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A probabilistic point of view for the exact or
approximated computation of the solution to

Kolmogorov hypoelliptic equations

Pierre Etoré∗ Jose R. León† Clémentine Prieur‡

September 13, 2021

Abstract

In this work, we propose a method for solving Kolmogorov hypoelliptic equa-
tions based on Fourier transform and Feynman-Kac formula. We first explain how
the Feynman-Kac formula can be used to compute the fundamental solution to
parabolic equations with linear or quadratic potential. Then applying these results
after a Fourier transform we deduce the computation of the solution to a a first class
of Kolmogorov hypoelliptic equations. Then we solve partial differential equations
obtained via Feynman-Kac formula from the Ornstein-Uhlenbeck generator. Also, a
new small time approximation of the solution to Kolmogorov hypoelliptic equations
is provided. We finally present the results of numerical experiments to check the
practical efficiency of this approximation.

Resume

Dans ce travail, nous proposons une méthode de résolution des équations hypoellip-
tiques de Kolmogorov basée sur la transformée de Fourier et la formule de Feynman-
Kac. Nous expliquons d’abord comment la formule de Feynman-Kac peut être
utilisée pour calculer la solution fondamentale des équations paraboliques à poten-
tiel linéaire ou quadratique. Puis en appliquant ces résultats après une transformée
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de Fourier, on déduit le calcul de la solution d’une première classe d’équations hy-
poelliptiques de Kolmogorov. Ensuite, nous résolvons les équations aux dérivées par-
tielles obtenues via la formule de Feynman-Kac à partir du générateur d’Ornstein-
Uhlenbeck. De plus, une nouvelle approximation en petit temps de la solution
des équations hypoelliptiques de Kolmogorov est fournie. Nous présentons enfin
les résultats d’expériences numériques pour vérifier l’efficacité pratique de cette ap-
proximation.

1 Introduction

In the forties of the XX century, two important tools in Physics were developed. The
first one was the path formulation of quantum mechanics by R.P. Feynman and the
second, which appeared sometime later, is the adaptation by M. Kac of Feynman’s ideas
to heat equation. Feynman introduced in his work a formal path integral, defined over
trajectories, showing the equivalence between his approach of quantum mechanics and
the one developed by Schrödinger. Kac, substituting the formal Feynman’s path integral
by an integral over Brownian motion paths, achieved to solve the heat equation with a
potential V by means of the expectation of a Brownian motion functional. The solution
found by Kac is called Feynman-Kac formula (F-K) in recognition to the work of both
researchers. Since then both techniques have been very useful in mathematical physics
and a huge amount of literature has been published since its introduction. Two important
references linked with these matters are the books [6] and [9] written by Feynman and
Kac, respectively. For an overview on the topic, the reader can consult [13] and the
bibliography therein.

In the present work we will use the F-K formula to find the fundamental solution
to several hypoelliptic Partial Differential Equations (PDE). Let us consider two vector

fields c : Rd → Rd̃ and b : Rd → Rd, with d not necessarily equal to d̃. We consider the
following PDE

∂u
∂t

(t, x, y) = 1
2
∆yu(t, x, y)+ < b(y),∇yu(t, x, y) > + < c(y),∇xu(t, x, y) >

+αV (x, y)u(t, x, y), (t, x, y) ∈ R∗+ × Rd̃ × Rd

u(0, x, y) = f(x, y), (x, y) ∈ Rd̃ × Rd.

(1)

By a fundamental solution to the PDE (1) we mean a kernel p(t, x, y, x′, y′) such that
for any initial condition f satisfying mild conditions one has

u(t, x, y) =

∫
Rd̃×Rd

p(t, x, y, x′, y′)f(x′, y′)dx′dy′. (2)

Using differentiation under the integral sign, the fundamental solution can be seen, for

2



any (x′, y′) ∈ Rd̃ × Rd, as the solution to

∂tp(t, x, y, x
′, y′) =

1

2
∆yp(t, x, y, x

′, y′)+ < b(y),∇yp(t, x, y, x
′, y′) > (3)

+ < c(y),∇xp(t, x, y, x
′, y′) > +αV (x, y)p(t, x, y, x′, y′),

for any (t, x, y) ∈ R∗+ × Rd̃ × Rd and with p(0, x, y, x′, y′) = δx′(x) ⊗ δy′(y), which means
that limt↓0

∫
p(t, x, y, x′, y′)f(x′, y′)dx′dy′ = f(x, y). Note that (3) is sometimes taken as

a definition of the fundamental solution in the literature (see, e.g., [7] in the elliptic case).
Let us now consider the following system of Stochastic Differential Equations (SDE){

dX(t) = c(Y (t))dt

dY (t) = dW (t) + b(Y (t))dt
(4)

where W is some d-dimensional Brownian motion.
It is well known that if (1) and (4) have both a unique solution, one has (under mild

assumptions on f and V ) the probabilistic representation

u(t, x, y) = Ex,y
[
eα

∫ t
0 V (X(s),Y (s))dsf(X(t), Y (t))

]
(5)

(see, e.g., [10, Section 5.7]; one can adapt these results to the hypoelliptic case). Here
Ex,y denotes the expectation computed under P(· |X(0) = x, Y (0) = y). Formula (5) is a
generalization of the initial formula by Feynman and Kac.

In these notes the game will often be to rewrite the expectation in (5) by using prob-
abilistic tricks (conditioning etc...). Then, by comparing (2) and (5), we will deduce the
fundamental solution to various PDEs of interest of type (1) (see first examples in Section
2). One particular case of interest is the following: if α = 0 in (1) then

u(t, x, y) =

∫
Rd̃×Rd

p(t, x, y, x′, y′)f(x′, y′)dx′dy′

= E
[
f(X(t), Y (t)) |X(0) = x, Y (0) = y

]
(6)

and the fundamental solution p(t, x, y, x′, y′) clearly appears as the transition function
of the process (X, Y ). Then, as for (3), this transition function solves for any arrival

point (x′, y′) ∈ Rd̃ × Rd the PDE
∂tp(t, x, y, x

′, y′) = 1
2
∆yp(t, x, y, x

′, y′)+ < b(y),∇yp(t, x, y, x
′, y′) >

+ < c(y),∇xp(t, x, y, x
′, y′) >, (t, x, y) ∈ R∗+ × Rd̃ × Rd

p(0, x, y, x′, y′) = δx′(x)⊗ δy′(y), (x, y) ∈ Rd̃ × Rd,

(7)

as a function of the starting point (x, y). Equations of type (7) were first studied by
Kolmogorov in [11]. Since then, such equations are known as Kolmogorov hypoelliptic
equations (KHE). Note however that in [11] the KHE appears in a time-inhomogeneous
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forward form, while Equation (7) is time-homogeneous and in the backward form (for
more details on the backward/forward terminology, see the appendix section 6).

One of the objectives of this paper is to provide a probabilistic approach to compute
the solution to KHEs described by (7), and thus to compute the transition probability
function of SDEs described by (4) by identification using (6). KHEs described by (7) can
be considered as particular cases of equations described by (3) with α = 0. In practice, we
may use the solution to an equation of type (3), with α 6= 0 a complex number, in order
to get a solution to (7), using Fourier transform arguments as follows. In the following,
we define the Fourier transform w.r.t the x variable as φ̂(γ) =

∫
Rd̃ e

−i<γ,x>φ(x)dx. Then,
taking the Fourier transform w.r.t the x variable in (7) yields

∂tp̂(t, γ, y, x
′, y′) = 1

2
∆yp̂(t, γ, y, x

′, y′)+ < b(y),∇yp̂(t, γ, y, x
′, y′) >

+i < γ, c(y) > p̂(t, γ, y, x′, y′), (t, γ, y) ∈ R∗+ × Rd̃ × Rd

p̂(0, γ, y, x′, y′) = e−i<γ,x
′>δy′(y), (γ, y) ∈ Rd̃ × Rd.

(8)

For fixed Fourier variable γ, Equation (8) is similar to Equation (3) with d̃ = 0, α
and V (γ, y) set to i, respectively, < γ, c(y) >. Note that the initial condition has been
replaced by p(0, γ, y, x′, y′) = e−i<x

′,γ>δy′(y), which is not a major issue for solving (8).

Then, taking the inverse Fourier transform φ(x) = 1
2π

∫
Rd̃ e

i<γ,x>φ̂(γ) dγ of the solution to
(8), we will deduce the solution to KHEs of type (7).

Our study is in close connection with [2], in which the authors also use the Fourier
transform method. However, their analysis is then based on a semi-classical approximation
“à la Morette-DeWitt” [5]. Note that the results in [2] have been deeply expanded in
[3]. The approach we propose in the present paper uses the F-K formula for computing
exactly or approximately the expectation of the resulting Brownian motion functional.
For these computations we resort to a regression model between the Brownian motion
{W (s), 0 ≤ s < t} and the value at terminal time W (t). This procedure is a well-known
tool in mathematical physics (see, e.g., [14, Theorem 6.6]).

This note is intended to introduce a topic, well known to analysts, to a probabilistic
audience. Some of the results obtained are known other are new. In all the results we claim
some originality in the procedures and how simple the proofs are. A similar approach has
been applied in [4] to degenerated elliptic operators. Nevertheless, there exist remarkable
differences with our work in the computations. Moreover, we propose in Section 4 a new
result on the asymptotic behavior of the solution to KHEs.

The paper is organized as follows. In Section 2, we recall the so-called F-K formula and
we explain how it can be used to compute the fundamental solution to parabolic equations
with linear or quadratic potential. Then we deduce from these results the computation of
the solution to a first class of KHEs. In Section 3, we solve partial differential equations
obtained via the F-K formulas from the Ornstein-Uhlenbeck generator. We propose in
Section 4 a new small time approximation of the solution to KHEs. We finally compare
in Section 5 the numerical approximation we propose with other ones from the literature.

4



The appendix section provides more details on the connexion between the solution to
KHEs in the backward or forward form and the probability transition function of processes
governed by SDEs.

2 Feynman-Kac formula, notation and first examples

In this section, we recall how a link between partial differential equations and stochastic
processes can be established by using the so-called Feynman-Kac (F-K) formula. Then
in Section 2.1 we exploit this link to compute the fundamental solution to parabolic
equations with linear or quadratic potential. In Section 2.2 we apply these results to the
computation of the solution to a first class of Kolmogorov hypoelliptic equations. F-K
formula originally was introduced as a tool to compute the solution of certain parabolic
partial differential equations as the expectation of some Brownian motion functional (see
for instance [13]).

Let us introduce some notation. The process B(t) = y + W (t) denotes the Brownian
motion beginning at y. The expectation with respect to this last process will be denoted
by Ey and we set E = E0. We consider the following SDE:

dB(t) = dW (t) with B(0) = y. (9)

Let V : Rd → R be a continuous function such that

E[eβ
∫ t
0 V (y+W (s))ds] <∞ for some β ∈ R and for all t ∈ R+ and y ∈ Rd. (10)

Then, if α = β + iγ, the following semigroup P V
t f(y) = Ey[eα

∫ t
0 V (B(s))dsf(B(t))] is a

family of continuous operators acting on the space Cb(Rd;C) of continuous and bounded
functions taking complex values. It is an easy matter to prove that the semigroup also
acts continuously on L2(Rd). By defining u(t, y) = P V

t f(y), the celebrated F-K formula
establishes that this function is the solution of the following partial differential equation:

∂u

∂t
(t, y) = 1

2
∆u(t, y) + αV (y)u(t, y), ∀t > 0,

u(0, y) = f(y)

(11)

which consists is a particular case of partial differential equations described by (1) with
d̃ = 0 and b ≡ 0.

Remark 1. There exist different conditions under which Hypothesis (10) holds. For
instance if β ≤ 0 then it is enough that V is bounded by below and if β > 0 a simple
condition is |V (y)| ≤ C (1 + ||y||2). In the following we assume one of the two conditions
according to the case.
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To conclude this section, let us compute, by using F-K formula, the fundamental

solution pV (t, y, z) of Equation (11). Let pt(z) = (2πt)−
d
2 e−

||z||2
2t denote the probability

density function of W (t). Then, using (5) and the total probability theorem, we can write

u(t, y) =
∫
Rd p

V (t, y, z)f(z)dz = Ey[eα
∫ t
0 V (B(s))dsf(B(t))]

=
∫
Rd E[eα

∫ t
0 V (y+W (s))ds|W (t) = z]pt(z)f(y + z)dz

=
∫
Rd E[eα

∫ t
0 V (y+W (s))ds|W (t) = z − y]pt(z − y)f(z)dz.

We deduce from the above equality

pV (t, y, z) = E[eα
∫ t
0 V (y+W (s))ds|W (t) = z − y]pt(z − y). (12)

For specific potentials V , it is possible to derive from (12) analytical expressions
of pV (t, y, z). Two important potentials verifying (10) are: V (y) =< a, y > for a ∈ Rd

and V (y) = 1
2
||Ω 1

2y||2 with Ω a diagonalizable symmetric matrix with non zero eigenval-
ues. Both cases will be handled in Section 2.1. Formula (12) can also be used for obtaining
an asymptotic expansion of the fundamental solution for small t (see Section 4).

2.1 Fundamental solution to parabolic equations with linear or
quadratic potential

In this section, we provide the analytical expression of the fundamental solution to the
partial differential equation described by (11) for a linear potential in Proposition 1 (see
[8, Example 2]), then for a quadratic potential in Proposition 2.

Proposition 1. Let V (y) =< a, y >, with a ∈ Rd. For any α ∈ C the fundamental
solution of (11) is

pV (t, y, z) = e
αt
2
<a,z+y>e||a||

2 α2

2
σ2
ξ (t)pt(z − y),

with σ2
ξ (t) = t3/12.

Proof. From (12) we have the following formula:

pV (t, y, z) = E[eα
∫ t
0<a,y+W (s)>ds|W (t) = z − y]pt(y − z)

= eαt<a,y>E[eα||a||
∫ t
0<

a
||a|| ,W (s)>ds|W (t) = z − y]pt(y − z).

Let P1 be the rotation of axes such that a
||a|| = P1(e1), with e1 the first coordinate

vector. This is a unitary transformation and the process W̃ (·) = P−1
1 W (·) is also a

standard Brownian motion, by Lévy theorem. Then we can write

E[eα
∫ t
0<a,W (s)>ds|W (t) = z − y] = E[eα||a||

∫ t
0<e1,P

−1
1 W (s)>ds|P−1

1 W (t) = P−1
1 (z − y)]

= E[eα||a||
∫ t
0<e1,W̃ (s)>ds|W̃ (t) = P−1

1 (z − y)] = E[eα||a||
∫ t
0 W̃1(s)ds|W̃1(t) =< e1, P

−1
1 (z − y) >]

= E[eα||a||
∫ t
0 W̃1(s)ds|W̃1(t) =< a

‖a‖ , z − y >].
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In this form we have reduced our problem to the one-dimensional one. Then we use
the following regression model. Let us define Z(t) =

∫ t
0
W̃1(s)ds a zero mean Gaussian

random variable. Thus we can write the regression of Z(t) on W̃1(t) involving ξ(t), another
zero mean Gaussian random variable:

Z(t) = ζ(t)W̃1(t) + ξ(t), ξ(t) ⊥ W̃1(t).

We have ζ(t) =
E[Z(t)W̃1(t)]

E[W̃ 2
1 (t)]

=
t

2
. Then E[ξ2(t)] = t3

4
− E[Z2(t)], thus σ2

ξ (t) = t3

12
. It

yields:
pV (t, y, z) = e

αt
2
<a,z+y>E[e||a||αξ(t)]pt(y − z),

using the moment-generating function of normal law we get

pV (t, y, z) = e
αt
2
<a,z+y>e

||a||2α2σ2
ξ (t)

2 pt(y − z),

where σ2
ξ (t) = t3/12.

Proposition 2. Let V (y) = 1
2
||Ω 1

2y||2, where Ω = P−1DP with PP T = Id and D a
diagonal matrix with non zero real coefficients. For any α ∈ C the fundamental solution
of (11) is

pV (t, y, z) =
d∏
i=1

[ √
αρit

sin(
√
αρit)

] 1
2
e−S(t,x(·))pt(0), (13)

where the ρi’s, 1 ≤ i ≤ d, are the eigenvalues of D, the function x(·) : [0, t]→ Cd solves

x′′ = −αDx, (14)

with x(0) = Pz, x(t) = Py, and S(t, ·) is the action functional defined by

S(t, γ) =
1

2

[ ∫ t

0

||γ′(s)||2ds− α
∫ t

0

||D1/2γ(s)||2ds
]
, (15)

for any smooth γ : [0, t]→ Cd.

Remark 2. In Proposition 2, note that Ω
1
2 = P−1D1/2P and that || · || denotes the norm

induced on Cd by the usual hermitian product, as the coefficients in D1/2 are possibly
complex numbers.

Proof of Proposition 2. Let u be the solution of (11). Using the (multidimensional-
complex) Cameron-Martin-Girsanov formula [1] we get, for any smooth function ψ satis-
fying ψ(0) = 0,

u(t, y) = Ey[eα2
∫ t
0 ‖Ω

1
2B(s)‖2dsf(B(t))]

= E[e
α
2

∫ t
0 ‖Ω

1
2 (ψ(s)+y+W (s))‖2dse−

∫ t
0 ψ
′(s)dW (s)− 1

2

∫ t
0 ‖ψ

′(s)‖2dsf(ψ(t) + y +W (t))]

=
∫
R E[e

α
2

∫ t
0 ‖Ω

1
2 (ψ(s)+y+W (s))‖2dse−

∫ t
0 ψ
′(s)dW (s)− 1

2

∫ t
0 ‖ψ

′(s)‖2ds|W (t) = z − ψ(t)− y]
f(z)pt(z − ψ(t)− y)dz.
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Further, choosing ψ s.t. ψ(t) = z − y and using time inversion arguments, we get

pV (t, y, z) = E[e
α
2

∫ t
0 ||Ω

1
2 (ψ(t−s)+y+W (t−s))||2dse

∫ t
0 ψ
′(t−s)dW (t−s)− 1

2

∫ t
0 ||ψ

′(t−s)||2ds|W (t) = 0]pt(0).

We set now x(s) = Pψ(t− s) + Py. Noticing that ψ′(t− s) = −P−1x′(s), it holds

pV (t, y, z) = E[e
α
2

∫ t
0 ||P

−1D
1
2 (x(s)+PW (t−s))||2dse−

∫ t
0 P
−1x′(s)dW (t−s)− 1

2

∫ t
0 ||P

−1x′(s)||2ds|W (t) = 0]pt(0).

Using now successively (W (·)|{W (t) = 0}) d
= (W (t− ·)|{W (t) = 0}) (0 ≤ s ≤ t) and

PP T = Id it follows

pV (t, y, z) = E[e
α
2

∫ t
0 ||P

−1D
1
2 (x(s)+PW (s))||2dse−

∫ t
0 P
−1x′(s)dW (s)− 1

2

∫ t
0 ||P

−1x′(s)||2ds|W (t) = 0]pt(0)

= E
[
e
α
2

∫ t
0 ||D

1
2 PW (s))||2dse

α
2

∫ t
0 ||D

1
2 x(s))||2ds+

∫ t
0 α<D

1
2 x(s),D

1
2 PW (s)>ds

e−
∫ t
0 x
′(s)dPW (s)− 1

2

∫ t
0 ||x

′(s)||2ds|W (t) = 0
]
pt(0).

Thus, considering the new standard Brownian motion W̃ = PW we have

pV (t, y, z) = E
[
e
α
2

∫ t
0 ||D

1
2 W̃ (s))||2dse

α
2

∫ t
0 ||D

1
2 x(s))||2ds+

∫ t
0 α<Dx(s),W̃ (s)>ds

e−
∫ t
0 x
′(s)dW̃ (s)− 1

2

∫ t
0 ||x

′(s)||2ds|W̃ (t) = 0
]
pt(0).

(16)

We now assume that x(·) satisfies (14) and recall that x(0) = Pz and x(t) = Py (note
that Eq. (16) is satisfied for any x(·) satisfying (14) and x(0) = Pz, x(t) = Py). Under
the conditioning W̃ (t) = W̃ (0) = 0, we have∫ t

0

x′(s)dW̃ (s) = α

∫ t

0

< Dx(s), W̃ (s) > ds,

so that

pV (t, y, z) = E
[
e
α
2

∫ t
0 ||D

1
2 W̃ (s))||2ds|W̃ (t) = 0

]
e−S(t,x(·))pt(0), (17)

where S(t, ·) is the action functional defined by (15). We now turn to the computation of

E
[
e
α
2

∫ t
0 ||D

1
2 W̃ (s))||2ds|W̃ (t) = 0

]
= E[eα

∑d
i=1

∫ t
0 ρiW̃

2
i (s)ds|W̃ (t) = 0].

Using the independence between the coordinates of the Brownian motion W̃ we get

E
[
e
α
2

∫ t
0 ||D

1
2 W̃ (s))||2ds|W̃ (t) = 0

]
=

d∏
i=1

E[e
α
2

∑d
i=1

∫ t
0 ρiW̃

2
i (s)ds|W̃i(t) = 0].
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The conditional expectation for each term of the product can be computed using the
following regression model

W̃i(s) =
s

t
W̃i(t) + Zi(s),

where Zi(·) is independent of W̃i(t). In this form, we have that Zi(·) is a mean zero
Gaussian process with covariance function E[Zi(s1)Zi(s2)] = s1 ∧ s2 − s1s2

t
. This process

satisfies Zi(t·)
d
=
√
tbi(·), where bi are independent Brownian bridges. Thus

E[e
αρi
2

∫ t
0 W̃

2
i (s)ds|W̃ (t) = 0)] = E[et

2 αρi
2

∫ 1
0 b

2
i (s)ds].

It is known that the Brownian bridge admits the following representation

bi(s) =
√

2
∞∑
k=1

zk,i
sin(kπs)

kπ
, (18)

where zk,i is a sequence of N (0, 1) independent random variables. Then, by using expan-
sion (18) and the moment generating function of the χ2

1, we get:

E[et
2 αρi

2

∫ 1
0 b

2(s)ds] =
∞∏
k=1

E[e
t2
αρi
2

π2k2 z2
k,i ] =

∞∏
k=1

1

(1− t2αρi
π2k2 )

1
2

=

( √
αρit

sin(
√
αρit)

) 1
2

.

Here we have used the Weierstrass-Hadamard factorization formula of the sine function
at the last inequality. Therefore from (17) we obtain that (13) holds and the proof is
completed.

Remark 3. Our procedure is inspired in the seminal work of Azencott & Doss [1], we refer
the reader to this paper for more details. The potential V (y) = y2/2 corresponds to the
Hamiltonian for the quantum harmonic oscillator. For a deep and ingenious insight into
this last computation see [6, p. 72-73]. The results in Proposition 1 and in Proposition 2
are well known in dimension d = 1. If we take α ∈ R∗− and d = 1 these are the results
obtained in [2], using the already quoted method of [5]. If α ∈ R∗+ and d = 1 these are the
results announced in [6, Problems 3-8 and 3-9].

2.2 Application to the computation of the solution to a first
class of Kolmogorov hypoelliptic equations

In this section, we focus on the Kolmogorov hypoelliptic equation (KHE), that is we
set α = 0 in (7). We consider here two examples with d̃ = 1 and d ≥ 1, with b ≡ 0 and
a linear or quadratic coefficient c(y). The results are deduced from Propositions 1 and 2
after a Fourier transform with respect to the variable x.
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Linear case: the equation has the form
∂tp(t, x, y, x

′, y′) =
1

2
∆yp(t, x, y, x

′, y′)− < a, y > ∂xp(t, x, y, x
′, y′),

(t, x, y) ∈ R∗+ × R× Rd

p(0, x, y, x′, y′) = δx′(x)⊗ δy′(y), (x, y) ∈ R× Rd.

Let us denote its solution by p<a,y>(t, x, y, x′, y′). Then, taking Fourier transform with
respect to the variable x ∈ R we get for any γ ∈ R

∂tp̂(t, γ, y, x
′, y′) =

1

2
∆p̂(t, γ, y, x′, y′)− iγ < a, y > p̂(t, γ, y, x′, y′),

(t, y) ∈ R∗+ × Rd

p̂(0, γ, y, x′, y′) = e−iγx
′
δy′(y), y ∈ R.

Applying Proposition 1 with α = −iγ and then the inverse Fourier transform we get
the following result.

Corollary 1. We have

p<a,y>(t, x, y, x′, y′) =
e
− (x′−x−t<a,y+y′>

2 )2

2||a||2σ2
ξ

(t)

√
2π||a||σξ(t)

pt(y
′ − y)

with σ2
ξ (t) = t3/12.

Quadratic case: the KHE has the form
∂tp(t, x, y, x

′, y′) =
1

2
∆yp(t, x, y, x

′, y′) + ||D
1
2y||2∂xp(t, x, y, x′, y′)

p(0, x, y, x′, y′) = δx′(x)⊗ δy′(y),

with D is a positive definite diagonal matrix with eigenvalues ρi 6= 0. The quadratic
potential plays an important role in the study of the harmonic oscillator. Let us denote

by p||D
1
2 y||2(t, x, y, x′, y′) the solution of this equation. As previously, we take the Fourier

transform with respect to the variable x and the equation becomes
∂tp̂(t, γ, y, x

′, y′) =
1

2
∆yp̂(t, γ, y, x

′, y′) + iγ||D
1
2y||2p̂(t, γ, y, x′, y′)

p̂(0, γ, y, x′, y′) = e−iγx
′
δy′(y).

Applying Proposition 2 with α = 2iγ, and then the inverse Fourier transform we will get
the following result.
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Corollary 2. We have

p||D
1
2 y||2(t, x, y, x′, y′) = (Pdi=1u(t, ·, yi, y′i))(x− x′),

where we have denoted by

Pdi=1gi(x) = g1 ∗ g2 ∗ . . . ∗ gd(x)

the convolution product between d functions {gi}di=1, and where

u(t, x, yi, y
′
i) =

1

2π

∫
R
eiγxf(γ, ρi, yi, y

′
i)dγ (19)

with

f(γ, ρ, yi, y
′
i) =

1√
2π

[ √
2iγρ

sin(
√

2iγρt)

] 1
2
e
− 1

2

√
−2iγρ

sinh(
√
−2iγρt)

(((y′i)
2+y2

i ) cosh(
√
−2iγρt)−2y′iyi), ∀1 ≤ i ≤ d.

(20)

Proof. Applying Proposition 2 we get

p̂(t, γ, y, x′, y′) = e−iγx
′
d∏
i=1

[ √
2iγρit

sin(
√

2iγρit)

] 1
2
e−S(t,x(·))pt(0)

where x : [0, t]→ Rd is solution of the equation

x′′ = −2iγDx,

with boundary conditions x(0) = y′ and x(t) = y and where

S(t, x(·)))

=
1

2

d∑
i=1

[ ∫ t

0

x′i(s)x
′
i(s)ds− 2iγρi

∫ t

0

x2
i (s)ds

]
=

1

2

d∑
i=1

(x′i(t)xi(t)− x′i(0)xi(0))

=
1

2

d∑
i=1

√
−2iγρi

sinh(
√
−2iγρit)

(((y′i)
2 + y2

i ) cosh(
√
−2iγρit)− 2y′iyi).

Noting that

e−iγx
′
d∏
i=1

[ √
2iγρit

sin(
√

2iγρit)

] 1
2
e−S(t,x(·))pt(0)

=
1

(2π)
d
2

e−iγx
′
d∏
i=1

[ √
2iγρi

sin(
√

2iγρit)

] 1
2
e
− 1

2

√
−2iγρi

sinh(
√
−2iγρit)

(((y′i)
2+y2

i ) cosh(
√
−2iγρit)−2y′iyi).
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and applying the inverse Fourier transform we get

p||D
1
2 y||2(t, x, y, x′, y′)

=
1

2π
pt(0)

∫
R
eiγ(x−x′)

d∏
i=1

[ √
2iγρit

sin(
√

2iγρit)

] 1
2
e−S(t,x(·))dγ

=
1

(2π)
d
2

+1

∫
R
eiγ(x−x′)

d∏
i=1

[ √
2iγρi

sin(
√

2iγρit)

] 1
2
e
− 1

2

√
−2iγρi

sinh(
√
−2iγρit)

(((y′i)
2+y2

i ) cosh(
√
−2iγρit)−2y′iyi)dγ.

Defining f(γ, ρ, yi, y
′
i) as in (20) we have

p
1
2
||D

1
2 y||2(t, x, y, x′, y′) =

1

2π

∫
R
eiγ(x−x′)

d∏
i=1

f(γ, ρi, yi, y
′
i)dγ.

Defining u(t, x, yi, y
′
i) as in (19) we get

p
1
2
||D

1
2 y||2(t, x, y, x′, y′) = (Pdi=1u(t, ·, yi, y′i))(x− x′).

Hence, the computation of p
1
2
||D

1
2 y||2(t, x, y, x′, y′) amounts to the computation of the

integral appearing in (19).

Remark 4. Note that in [2, Theorem 3.4], a similar formula was obtained (for α = γ ∈ R)
but expressed by means of an integral of a complex valued function that is not explicitly

calculable (let us remark a little misprint in that formula, the term
√

1
sinh(at)

inside of the

integral is missed).

3 Ornstein-Ulhenbeck generator

In this section we solve partial differential equations obtained via F-K formulas from the
Ornstein-Uhlenbeck generator. Once more the partial differential equations we consider
are particular case of (1).

3.1 Fundamental solution to the Ornstein-Uhlenbeck parabolic
equation with linear potential

In all this section, we consider d = 1 and d̃ = 0. Let us consider the Ornstein-Uhlenbeck
process, defined as the solution of the stochastic differential equation

dY (t) = dW (t)− ζY (t)dt , Y (0) = w. (21)
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The infinitesimal generator of this process is
1

2

∂2

∂2y
− ζy ∂

∂y
. We know from F-K for-

mula that function u(t, y) = Ey[eα
∫ t
0 V (Y (s))dsf(Y (t))] is solution of the following partial

differential equation 
∂u

∂t
=

1

2

∂2u

∂2y
− ζy∂u

∂y
+ αV (y)u

u(0, y) = f(y).

We aim in this section at computing an explicit formula for the fundamental solution
of the above equation that we denote by pVOU . To easier the computations, we focus on
the linear case V (y) = y. Our result is stated in Proposition 3.

Proposition 3. Let V (y) = y. We have, for any α ∈ C,

pVOU(t, y, z) = eα
y
ζ

(1−e−ζt)e
α
ζ

(z−ye−ζt) tanh( ζ
2
t)e

1
2
α2σ2

ξ(t)

√
ζ

π

e
− ζ(z−ye

−ζt)2

(1−e−2ζt)

√
1− e−2ζt

(22)

with σ2
ξ(t) = σ2

Z(t) −
1

2ζ3

(1−e−ζt)3

(1+e−ζt)
and σ2

Z(t) = 1
ζ2

∫ t
0
(1− e−ζ(t−u))2du.

Proof. We have∫
R
pVOU(t, y, z)f(z)dz = Ey[eα

∫ t
0 Y (s)dsf(Y (t))] =

∫
R
Ey[eα

∫ t
0 Y (s)ds|Y (t) = z]f(z)p

Y (t)
t (z)dz

where p
Y (t)
t denotes the density function of the random variable Y (t) with Y = (Y (t))t≥0

is the process solution of (21). It is well known that Y (t) = ye−ζt +
∫ t

0
e−ζ(t−s)dW (s) so

that Y is a Gaussian process whose mean and covariance functions are m(t) = ye−ζt and

r(t, t+ h) = e−ζh (1−e−2ζt)
2ζ

respectively. Thus the density of the random variable Y (t) is

pY (t)(z) =

√
ζ

π

e
− ζ(z−ye

−ζt)2

(1−e−2ζt)

√
1− e−2ζt

·

As previously, we use a regression to link the centered Gaussian random variable

Z(t) :=

∫ t

0

Y (s)ds − y

ζ
(1 − e−ζt) =

∫ t

0

∫ s

0

e−ζ(s−u)dW (u)ds =
1

ζ

∫ t

0

(1 − e−ζ(t−u))dW (u)

whose variance is σ2
Z(t) = 1

ζ2

∫ t
0
(1 − e−ζ(t−u))2du with the centered Gaussian random

variable M(t) := Y (t)− ye−ζt. With these notation, the regression model writes

Z(t) = ω(t)M(t) + ξ(t), ξ(t) ⊥M(t)

with

ω(t) =
E[Z(t)M(t)]

E[M2(t)]
=

1

ζ

[1− e−ζt]
1 + e−ζt

=
1

ζ
tanh(

ζ

2
t),
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as E[Z(t)M(t)] = E[
1

ζ

∫ t

0

(1− e−ζ(t−s1))dW (s1)

∫ t

0

e−ζ(t−s2)dW (s2)] =
1

2ζ2
(1− e−ζt)2 and

E[M2(t)] =
(1− e−2ζt)

2ζ
. We also compute σ2

ξ(t) := E[ξ2(t)] = E[Z2(t)] − ω2(t)E[M2(t)] =

σ2
Z(t) −

1

2ζ3

(1− e−ζt)3

(1 + e−ζt)
. Then we get

Ey[eα
∫ t
0 Y (s)ds|Y (t) = z] = eα

y
ζ

(1−e−ζt)E[eαZ(t)|M(t) = z − ye−ζt]

= eα
y
ζ

(1−e−ζt)e
α
ζ

(z−ye−ζt) tanh( ζ
2
t)E[eαξ(t)] = eα

y
ζ

(1−e−ζt)e−
α
ζ

(z−ye−ζt) tanh( ζ
2
t)e

1
2
α2σ2

ξ(t) which leads
to Formula (22) for pVOU(t, y, z).

3.2 Application to the computation of the solution to the Ornstein-
Uhlenbeck Kolmogorov hypoelliptic equation

In this section, we consider the following partial differential equation
∂u

∂t
=

1

2

∂2u

∂2y
− ζy∂u

∂y
− y∂u

∂x

u(0, x, y) = f(x, y).

This equation is a particular case of (1) with d = 1, d̃ = 1, V ≡ 0. We aim at computing
its fundamental solution, denoted by p0

OU .
By taking the Fourier transform with respect to the variable x we obtain the parabolic

equation 
∂p̂0

OU

∂t
=

1

2

∂2p̂0
OU

∂2y
− ζy∂p̂

0
OU

∂y
− iγyp̂0

OU

p̂0
OU(0, γ, y) = e−ix

′γδy′(y).

Using Proposition 3 we get

p̂0
OU(t, γ, y) = e−iγx

′
e−iγ

y
ζ

(1−e−ζt)e
iγ
ζ

[(y′−ye−ζt) tanh( ζ
2
t)]e−

1
2
γ2σ2

ξ(t)

√
ζ

π

e
− ζ(y

′−ye−ζt)2

(1−e−2ζt)

√
1− e−2ζt

= e−iγ
[
x′+ y

ζ
(1−e−ζt)− 1

ζ
(y′−ye−ζt) tanh( ζ

2
t)
]
e−

1
2
γ2σ2

ξ (t)

√
ζ

π

e
− ζ(y

′−ye−ζt)2

(1−e−2ζt)

√
1− e−2ζt

·

Then, applying the inverse Fourier transform we get

p0
OU(t, x, y, x′, y′) =

√
6
√
ζ

πt3/2
e

(x−x′− y
ζ

(1−e−ζt)+ 1
ζ

(y′−ye−ζt) tanh(
ζ
2 t)])

2

t3
6

e
− ζ(y

′−ye−ζt)2

(1−e−2ζt)

√
1− e−2ζt

·
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4 Small time approximation

Let us come back to the Kolmogorov hypoelliptic equations (7), analyzed in Section 2.2
for linear or quadratic term c(y). In this section, our aim is to provide a small time
approximation of the solution pc(t, x, y, x′, y′) to the KHE

∂tp(t, x, y, x
′, y′) = 1

2
∆yp(t, x, y, x

′, y′) + c(y)∂xp(t, x, y, x
′, y′),

(t, x, y) ∈ R+ × R× Rd

p(0, x, y, x′, y′) = δx′(x)⊗ δy′(y), (x, y) ∈ R× Rd,
(23)

with general c(y), assuming that |c(y)| ≤ C (1 + ||y||2) (see Remark 1).
We will first give heuristic arguments on how to guess an approximation pc of the

kernel pc (see Conjecture 1). Then a rigorous approximation result will be stated in
Theorem 1.

Heuristic arguments -
Step 1: Fourier transform. We first take the Fourier transform of Equation (23) with
respect to the variable x, and get for any γ ∈ R:{

∂tp̂(t, γ, y, x
′, y′) =

1

2
∆yp̂(t, γ, y, x

′, y′) + iγc(y)p̂(t, γ, y, x′, y′)

p̂(0, γ, y, x′, y′) = e−ix
′γδy′(y).

(24)

The solution of Eq. (24), given in (12), is recalled hereafter:

p̂c(t, γ, y, x′, y′) = e−iγx
′E[eiγ

∫ t
0 c(y+W (s))ds|W (t) = y′ − y]pt(y

′ − y).

Once more, we introduce a regression model:

W (s) =
s

t
W (t) +

√
tb
(s
t

)
, 0 ≤ s ≤ t and 1 ≤ i ≤ d,

where the equality is an equality in probability distribution and where b(·) is a multidi-
mensional Brownian bridge b(s) = (b1(s), . . . , bd(s)), having in each coordinate indepen-
dent Brownian bridges that are also independent from W (t). We get (see also [14, p. 45]):

p̂c(t, γ, y, x′, y′) = e−iγx
′
pt(y

′ − y)E[eitγ
∫ 1
0 c(y+s(y′−y)+

√
tb(s))ds].

We assume in the following that c is three times continuously differentiable and the
derivatives satisfy ||Dkc(x)|| ≤ C(1 + ||x||2) for k = 0, 1, 2, 3 and C is a generic constant.

Remark 5. We can assume the more general hypothesis ||Dkc(x)|| ≤ P (||x||) where P
is a polynomial with positive coefficients. But the former hypothesis makes more easy the
writing.
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Step 2: a first Taylor expansion. The assumption that c is two times differentiable
allows to apply a Taylor’s expansion, leading to:∫ 1

0

c(y + s(y′ − y) +
√
tb(s)))ds

= c(y) +
1

2
< c′(y), y′ − y > +

√
t

∫ 1

0

< c′(y),b(s) > ds+ F (y, y′,
√
tb(·))

where we have denoted by F (y, y′,
√
tb(·)) the integral form of the remainder, that is∫ 1

0

∫ 1

0

(s(y′−y)+
√
tb(s)))ThD2c(y+(1−h)[s(y′−y)+

√
tb(s)])(s(y′−y)+

√
tb(s)))dhds.

Then we can write:

E[eitγ
∫ 1
0 c(y+s(y′−y)+

√
tb(s))ds] = eitγ(c(y)+ 1

2
<c′(y),y′−y>)E[eit

3
2 γ<c′(y),

∫ 1
0 b(s)ds>eitγF (y,y′,

√
tb(·))]·

The variable < c′(y),
∫ 1

0
b(s)ds > is a mean zero Gaussian random variable with

variance equal to E[(
∫ 1

0
b1(s)ds)2]||c′(y)||2 = 1

12
||c′(y)||2, leading to:

E[eit
3
2 γ<c′(y),

∫ 1
0 b(s)ds>] = e−

1
12 t

3γ2||c′(y)||2

2 . (25)

For future use we need to bound the function F and its derivatives. For doing so let
consider the function

F (y, y′, `v) :=
∑

1≤i,j≤d

∫ 1

0

∫ 1

0

Lij(y, y
′, h, s, `v)dsdh,

where

Lij(y, y
′, h, s, `v) := (s(y − y′) + `v)ihc

′′
ij(y + (1− h)[s(y − y′) + `v])(s(y − y′) + `v)j,

the c′′ij’s being the coefficients of the matrix D2c. Bellow C denotes a generic constant
which may vary from one line to another. Using the hypothesis satisfied by the derivatives
and 0 ≤ h ≤ 1 we are led to the following inequality

|Lij(y, y′, h, s, `v)| ≤ ||s(y − y′) + `v||2 sup
ij
|cij(y + (1− h)[s(y − y′) + `v])|

≤ C(||y − y′||2 + ||`v||2)(1 + ||y + (1− h)s(y − y′) + `v]||2)

≤ C(||y − y′||2 + `2||v||2)(1 + 2||y + (1− h)[s(y − y′)||2 + 2`2||v||2)

≤ C(C1(y, y′) + C2(y, y′)`2||v||2 + C3(y, y′)`4||v||4),
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where the Ci(y, y
′) are up to order 4 polynomials depending on y, y′. This yields

|F (y, y′, `v)| ≤ C(C1(y, y′) + C2(y, y′)`2||v||2 + C3(y, y′)`4||v||4)

and finally

|F (y, y′,
√
tb(·))|2 ≤ C(C2

1(y, y′) + C2
2(y, y′)t||b||2∞ + C2

3(y, y′)t2||b||4∞). (26)

We can also bound the following derivative

∂`F (y, y′, `v) =
∑

1≤i,j≤d

∫ 1

0

∫ 1

0

∂`Lij(y, y
′, h, s, `v)dsdh.

Thus we bound separately each term of this sum.

|∂`Lij(y, y′, h, s, `v)| = | − vihc′′ij(y + (1− h)[s(y − y′) + `v])(s(y − y′) + `v)j

− vjhc′′ij(y + (1− h)[s(y − y′) + `v])(s(y − y′) + `v)i

+ (s(y − y′) + `v)i(s(y − y′) + `v)j

d∑
k=1

hc′′′ijk(y + (1− h)[s(y − y′) + `v])vk|.

Using again the bound for ||D2c(x)|| we obtain the following upper bound for the two
first terms:

C||v||(||y − y′||+ `||v||)(1 + 2(C1(y, y′) + `2||v||2)).

For bounding the third term we use the bound ||D3c(x)|| ≤ C(1 + ||x||2), then

|(s(y − y′) + `v)i(s(y − y′) + `v)j

d∑
k=1

hc′′′ijk(y + (1− h)[s(y − y′) + `v])vk|

≤ C(||s(y − y′) + `v||2(C4(y, y′) + `2||v||2)) ≤ C(C5(y, y′) +C6(y, y′)`2||v||2 + `4||v||4).

Summing up we have

|∂`F (y, y′, `v)| ≤ C(C7(y, y′) + C8(y, y′)`2||v||2 + `4||v||4), (27)

where again the Ci(y, y
′) are up to order 4 polynomials depending on y, y′.

Step 3: a second Taylor expansion. Now we consider the following expansion:

1
t

(
p̂c(t, γ, y, x′, y′)− e−iγx′eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)

)
pt(y − y′)

= e−iγx
′
eitγ(c(y)+ 1

2
<c′(y),y′−y>)E[eit

3
2 γ<c′(y),

∫ 1
0 b(s)ds> eitγF (y,y′,

√
tb(·))−1

t
]pt(y − y′)

= eiγweitγ(c(y)+ 1
2
<c′(y),z−y>)E[eit

3
2 γ<c′(y),

∫ 1
0 b(s)ds>( e

iγtF (t,z,y,
√
tb(·))−1−itγF (y,y′,

√
tb(·))

t
)]pt(z − y)

+eiγweitγ(c(y)+ 1
2
<c′(y),z−y>)E[eit

3
2 γ<c′(y),

∫ 1
0 b(s)ds>(iγF (y, y′,

√
tb(·))]pt(z − y) = I1 + I2.
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Let study each term in the above sum separately. First, we need the following inequality,
for t > 0 and x ∈ R it holds |eitx − 1− itx| ≤ t2x2

2
. In this form we can obtain

|e
itγF (y,y′,

√
tb(·)) − 1− itγF (y, y′,

√
tb(·))

t
| ≤ t2γ2F 2(y, y′,

√
tb(·))

2
.

For the I1 term we use the bound obtained in (26). Thus we get

|I1| ≤ t2γ2CE[(C2
1(y, y′) + C2

2(y, y′)t||b||2∞ + C2
3(y, y′)t2||b||4∞)]. (28)

Above we have used the integrability of the r.v. ||b||α∞ for α > 0.
For bounding I2, using a Taylor expansion we have

F (y, y′, `v) = F (y, y′, 0) + `v

∫ 1

0

∂3F (y, y′, z`v)dz.

Then, using (27)

|`
∫ 1

0

∂3F (y, y′, z`v)dz| ≤ C`(C7(y, y′) + C8(y, y′)`2||v||2 + `4||v||4),

putting ` =
√
t and v = b(t) we get

F (y, y′,
√
tb(·)) = F (y, y′, 0) +

√
tb(t)

∫ 1

0

∂`F (y, y′, z
√
tb(·))dz.

Furthermore

|
√
tb(·)

∫ 1

0

∂`F (y, y′, z
√
tb(·))dz| ≤ C

√
t(C7(y, y′) + C8(y, y′)t||b||2∞ + t2||b||4∞)||b||∞.

(29)
Using again the integrability of ||b||α∞ finally we get

E[eit
3
2 γ<c′(y),

∫ 1
0 b(s)ds>(iγF (y, y′,

√
tb(·))]

= iγF (y, y′, 0)E[eit
3
2 γ<c′(y),

∫ 1
0 b(s)ds>] + γO(

√
t). (30)

Remark 6. Note that the multiplicative constant in the term O
(√

t
)

writes as a poly-

nomial in y, y′, up to order 8. Here the remainder term in γO(
√
t) comes from the con-

tribution in γO(
√
t) from the I2 term and the contribution in γ2O(t2) from the I1 term.

We will have to consider these contributions separately in the proof of the forthcoming
Theorem 1.
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Summing up we obtain

1
t

(
p̂c(t, γ, y, x′, y′)− e−iγx′eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)

)
pt(y − y′)

= e−iγx
′
eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)

(
iγF (y, y′, 0) + |γ|O

(√
t
))
pt(y − y′)

∼t∼0 e
−iγx′eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)iγH(y, y′)pt(y − y′),

with

H(y, y′) = F (y, y′, 0) =

∫ 1

0

∫ 1

0

s2(y′ − y)ThD2c(y + (1− h)s(y′ − y))(y′ − y)dhds. (31)

The same commentary as above for the term O
(√

t
)

holds true here.

Step 4: computing the inverse Fourier transform. From now on we assume that
we are doing our computations with y ∈ Rd s.t. c′(y) 6= 0 (see the forthcoming Remark
7). Let us denote

q(t, x, y, x′, y′) =

√
6e
−6

((x−x′)+t[c(y)+ 1
2<c
′(y),y′−y>])2

t3||c′(y)||2

√
π||c′(y)||t 3

2

pt(y − y′). (32)

We have

q̂(t, γ, y, x′, y′) = e−iγx
′
eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)pt(y − y′).

Using then the inverse Fourier transform we get:

1
t

(pc(t, x, y, x′, y′)− q(t, x, y, x′, y′))

= 1
2π

∫
R e

iγx( p̂
c(t,γ,y,x′,y′)−q̂(t,γ,y,x′,y′)

t
)dγ

∼t∼0 H(y, y′)pt(y − y′) 1
2π

∫
R e

iγ(x−x′+t(c(y)+ 1
2
<c′(y),y′−y>))iγe−

1
2

( 1
12
t3γ2||c′(y)||2)dγ

= H(y, y′)pt(y − y′) d
dx

√
6

πt3||c′(y)||2 e
− 6(x−x′+t(c(y)+ 1

2<c
′(y),y′−y>))2

t3||c′(y)||2

= − 2√
π
H(y, y′)pt(y − y′)( 6

t3||c′(y)||2 )
3
2

×(x− x′ + t(c(y) + 1
2
< c′(y), y′ − y >))e

− 6(x−x′+t(c(y)+ 1
2<c
′(y),y′−y>))2

t3||c′(y)||2 .

Note that this result is not rigorous because in the third line we consider the inverse
Fourier transform of a function which is only bounded.

Finally, Steps 1 to 4 lead to the following conjecture:
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Conjecture 1. Assume c is three times continuously differentiable and satisfies ||Dic(y)||| ≤
C (1 + ||y||2) for i = 0, 1, 2, 3. Let (x, x′, y, y′) ∈ R4 be such that c′(y) 6= 0. Then, an ap-
proximation for small time t of pc(t, x, y, x′, y′) is

pc(t, x, y, x′, y′) = q(t, x, y, x′, y′)− 2t√
π
H(y, y′)pt(y − y′)( 6

t3||c′(y)||2 )
3
2

×(x− x′ + t(c(y) + 1
2
< c′(y), y′ − y >))e

− 6(x−x′+t(c(y)+ 1
2<c
′(y),y′−y>))2

t3||c′(y)||2 ,
(33)

with H(y, y′) and q(t, x, y, x′, y′) defined respectively by (31) and (32).

We now aim at giving a rigorous statement of the above conjectured approximation
result. We denote by (P c

t ) the semigroup associated to the kernel pc, or equivalently
associated to the process (X, Y ) solution of (4) with b ≡ 0. That is to say we have
P ctf(x, y) =

∫
p(t, x, y, x′, y′)f(x′, y′)dx′dy′ for f continuous and bounded. We recall

that u(t, x, y) = P ctf(x, y) solves
∂u

∂t
=

1

2
∆yu+ c(y)

∂u

∂x

u(0, x, y) = f(x, y).

(34)

We will denote P
c

tf(x, y) =
∫
pc(t, x, y, x′, y′)f(x′, y′)dx′dy′, with pc(t, x, y, x′, y′) de-

fined by (33).

Theorem 1. Assume c is three times continuously differentiable and that ||Dic(y)|| ≤
C (1 + ||y||2) for i = 0, 1, 2, 3. Let f ∈ Cb(R × Rd) such that f(·, y′), ∂f

∂x
(·, y′), ∂2f

∂x2 (·, y′)
and ∂3f

∂x3 (·, y′) are square integrable for all y′. Let (x, y) s.t. c′(y) 6= 0 and assume that for
any polynomial C(y, y′) up to order 8 one has∫

Rd
|C(y, y′)|(||f(·, y′)||2 + ||∂f

∂x
(·, y′)||2

+ ||∂
2f

∂x2
(·, y′)||2 + ||∂

3f

∂x3
(·, y′)||2)pt(y

′ − y)dy′ <∞. (35)

Then we have, for t ↓ 0, ∣∣P c
t f(x, y)− P c

tf(x, y)
∣∣ = O(t

3
2 ).

Proof. Denote f̂(γ, y′) =
∫
R e
−iγxf(x, y′)dx. We first check that for any y′ ∈ Rd we have

f̂(·, y′) ∈ L1(R). Indeed we have that∫
R |f̂(γ, y′)|dγ ≤ (

∫
R(1 + γ2)|f̂(γ, y′)|2dγ)

1
2 (
∫
R(1 + γ2)−1dγ)

1
2

≤ C(||f(·, y′)||2 + ||∂f
∂x

(·, y′)||2) <∞.
(36)
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In the same manner we can show that ĝ(·, y′) ∈ L1(R) for g(·) = ∂f
∂x

(·, y′) and g(·) =
∂2f
∂x2 (·, y′), using our assumption on the partial derivatives of f . This will be needed in the
sequel to control terms one may find in integrals.

To solve Equation (34), we take the Fourier transform with respect to the variable x
getting for any γ 

∂û

∂t
=

1

2
∆yû+ iγc(y)û

û(0, γ, y) = f̂(γ, y).

The solution of this last equation is (see Section 2)

û(t, γ, y) = E[eiγ
∫ t
0 c(y+W (s))dsf̂(γ, y +W (t))]

=
∫
Rd E[eitγ

∫ 1
0 c(y+s(y′−y)+

√
tb(s))ds]f̂(γ, y′)pt(y

′ − y)dy′.

Let us introduce the frozen solution

ûfr(t, γ, y) =

∫
Rd
eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)f̂(γ, y′)pt(y

′ − y)dy′.

We get, using in particular (30) and the notation for F and H (see also Remark 6)

û(t, γ, y)− ûfr(t, γ, y)

t

=

∫
Rd
eitγ(c(y)+ 1

2
<c′(y),y′−y>)E[eit

3
2 γ<c′(y),

∫ 1
0 b(s)ds> (eiγtF (y,y′,

√
tb(·)) − 1)

t
]f̂(γ, y′)pt(y

′ − y)dy′

=

∫
Rd
eitγ(c(y)+ 1

2
<c′(y),y′−y>)e−

1
2

( 1
12
t3γ2||c′(y)||2)iγH(y′, y)f̂(γ, y′)pt(y

′ − y)dy′

+

∫
Rd

[
γO(
√
t) + γ2O(t2)

]
f̂(γ, y′)pt(y

′ − y)dy′.

One now wishes to take the inverse Fourier transform of the above expression.
For the main term in the right hand side, using the relation φ̂′(γ) = iγφ̂(γ), the control∫

R
| ∂̂f
∂x

(·, y′)|dγ ≤ C(||∂f
∂x

(·, y′)||2 + ||∂
2f

∂x2
(·, y′)||2) (37)

(obtained as in (36)) and hypothesis (35) allows to perform Fubini theorem, after inverse

Fourier transform. Then, using the relation ψ̂ ∗ φ = ψ̂φ̂, again φ̂′(γ) = iγφ̂(γ) and some
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of the computations in Step 4 of the conjecture, we get that the inverse Fourier transform
of the main term is∫

R

∫
Rd

2√
π
H(y′, y)( 6

t3||c′(y)||2 )
3
2 ((x− x′) + t[c(y) + 1

2
< c′(y), y′ − y >])

×e−
6((x−x′)+t[c(y)+ 1

2<c
′(y),y′−y>])2

t3||c′(y)||2 f(x′, y′)pt(y
′ − y)dx′dy′

In the same manner the inverse Fourier transform of ûfr(t, γ, y) is equal to

∫
R

∫
Rd

√
6e
−6

((x−x′)+t[c(y)+ 1
2<c
′(y),y′−y>])2

t3||c′(y)||2

√
π||c′(y)||t 3

2

f(x′, y′)pt(y
′ − y)dx′dy′.

We now turn to the remainder term in the right hand side. Let us for example consider
the term ∫

Rd
γO(
√
t)f̂(γ, y′)pt(y

′ − y)dy′ =

∫
Rd

1

i
O(
√
t)iγf̂(γ, y′)pt(y

′ − y)dy′

We recall that the term O
(√

t
)

writes as a polynomial in y, y′, up to order 8 (Remark 6).

Using φ̂′(γ) = iγφ̂(γ), Eq. (37) and (35), one may again perform Fubini theorem and see
that the inverse Fourier transform of the considered term is controlled by∫

Rd

1

i
O(
√
t)C(||∂f

∂x
(·, y′)||2 + ||∂

2f

∂x2
(·, y′)||2)pt(y

′ − y)dy′.

Using again (35) allows to perform dominated convergence and to see that this term
behaves asO(

√
t). We may proceed in the same manner for the other part of the remainder

term and see that it behaves as O(t2).
To sum up we get

u(t, x, y) =
∫
R

∫
Rd
√

6e
−6

((x−x′)+t[c(y)+ 1
2<c
′(y),y′−y>])2

t3||c′(y)||2

√
π||c′(y)||t

3
2

f(x′, y′)pt(y
′ − y)dx′dy′

−t
∫
R

∫
Rd

2√
π
H(y′, y)( 6

t3||c′(y)||2 )
3
2 ((x− x′) + t[c(y) + 1

2
< c′(y), y′ − y >])

e
− 6((x−x′)+t[c(y)+ 1

2<c
′(y),y′−y>])2

t3||c′(y)||2 f(x′, y′)pt(y
′ − y)dx′dy′ +O(t

3
2 )

=
∫
R

∫
Rd p̄

c(t, x, y, x′, y′)dx′dy′ +O(t
3
2 ).

Remark 7. If we consider a point (x, y) with c′(y) = 0 the approximated kernel p̄c can-
not be defined by (33). It is however possible to perform in this case an ad hoc Taylor
expansion.
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Example: As an example, let us consider the case c(y) = −i||Ω 1
2y||2. Then c′(y) = −2iΩy

and D2c(y) = −2iΩ. Furthermore, H(y′, y) = −1
3
i||Ω 1

2 (y − y′)||2. Then

p−i||Ω
1
2 ·||2(t, x, y, x′, y′) =

√
3e
−3

(x−x′−it<Ωy,y′>)2

2t3||Ωy||2

√
2π||Ωy||t 3

2

pt(y − y′)

+
2

3
√
π
t i||Ω

1
2 (y − y′)||2pt(y − y′)(

3

2t3||Ωy||2
)

3
2

× (x− x′ − it < Ωy, y′ >)e
− 3(x−x′−it<Ωy,y′>)2

2t3||Ωy||2 +O(t
3
2 ).

5 Numerical experiments

The aim of this section is to experiment on a simple example the practical efficiency of
the approximation stated in Theorem 1. We consider the hypoelliptic PDE

∂u

∂t
=

1

2

∂2u

∂2y
+ c(y)

∂u

∂x
, (t, x, y) ∈ R∗+ × R× R

u(0, x, y) = f(x, y), ∀(x, y) ∈ R× R.
(38)

The fundamental solution to (38) and the associated semigroup are respectively denoted
by pc(t, x, y, x′, y′) and (P c

t ). We recall that

u(t, x, y) = P c
t f(x, y) =

∫ ∫
R×R

pc(t, x, y, x′, y′)f(x′, y′)dx′dy′ = Ex,y[f(Xt, Yt)] (39)

with (X, Y ) the hypoelliptic diffusion solving Eq. (4) with b ≡ 0.
We aim at checking experimentally the validity of our approximation P

c

h of P c
h, for

small time h (Theorem 1).
More precisely the idea is the following. Take 0 < T < ∞, and N ∈ N∗. Then the

solution u(T, x, y) = P c
Tf(x, y) = P c

T
N

◦ . . . P c
T
N

f(x, y) of (38) should be approached by

P
c
T
N
◦ . . . P c

T
N
f(x, y). (40)

Note that we could simply try to approach P c
Tf(x, y) by P

c

Tf(x, y) (i.e. take N = 1
in (40)). But this would be valid only for small T . For large T one can expect that the
approximation would be better if we iterate N times the approximated semigroup P

c
T
N

(as T/N is small for large N). Also one wishes to check that the errors will not accumulate
by iterating the approximated semigroup P

c
T
N

.
In our simulation the integral that leads to a quantity of type

P
c
T
N
φ(x, y) =

∫ ∫
R×R

pc(
T

N
, x, y, x′, y′)φ(x′, y′)dx′dy′ (41)
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is approximated by some quadrature method (see details in Example 1; here φ maybe the
initial condition f or some previous approximation of P

c
kT
N
f , 1 ≤ k ≤ N − 1).

We need benchmarks to which we can compare our small time approximation.
First we use a finite elements methods (space discretization) together with a Crank-

Nicolson scheme (time discretization) to solve the PDE (38). This method will be referred
to as Finite Elements (FE). We use a high discretization order to ensure the FE is at
convergence.

Second we use an Euler type scheme with time step T/n for the simulation of paths
of (X, Y ) solution of (4) with b ≡ 0, starting from (x, y). We draw a large number M
of independent realizations of (XT , YT ) and compute a Monte Carlo average to approach
u(t, x, y) (through the Feynman-Kac representation (39)). This method will be referred
to as Monte Carlo (MC). We use a high discretization order n and a large number of
samples M to ensure the MC is at convergence.

Example 1: toy example. Here we take c(y) = 1
4
(−y2

2
+ 6y) and

f(x, y) =
1

2πσc
exp(−x

2 + y2

2σc
) (42)

with σc = 0.2. The time horizon is T = 2.5.
Note that on our example we have c′(y) = 0 for y = 6. But when computing

the integral (41) (on even solving the PDE by FE) we use a bounded domain K =
(−14, 14) × (−5, 5) which does not intersect with the line y = 6. Indeed with the initial
condition (42) the mass remains concentrated at time T = 2.5 in K and is near to zero
at the boundary ∂K.

In other words we first approach P c
T/Nφ(x, y) =

∫ ∫
R×R p

c( T
N
, x, y, x′, y′)φ(x′, y′)dx′dy′

by
∫ ∫

K
pc( T

N
, x, y, x′, y′)φ(x′, y′)dx′dy′, and consider that on K the kernel pc is correctly

approached by pc (Conjecture 1 or Theorem 1). Then the approximation by quadrature
of
∫ ∫

K
pc( T

N
, x, y, x′, y′)φ(x′, y′)dx′dy′ should be a correct approximation of P c

T/Nφ(x, y),

allowing the computation of u(T, x, y).

Table 1 shows the relative Lp-error, for p = 1, 2,∞, between the FE reference solution
and (40) computed with N = 1 and N = 5 (in the latter case we then have T/N = 0.5).

Note that given the discretization grid (xi, yi)
Nx×Ny
i=1 of the domain K the relative Lp-

distance between a reference function f and an approximating function g is defined by(∑Nx×Ny
i=1 |g(xi, yi)− f(xi, yi)|p

)1/p

(∑Nx×Ny
i=1 |f(xi, yi)|p

)1/p
,

for p = 1, 2 and by

max
Nx×Ny
i=1 |g(xi, yi)− f(xi, yi)|
max

Nx×Ny
i=1 |f(xi, yi)|

,
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for p =∞.

N = 1 N = 5
L1-error 0.1257883 0.01681095
L2-error 0.3115323 0.03828152
L∞-error 0.1732925 0.01735233

Table 1: Relative error between the FE reference solution and the iterated semigroup (40)
with N = 1 and N = 5

As expected the result is much better with N = 5. To illustrate this we plot several
graphs. On Figure 1 we present a 3D plot of the reference solution computed by FE. The
solution computed by (40) with N = 5 gives a plot that is very similar to FE, so instead
we plot the solution computed with N = 1 on Figure 2.

Note that the solution computed with N = 1 shows some instability. To illustrate
this more precisely we plot on Figure 3 approximated graphs of the function x 7→ u(T =
2.5, x, y = 3.74) computed with the four methods (FE, MC with n = 104 and M = 5×105,
and the iterated semigroup (40) with N = 1 and N = 5). We see that the solutions
computed by FE, by MC and by (40) with N = 5 are very close, while the one for N = 1
is different and obviously presents issues.
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Figure 1: 3D plot of the reference solution computed by FE.

Figure 2: 3D plot of the solution computed by one iteration of the semigroup (i.e. (40)
with N = 1).
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Figure 3: Plot of an approximation of the function x 7→ u(T = 2.5, x, y = 3.74), by
FE (red), MC (orange), and the iterated semigroup (40) with N = 1 (blue) and N = 5
(black).
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6 Appendix

In this appendix, we come back to the connexion between the solution to a KHE in the
backward or forward form and the probability transition function of processes governed
by SDEs. As mentioned in the introduction, the transition probability function of the
process described by (4) is the solution to the Kolmogorov (hypoelliptic) equation in the
backward form, that is (7) . This is because the arrival point (x′, y′) is fixed and we see
p(t, x, y, x′, y′) as a function of time t and starting point (x, y).

If now we fix the starting point (x, y), it is well known that p(t, x, y, x′, y′) solves, as a
function of the arrival point (x′, y′) and time t, the KHE in the forward form

∂tp(t, x, y, x
′, y′) = 1

2
∆y′p(t, x, y, x

′, y′)−
∑d

i=1 ∂y′i [bi(y
′)p(t, x, y, x′, y′)]

− < c(y′),∇x′p(t, x, y, x
′, y′) >, (t, x′, y′) ∈ R∗+ × Rd̃ × Rd

p(0, x, y, x′, y′) = δx(x
′)⊗ δy(y′), (x′, y′) ∈ Rd̃ × Rd.

(43)
This is because the formal adjoint of the generator

L =
1

2
∆y+ < b(y),∇y > + < c(y),∇x >

of (4) is defined by

L∗f(x′, y′) =
1

2
∆y′f(x′, y′)−

d∑
i=1

∂y′i [b(y
′)f(x′, y′)]− < c(y′),∇x′f(x′, y′) >

(see [7, Chapter 5]; this is a consequence of Th. 5.4.7 which can be adapted to the
hypoelliptic case). Another point of view is the following. Assume for simplicity that
b ≡ 0. Equation (7) is the KHE in the backward form associated to the SDE described
by (4), but it also corresponds to the KHE in the forward form associated to{

dX(t) = −c(Y (t))dt

dY (t) = dW (t).
(44)

More precisely if for any (x′, y′) one gets the solution (t, x, y) 7→ p(t, x, y, x′, y′) to (7),
this defines a kernel p(t, x, y, x′, y′) which is the transition function of (4); but by setting
p∗(t, x′, y′, x, y) := p(t, x, y, x′, y′) one defines a new kernel which is the transition function
of (44). This is because the formal adjoint of the generator L∗ = 1

2
∆y′− < c(y′),∇x′ > of

(44) is L = 1
2
∆y+ < c(y),∇x > (or by using directly [7, Theorem 5.4.7]).

To sum up, solving (7) with b ≡ 0 allows the computation of the transition function
of (4) (with b ≡ 0) or of (44). But in these notes we will focus on the transition of (4),
as this will be more coherent with our probabilistic computations.
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