
HAL Id: hal-03343011
https://hal.science/hal-03343011

Submitted on 13 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of nonlinear viscoelastic model
Adel Tayeb, Makrem Arfaoui, Abdelmalek Zine, Adel Hamdi, Jalel

Benabdallah, Mohamed Ichchou

To cite this version:
Adel Tayeb, Makrem Arfaoui, Abdelmalek Zine, Adel Hamdi, Jalel Benabdallah, et al.. Identification
of nonlinear viscoelastic model. ATAVI, International Conference on Acoustics and Vibration, Mar
2016, Hamamet, Tunisia. �hal-03343011�

https://hal.science/hal-03343011
https://hal.archives-ouvertes.fr


Hammamet, 21-23 March  2016, Tunisia 

 

Identification of nonlinear viscoelastic model 

Tayeb Adela,b, Arfaoui Makrema, Zine Abdelmalekb, Hamdi Adela, Benabdallah Jalela and Ichchou Mohamedb 

a Laboratoire de Mécanique appliquée et Ingénierie  

Université de Tunis ElManar, Tunis, TUNISIE 
b Laboratoire de Tribologie et Dynamique des Systèmes 

Université de Lyon, Lyon, FRANCE 

 

Abstract – Elastomers are widely used in several engineering applications such as aerospace, 

automotive and civil engineering applications thanks to their ability to undergoing high strains and 

strain rates in large temperature range. Several models have been developed in the literature to 

investigate those nonlinearities.  

In this work we expose a nonlinear viscoelastic model at finite strain for rubber-like materials 

based upon the theory of irreversible thermodynamic and the time strain superposition principle. 

The identification of several model’s parameters is highlighted. A systematic identification 

procedure is used. First, we start by the identification of the shear relaxation module using 

relaxation tests at low levels of deformation and the identification tools in Abaqus software, then 

we identify the hyperelastic potential using equilibrium data of simple extension and pure shear 

experiment and a constrained linear least square minimization with Matlab software, finally we 

identify the reduced time function using monotonic tests of simple extension for different strain 

rates and the discretization of the behaviour law. 

The capacity of the model to predict the behaviour of the material is illustrated via the Cauchy 

stress relative error. 
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Introduction 

The behaviour of rubber-like materials is known to 

be hyperviscoelastic at different deformation levels. 

In this paper we carry out a systematic 

identification procedure of fitting an incompressible 

hyperviscoelastic constitutive law [1] to 

experimental data. To this end we use an 

experimental characterization performed with 

Bromobutyl rubber (BIIR) [2] and a linear and 

nonlinear least square optimization tool in Matlab 

and Abaqus. Thus, a numerical discretization of the 

stress-strain integral relation was performed and 

validated with homogeneous transformation tests. 

Shear relaxation tests were used to identify the 

relaxation shear module, tests of simple shear and 

simple extension at equilibrium were exploited to 

identify the hyperelastic part of the behaviour 

whereas monotonic tests were utilized to identify 

the strain shift function. Results of the identification 

are highlighted and capacity of the model to predict 

the behaviour of the material of interest is 

discussed.  

1 Hyperviscoelastic model 

In figure 1 is plotted the shear relaxation module 

for two different levels of deformation: 

10% and 50% . The material of interest shows a 

significant dependence of the relaxation shear 

module upon deformation level. Motivated by this 

fact, we developed a nonlinear viscoelastic model 

taking into account the dependence upon the 

deformation via a deformation shift function and 

thermodynamic principles [1]. 

 
 Figure 1: dependence of the relaxation module 

upon deformation level 
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This model (equation (1)) involves three different 

functions which are the instantaneous hyperelastic 

potential 
0

 , the shear relaxation module G  and 

the reduced time function  . In what follows we 

expose a systematic procedure to identify these 

three functions. 

2 Identification procedure 

 
The identification procedure contains three main 

steps: 

 Identification of the shear relaxation 

module G  using shear relaxation tests 

 Identification of the hyperelastic potential 

0
  using equilibrium curves for pure shear and 

simple extension experiments 

 Identification of reduced time function   

using monotonic tests of simple extension and the 

discretized stress-strain relation. 

3.1 Identification of the shear 

relaxation module 
In literature there are several decay functions to 

describe the shear relaxation module. In this work 

we adopted the decay exponential functions 

(equation (2)). For a nonlinear viscoelastic model 

it’s more convenient to identify the relaxation 

function at low level of deformation [seddiq]. Thus, 

the shear relaxation at 10%  and the identification 

module of Abaqus software are used to fit the 

relaxation module.  

   0 1 1 expi

i i

t
G t G g



   
        

   
   (2) 

In expression (2) 0G is the initial shear module 

whereas ig  and i are the coefficients of the Prony 

series, these coefficients are reported in figure 1. 

 Coefficients 

ig   

Time constants 

i  (s) 

1 4,46E 03  14,79  

2 3,77E 02  125,71 

3 5,69E 02  460,7  

4 5,84E 02  1761,6  

5 8,76E 02  9598,5  

Table 1: Prony series coefficients 

Using the values in table 1 one could simply 

calculate the relative error between experimental 

and fitted shear relaxation module, this error is 

about 0.001%  . 

3.2 Identification of the hyperelastic 

potential  
The identification of hyperelastic potential relies on 

two main steps which are the choice of the free 

energy density to use in the first place and the 

check of the stability of the potential in the second 

place. Whether the hyperelastic potential is linear or 

nonlinear in terms of its parameters a linear or 

nonlinear least square optimization is used 

respectively. In this work we adopted the Mooney-

Rivlin [3] polynomial free energy density for an 

isotropic incompressible material (equation (3)). In 



Hammamet, 21-23 March  2016, Tunisia 

 
2 

this expression ijc  are the parameters to be 

identified, 
1I  and 

2I  are the first and the second 

invariant of the right Cauchy-Green strain tensor C  

. 

    1 2

,

3 3
i j

ij

i j

c I I      (3) 

The nominal stress of such model is expressed as 

follow in term of the principle stretch   : 

  
,

, ,ij

i j

c i j

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
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
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In the above expression (equation (4))  , ,i j   is 

a nonlinear function of  , for a simple extension 

experiment it takes the following form 
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  (5) 

In order to obtain more useful form of equation (4) 

with respect to the identification procedure, it’s 

possible to express the material’s parameters ijc  

with the vector [4] 
ijc  i.e. 

  01 0 10 1 0,......, , ,........, , .........T

j j i ijc c c c c c c   (6) 

And the function  , ,i j   with the matrix 

 k ijM  , k is the number of experimental 

points, hence we have the following expression for 

the discrete nominal stress 

 c   (7) 
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In light of expression (7), the identification process 

reduces to the minimization of  expression (8),  is 

the vector of experimental nominal stresses. The 

condition of stability is expressed in terms of 

empirical inequalities (9). Hence, we use a 

constrained linear least square minimization via 

“lsqlin” tools in Matlab software. In figure 2 and 3 

are plotted the relative error of the Cauchy stress 

for simple extension and pure shear respectively. 

 
Figure 2: Cauchy stress relative error for simple 

extension 

 
Figure 3: Cauchy stress relative error for pure shear  

3.3 Identification of the reduced time 

function 
The identification of the reduced time function is 

obtained thanks to the discretization of the 

behaviour law equation (1), thus, at each 

experimental point kt   the minimization of the 

Cauchy stress error between the model and the and 

the recoded stress gives the corresponding reduced 

time k  . The experiment used here is the 

monotonic simple extension test at different strain 

rates combined with a dichotomy algorithm 

implemented in Matlab software. As a result we got 

the reduced time as a function of real time, the 

nominal stress error for the three strain rates 

10%,100% and 200%  are reported in figure 4, 5 

and 6 respectively.  

 
Figure 4: Cauchy stress relative error for simple 

extension at 
110% mn

  

 
Figure 5: Cauchy stress relative error for simple 

extension at 
1100% mn

  

 
Figure 6: Cauchy stress relative error for simple 

extension at 
1200% mn
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