. Coefficients 

Identification of the hyperelastic potential

The identification of hyperelastic potential relies on two main steps which are the choice of the free energy density to use in the first place and the check of the stability of the potential in the second place. Whether the hyperelastic potential is linear or nonlinear in terms of its parameters a linear or nonlinear least square optimization is used respectively. In this work we adopted the Mooney-Rivlin [START_REF] Rivlin | Large elastic deformations of isotropic materials. Experiments on the deformation of rubber[END_REF] polynomial free energy density for an isotropic incompressible material (equation ( 3)). In 
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In the above expression (equation ( 4)
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 is a nonlinear function of  , for a simple extension experiment it takes the following form
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In order to obtain more useful form of equation ( 4) with respect to the identification procedure, it's possible to express the material's parameters ij c with the vector [START_REF] Ciambella | Experimental Testing and Nonlinear Viscoelastic Modeling of Filled Rubber[END_REF] In light of expression (7), the identification process reduces to the minimization of expression (8),  is the vector of experimental nominal stresses. The condition of stability is expressed in terms of empirical inequalities (9). Hence, we use a constrained linear least square minimization via "lsqlin" tools in Matlab software. In figure 2 and3 are plotted the relative error of the Cauchy stress for simple extension and pure shear respectively. 

Identification of the reduced time function

The identification of the reduced time function is obtained thanks to the discretization of the behaviour law equation ( 1), thus, at each experimental point k t the minimization of the Cauchy stress error between the model and the and the recoded stress gives the corresponding reduced time k  . The experiment used here is the monotonic simple extension test at different strain rates combined with a dichotomy algorithm implemented in Matlab software. As a result we got the reduced time as a function of real time, the nominal stress error for the three strain rates 10%,100% and 200% are reported in figure 4, 5 and 6 respectively. 
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 1 Figure 1: dependence of the relaxation module upon deformation level

  this expression ij c are the parameters to be identified, 1 I and 2 I are the first and the second invariant of the right Cauchy-Green strain tensor C. of such model is expressed as follow in term of the principle stretch  :

  ...., , ,........, , ......... , k is the number of experimental points, hence we have the following expression for the discrete nominal stress c
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 2 Figure 2: Cauchy stress relative error for simple extension
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 3 Figure 3: Cauchy stress relative error for pure shear

Figure 4 :

 4 Figure 4: Cauchy stress relative error for simple extension at 1 10% mn 
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 5 Figure 5: Cauchy stress relative error for simple extension at 1 100% mn 

Figure 6 : 1 200%

 61 Figure 6: Cauchy stress relative error for simple extension at 1 200% mn 

Table 1 :

 1 Prony series coefficientsUsing the values in table 1 one could simply calculate the relative error between experimental and fitted shear relaxation module, this error is about 0.001% .