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U N C O R R E C T E D P R O O F Introduction Q2
Facial signals are important social communication tools in many species, including humans [START_REF] Crivelli | Facial displays are tools for social influence[END_REF][START_REF] Jack | The Human Face as a Dynamic Tool for Social Communication[END_REF]Waller & Micheletta, 2013). On their own and when accompanying other signals, such as speech and gestures, they can convey information to others about the 34 sender's motivation and future behaviour [START_REF] Parkinson | Do facial movements express emotions or communicate motives?[END_REF] the 27 main AU codes of the FACS can theoretically be com-107 bined in more than 8 billion ways. These combinations are connected dynamically in sequences, further increasing the potential for transmitting detailed information. Over the years, FACS has been developed for a number of non-human species (orangutans: [START_REF] Caeiro | OrangFACS: A Muscle-Based Facial Movement Coding System for Orangutans (Pongo spp.)[END_REF]cats: Caeiro et al., 2017; Barbary macaques: Julle-Danière et al., 2015; rhesus macaques: [START_REF] Parr | Brief communication: MaqFACS: A muscle-based facial movement coding system for the rhesus macaque[END_REF]chimpanzees: Vick et al., 2007;gibbons: Waller et al., 2012;dogs: Waller et al., 2013a, b;horses: Wathan et al., 2015). This allows for detailed and objective comparative research [START_REF] Julle-Danière | MaqFACS (Macaque Facial Action Coding System) can be used to document facial movements in Barbary macaques (Macaca sylvanus)[END_REF][START_REF] Scheider | A comparison of facial expression properties in five hylobatid species[END_REF][START_REF] Scheider | Social use of facial expressions in hylobatids[END_REF][START_REF] Waller | Measuring the 1403 evolution of facial 'expression' using multi-species FACS[END_REF].

Historically, many studies have taken an all-or-nothing approach to facial signals by claiming that certain combinations of AU form a 'fear' face or an 'angry' face, so the AUs constituting these signals are deterministically linked to that emotion [START_REF] Ekman | Facial Expressions of Emotion[END_REF][START_REF] Matsumoto | Facial expressions of emotion[END_REF].

However, given that some AUs are shared even between basic 'emotion' signals, some AUs are not used in any of them, and signals have meaningful dynamic features [START_REF] Jack | Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time[END_REF][START_REF] Krumhuber | Effects of dynamic aspects of facial expressions: A review[END_REF], it is likely that the signal value of AUs and AU combinations is probabilistic [START_REF] Crivelli | Facial displays are tools for social influence[END_REF]. In other communication systems, the same signal element can often have different functions based on the context (e.g., [START_REF] Abramson | Social interaction context shapes emotion recognition through body language, not facial expressions[END_REF][START_REF] Aviezer | Angry, disgusted, or afraid? Studies on the malleability of emotion perception: Research article[END_REF]; at the same time, different signals can have the same function [START_REF] Isac | I-Language An Introduction to Linguistics as 1225 Cognitive Science[END_REF]. The strong focus on few stereotypical facial signals has prevented us from understanding whether the same is true for facial signals. With the development of automated FACS-coding (e.g., [START_REF] Lewinski | Automated facial coding: Validation of basic emotions and FACS AUs in facereader[END_REF], large datasets of diverse facial signals will become increasingly important, but the development of coding software has outpaced the development of appropriate statistical tools to interpret resulting data.

Most studies try to establish how much the use of each AU differs across conditions, such as different social contexts or internal experience of participants. However, currently, many different approaches are in circulation, reducing reproducibility, and FACS datasets have some features that make traditional statistical models unsuitable for this task. FACS data mix spatial and temporal combinations of AUs, with temporal information influencing comprehension [START_REF] Krumhuber | Effects of dynamic aspects of facial expressions: A review[END_REF]; different signals are also strung together in sequences, often combined with speech or gestures [START_REF] Kessous | Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis[END_REF].

At a basic level, for each data point in FACS coding (either a static description, or a time point in a dynamic analysis), AUs are either present or absent (or categorical if intensity measures are provided). When testing whether the mean use of an AU across data points differs between conditions, many analyses of FACS data are based on analysis of variance (e.g., [START_REF] Harris | Facial expressions, smile types, and 1216 self-report during humour, tickle, and pain[END_REF]. When testing which AUs occur together in specific contexts, researchers often use dimension reduction techniques such as principal component analysis or factor analysis (e.g., Stratou et al., 2017). As FACS data are inherently binomial (AUs are either there or not), categorical influence facial signals [START_REF] Jack | Facial expressions of emotion are not culturally universal[END_REF]. All of these levels 175 of dependence need to be accounted for so as to avoid 176 pseudoreplication [START_REF] Hurlbert | Pseudoreplication and the Design of Ecological 1222 Field Experiments[END_REF]Waller, Warmelink, et al [START_REF] Deslandes | The 1167 structure of an avian syllable syntax network[END_REF][START_REF] Hedley | Composition and sequential organization of song 1219 repertoires in Cassin's Vireo (Vireo cassinii)[END_REF][START_REF] Sasahara | Structural Design Principles of Complex Bird Songs: A Network-Based Approach[END_REF] 211 [START_REF] Weiss | The use of[END_REF] and humpback whales [START_REF] Allen | Network analysis reveals underlying syntactic features in a vocally learnt mammalian display, humpback whale song[END_REF].

212

The musculature underlying facial movements has been de-
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scribed in terms of networks of muscles [START_REF] Esteve-Altava | Anatomical networks reveal the musculoskele-1187 tal modularity of the human head[END_REF]. Dynamic Bayesian networks of AU co-occurrence probabilities have been used to improve correct automated identification of AU intensity from video data [START_REF] Li | Measuring the intensity of spontaneous facial action units with dynamic Bayesian network[END_REF]Tong et al., 2007). Analysing FACS data as networks allows for direct comparisons with other communication systems with regard to their complexity and information content [START_REF] Lynn | Human information processing in complex networks[END_REF]. Network analysis can answer questions on different analytical levels [START_REF] Newman | The structure and function of complex networks[END_REF]: action units themselves, their combinations, full facial signals, and the face as a whole [START_REF] Baronchelli | Networks in cognitive science[END_REF]. Networks of transitions be- [START_REF] Baronchelli | Networks in cognitive science[END_REF][START_REF] Newman | Networks: An Introduction[END_REF]. For example, the edge between two AUs can represent the probability that they will occur together in a static image, or that one will occur after the other in a discrete sequence [START_REF] Kershenbaum | Acoustic sequences in non-human animals: A tutorial review and prospectus[END_REF]. Because networks are used in a vast number of fields [START_REF] Newman | Networks: An Introduction[END_REF], standardised methods exist to address a wide variety of questions in a statistically appropriate manner. Results can be displayed using network graphs, which are more intuitive to readers than the tables of AU combinations that often accompany research articles using FACS. This solves one of the central problems of FACS research so far: the large number of elements makes it unwieldy to describe the behaviour of all possible combinations in writing [START_REF] Scherer | Dynamic facial expression of emotion and observer in-1358 ference[END_REF]. Centrality measures can quantify the position of each node in the network, and characterise the network as a whole [START_REF] Milo | Network Motifs: Simple Building Blocks of Complex Networks[END_REF].

Fundamentally, these approaches rely on the creation of appropriate null models to address the question at hand, enabling researchers to account for the underlying data structure, autocorrelation, and potentially important control variables [START_REF] Farine | Constructing, conducting and 1193 interpreting animal social network analysis[END_REF].

In this article, we set out to present the potential power of using network analysis to understand and visualise detailed facial signal data. 

Dataset

For this study, we used the peak frames of 327 FACS-coded videos assigned to one of seven conditions (anger: 45 images, contempt: 18, disgust: 59, fear: 25, happy: 69, sadness: 28, surprise: 83) in the Extended Cohn-Kanade Database [START_REF] Kanade | Comprehensive database for facial expression analysis[END_REF][START_REF] Lucey | The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression[END_REF]. Videos included only one facial signal, produced based on instructions from an experimenter, and were specifically designed as a baseline dataset for automated facial expression detection [START_REF] Kanade | Comprehensive database for facial expression analysis[END_REF]. Images represented a subset of posed facial expressions judged to fit the stereotypical expressions for those conditions (e.g., AU6+12 for a 'happy' face). Thus, the dataset is designed to reduce variability within conditions and increase variability between conditions, making the specificity of AUs unnaturally high; however, this suits our purpose of presenting the method in a clear-cut example. In the following, we will talk about the emotion labels that were assigned to each video as experimental 'conditions', to make clear that while here we use the labels as an example, researchers could also compare other conditions with each other, e.g., participant gender. There is no sequential information available in
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this database, and we omit information about intensity of AU of AU co-occurrence [START_REF] Li | Measuring the intensity of spontaneous facial action units with dynamic Bayesian network[END_REF]. Co-occurrence of com-

443
municative units is an important feature in language learning: 444 repeated coupling of units enables infants to learn word com-445 position and syntactic rules [START_REF] Isac | I-Language An Introduction to Linguistics as 1225 Cognitive Science[END_REF]. When facial signals [START_REF] Kohler | Differences in facial expressions of four universal emotions[END_REF].

474

Just as we are interested in the probability between units,
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we often want to identify the conditional probability that a unit is associated with one condition rather than another. We will refer to this as the context specificity of the unit: the probability that the condition is C1 when unit A is observed. For example, in humans, we know that AU9 (nose wrinkle) is strongly tied to the signal of disgust, but very rare in any other conditions, so it has high context specificity, while AU1 (inner brow raiser) is part of many different facial signals [START_REF] Kohler | Differences in facial expressions of four universal emotions[END_REF]. For a communicative unit to be tied to a context, it should have high context specificity (only occur in this condition), but also have high probability to occur in this condition.

NetFACS package

The NetFACS package for R allows users to explore their Alternatively, networks can be unweighted, only representing connections between two AUs as 'present' if they occur more frequently than expected given a null model [START_REF] Newman | Networks: An Introduction[END_REF].

Networks can represent the connections between two AUs, or the connection between AUs and conditions in the form of bipartite networks.

To test hypotheses using networks, it is essential to construct meaningful null models against which to compare observed data [START_REF] Farine | A guide to null models for animal social network 1190 analysis[END_REF]. We want to know how much more or less likely the use of an AU or combinations of AUs is than In NetFACS, if all events are part of the same condition, expected probability distributions are calculated using prenetwork permutations [START_REF] Farine | A guide to null models for animal social network 1190 analysis[END_REF]: the existing data are shuffled with certain restrictions, to simulate 'random' data that still follow some of the underlying rules of the dataset.

First, the package extracts the conditional and unconditional probabilities of all possible combinations of AUs in the observed data. To establish whether single AUs occur more or less frequently than expected, the number of AUs in each event (e.g., photo, video frame) is held constant, but which AU occurred is randomised. Thus, if a facial signal contained five AUs before randomisation, it will also do so after randomisation. To establish whether combinations of AUs occur more or less frequently than expected, NetFACS
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shuffles which AUs occur in each event while keeping the probability of each AU across all events, as well as the number of AUs observed in each event, constant. This randomisation procedure is repeated 1000 times, or any value set by the user.

Probabilities for all AU combinations for each randomisation are stored, creating the likely probability space for each combination in the population. The resulting null probability distributions for AU combinations represent the expected data given that AUs were not combined into predictable facial signals. The observed probabilities for the test dataset are compared with the distribution of expected probabilities by calculating a p-value (proportion of expected probabilities that are more extreme than the observed value) and effect size (the difference between the observed and average expected value).

If we want to compare two conditions (e.g., old and young participants, or happy and neutral participants), NetFACS uses bootstraps [START_REF] Carsey | Monte Carlo Simulation and Resampling Methods for Social Science[END_REF][START_REF] Julle-Danière | Are there non-verbal signals of guilt?[END_REF]. We use one of the conditions to create the expected distribution for all AUs and their combinations using a bootstrapping procedure [START_REF] Carsey | Monte Carlo Simulation and Resampling Methods for Social Science[END_REF]: events from the 'null' condition are repeatedly selected randomly with replacement [START_REF] Efron | An introduction to the bootstrap[END_REF]. Probabilities for all combinations are stored, and the procedure is repeated 1000 times (more iterations allow for more stringent tests). As above, the resulting distribution of expected probabilities under the null condition is compared against the observed value in the test condition, and a p-value is calculated representing the proportion of expected values that was more extreme than the observed value. By using bootstraps to create null distributions of probabilities for each AU and combination, we do not presuppose normally distributed data [START_REF] Carsey | Monte Carlo Simulation and Resampling Methods for Social Science[END_REF]. This bootstrap approach does not make any statements about some unknown population that the data might have been drawn from: it directly compares two empirical distributions. Note that the interpretability of results depends on how well the test and null datasets represent the conditions from which they were drawn: if the probabilities are based on small datasets, the interpretation has to consider this. The more variation there is in the null dataset or the fewer data points we have available, the broader the probability space will be-the expected value becomes more uncertain. Thus, especially for rare elements and noisy data, the resampling approach will potentially favour false negative over false positive values in small datasets.

If individuals provide multiple data points, or videos are analysed, NetFACS allows users to perform the random selection of the bootstrap on the level of the video or individual, so that the null distribution accounts for inter-individual differences and autocorrelation within videos [START_REF] Harden | A bootstrap method for conducting statistical infer-1213 ence with clustered data[END_REF].

For example, it is possible that only some subjects use specific muscles, in which case the probabilities under the null condi- the probability that the condition is 'angry' when AU4 is 675 observed is 0.33).

Combined, the graphs show us that all seven conditions shared some AUs (low specificity, multiple connections), while some AUs were highly informative (high specificity, one connection). For example, as expected, AU6 and AU12 were highly specific to 'happy' faces, AU9 to 'disgust' faces, and so on, while AU4 was shared by fear, disgust, anger, and sadness.

Even though AU4 was not specific to any of these conditions, it occurred at high levels in all of them. Other AUs were specific to a condition but occurred rarely in that condition (e.g., AU26

occurred in 12% of surprised faces, but those were half of all occurrences of this AU). All seven conditions had at least one AU that was both specific to them and highly common (values above 0.7): 'anger' -AU23 and AU24; 'disgust' -AU9; 'fear' -AU20; 'happy' -AU12; 'surprise' -AU2, AU5, and AU27;

'sadness' -AU15; and 'contempt' -AU14. The specificity in the latter was slightly lower (0.53) because 'contempt' was represented by fewer data points than other conditions.

However, all of these connections were probabilistic, not deterministic, as none of them had conditional probabilities of 1 in both directions. This is surprising given that the videos were assigned to each condition based on these AUs.

Using the community detection algorithm, four clusters were revealed in the bipartite network with a moderately high modularity value (0.50; Fig. 2). 'Happy' faces (with AU6 and AU12) and 'contempt' (with AU14) formed their own respective clusters. 'Fear' and 'surprise', which shared a large number of AUs, formed a cluster with AU1,2,5,10,16,20,26,and 27. Lastly, 'disgust', 'anger', and 'sadness', which were linked by the shared use of AU4 and AU17, formed a cluster with those two AUs and AU7, 9, 15, 23, and 24.

(b) Which AUs are conditional on others?

Method

To understand the connections between AUs, we tested their conditional probabilities to occur together. Conditional probabilities were defined by the probability that one AU occurs,

given that another one is also present. We explored three possibilities: two AUs can show low conditional probabilities in both directions, in which case they were likely unconnected in the dataset. They can show high conditional probabilities both ways, in which case they formed a functional unit in this condition, with each AU always occurring when the other was present. This connection could indicate that, at least in this condition, they should be treated as one unit rather than two separate units. The third alternative was that conditional probabilities were asymmetrical: if one AU was more common than the other, it is possible that the rare AU always appeared when the more common AU was present, but the same was not true vice versa. These dyads would allow us to identify units that potentially modify meaning, and the cases with and without combinations of the two AUs could be analysed in more detail. modifies the meaning of a smile [START_REF] Martin | Smiles as multipurpose social signals[END_REF][START_REF] Rychlowska | Functional Smiles: Tools for Love, Sympathy, and War[END_REF]. In that case, when analysing a large number of smiles, we would see a high conditional probability of AU12 occurring when AU6 is present, but not vice versa.

Here, we presented the directed weighted network of conditional probabilities of AUs for two conditions in the dataset,

734

'sadness' and 'surprise', to exemplify the information that can 735 be obtained by this approach. The weights of each edge repre-736 sent the conditional probability going each way.

737

Results

738

In Fig. 3a andb, we presented the conditional probabilities of 739 AU co-occurrence in two conditions, 'sadness' and 'surprise'. 
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AU12, 16, and 26, which also occurred in this condition, were unilaterally tied to AU1, 2, and 5; so in all instances of AU26, these units were also present, but not vice versa.

The three rare AUs (AU12, 16, and 26) were not tied to each other, indicating that they occurred in different instances. AU26 and AU27 were not connected, as they cannot be present at the same time in FACS. While 'surprise' therefore seemed to have one standardised signal, 'sadness' (Fig. 3b) was more variable: AU1 and AU2, which were tightly linked in surprise, were used asymmetrically here: AU1 was more common and not dependent Here, we pretended that we did not know the underlying structure of the dataset, and used a community detection algorithm on the full dataset to detect clusters of action units that co-occurred more than expected, to see whether we could identify the conditions. We used a weighted and undirected network (i.e., connections between AUs are represented by how often they co-occur). We used the 'fast greedy' modularity optimisation algorithm for finding community structure implemented in igraph [START_REF] Clauset | Finding community structure in very large networks[END_REF], which divides the network into communities based on modularity by assigning nodes to clusters that minimise the edges between clusters and maximise edges within clusters [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]. Random distribution of edges would be associated with modularity values of 0; complete separation between clusters would show modularity of 1. A modularity value above 0.3 is a good indicator of meaningful community structure [START_REF] Clauset | Finding community structure in very large networks[END_REF]. Above, we saw that a similar approach for the bipartite network including the conditions and AUs they were significantly associated with, detected four clusters.

Results

Based solely on the links between AUs without contextual knowledge, the algorithm detected three clusters with a modularity of 0.49 (Fig. 5). The first cluster, including AU6, and 12, is equivalent to the 'happy' cluster above. A second cluster, including a core of AU1, 2, 5, and 27, was largely equivalent to the surprise cluster detected before. AU 20 was connected to AU1, because of their strong connection in the 'fear' condition. All seven signals contained some AUs that were highly context specific and mainly occurred in this condition. However, these AUs were not used in isolation, with most conditions allows users to answer these questions, and many others, in a standardised and statistically meaningful way. While we defined network edges in this study using the co-occurrence of AUs in the same signal, one strength of the network approach is its flexibility when applied to different questions.

Importantly, using transitions between AUs and AU combinations within sequential FACS data would provide an important step towards understanding the face as a communication system [START_REF] Kershenbaum | Acoustic sequences in non-human animals: A tutorial review and prospectus[END_REF]. Our results further confirm that single AUs are probably poor indicators of a single meaning, and not every AU in a signal necessarily changes its meaning. Thus, preferably, there would be a two-pronged approach for network analysis of facial signals: use networks to identify specific units and then use transition networks to test how these units connect to each other [START_REF] Allen | Network analysis reveals underlying syntactic features in a vocally learnt mammalian display, humpback whale song[END_REF][START_REF] Sasahara | Structural Design Principles of Complex Bird Songs: A Network-Based Approach[END_REF][START_REF] Weiss | The use of[END_REF]. The code underlying the package is openly available, allowing users to develop their own algorithms for inclusion in future versions of the package. Importantly, the package is also of use to researchers studying other aspects of communication; the only requirement currently is that data can be coded as matrices of presence/absence of units at certain events.

Units can be defined by the researcher as letters of the alphabet, syllables, words, or animal gestures or calls; as long as questions can be framed around the occurrence and cooccurrence of units, NetFACS can be used to conduct statistical analyses into the structure of the communication system. et al., 2020). NetFACS offers a way to analyse the wealth of data within and between species, as well as within and between individuals. Even if the action units themselves differ, the system approach underlying networks puts a focus on connectivity and flexibility of unit combinations. It therefore
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  analysing units of facial communication (either AUs, combi-447 nations of AUs, or whole signals), we are interested in the 448 unconditional probability that they occur and co-occur with 449 each other. The unconditional probability for FACS-like data 450 represents the number of events in which an AU or combina-451 tion was active, given the total number of events: so, if an AU 452 is active in 5% of all events, its unconditional probability is 453 0.05. At the same time, we are interested in the conditional 454 probability: the proportion of events in which units occur 455 when another one is also present, or occur if a specific condi-456 tion is given. The difference between unconditional and con-457 ditional probability is important to understand how AUs tie to 458 each other: for example, the combination of units A and B can 459 occur in 5% of all events (unconditional probability of 0.05). 460 However, A is common, occurring in 50% of the events, while 461 B occurs in 5% of events. Thus, when B occurs, A occurs in 462 100% of events (conditional probability: 1), while B only 463 occurs in 10% of events that contain A (conditional probabil-464 ity: 0.1). In this case, the relationship between the two action 465 units is highly asymmetrical. In facial signals, AU25 (lips 466 part) is necessarily a part of AU27 (jaw drop); however, the 467 reverse is not true. If units have low conditional probability 468 both ways, they are likely unconnected. If both units show 469 equally high conditional probabilities, the occurrence of one 470 of them predicts the other, indicating that they are usually used 471 in combination. For example, AU1 (inner brow raiser) and 472 AU2 (outer brow raiser) are commonly used together in many 473

  FACS-like data and test specific hypotheses based on occurrence and co-occurrence probabilities and resampling methods. The package represents the different probabilities of AUs or combinations in the form of undirected (unconditional probability) and directed (conditional probability) networks. Networks can be weighted-the connection between two nodes represents their observed probabilities.

  expected, but we have to first define what we expect. Our expectations depend on the question: If we have one large dataset and want to know which AU combinations form predictable units, our expectations are set by the basic probability of each AU to occur on its own. If we compare two conditions (e.g., angry and happy faces), our expectations for the angry faces are set by what would be expected in the happy faces.

F

  For example, in facial signal research, it has long been assumed that adding AU6 (cheek raiser) to AU12 (lip corner puller)
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  , we introduce network science as a tool for the 915 analysis of facial signal data. The Facial Action Coding 916 System (FACS) provides a way to study facial communication 917 in immense detail, but the data it produces have many prop-918 erties that make analysis difficult. As a result, the data gener-919 ated from FACS measurement are often highly underused. 920 Networks have been used widely in communication research 921 in humans and animals (Allen et al., 2019; Kershenbaum 922 et al., 2016; Lynn et al., 2020; Peng et al., 2008; Weiss 923 et al., 2014), due to their flexibility in answering variousquestions on the unit level, combination level, and the level of the whole communication system[START_REF] Lynn | Human information processing in complex networks[END_REF][START_REF] Newman | Networks: An Introduction[END_REF]. Here, we test their potential use for the study of facial signals, showing that they allow us to gain new insights even when applied to well-studied datasets[START_REF] Lucey | The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression[END_REF].All results presented here regarding the use of AUs and combinations in different stereotypical facial signals emphasise different aspects of the face as a communication system.

Fig. 5

 5 Fig. 5 Graph representing data combining all conditions, with colours representing the different clusters identified by the algorithm. Clusters have higher connections within than without. Modularity was 0.49, indicating clear clusters

961

  only probabilistically connected to each condition. Our per-962 ception of facial signals therefore seems to be robust against 963 changes in the setup of units that we observe. The facial sig-964 nals in conditions differed in their overall complexity: 'happy' 965 and 'contemptuous' faces were highly stereotypical, with very 966 low network density and very few AUs used. This is partially 967 due to their consistent lack of eyebrow movements, which 968 limits the number of AUs that can be involved. In the 'fear' 969 signals, on the other hand, many AUs were added to the core 970 cluster of units at different times. Information-centred ap-971 proaches to quantifying complexity (such as the information 972 entropy in each condition) could be used to understand why 973 signals differ in flexibility and what effect this has on re-974 ceivers. Larger, more diverse and naturalistic datasets would 975 be needed to test whether the inclusion or exclusion of AUs 976 and combinations represent inter-individual differences or af-977 fects the meaning of the signal (Feldman-Barrett et al., 2019; 978 Julle-Danière et al., 2020; Waller et al., 2020).

979

  Networks can be tailored to answer different questions, but 980 most studies will be interested in the same general patterns: 981 which AUs are used more in some contexts than others, and 982 how informative is their use? How do these AUs combine to 983 form meaningful signals? Do all AUs in a context matter, or is 984 there a core of highly specific units? Does the addition of 985 some AUs change the meaning of a facial signal? How do 986 inter-individual differences or other factors, such as culture, 987 influence the use of facial signals? The NetFACS package 988

  Dynamic networks and transition networks-between AUs and full signals-will be a central feature of future development of the NetFACS package. One question is sample size: the permutation and bootstrap approaches should be relatively robust, but datasets need to be representative of the complexity of facial signals in the context in question. The more varied signals in a contextare, the more data will be necessary to accurately depict their probability space-especially for AU combinations beyond the dyadic (the focus here), and for dynamic signals. The other question is the validity of the AU coding-human coding is tedious and slow and often prevents the analysis of large-scale datasets, while automatic decoders still lack strong performance. However, the network approach potentially allows for the analysis of noisy data, as uncertainty of expected probability distributions is encoded and interpretable.

Facial

  signals are a vital aspect of the communication systems of many mammal species (Waller & Micheletta, 2013); the development of Facial Action Coding Systems for different species has created the potential to directly compare the use of facial signals and the complexity and flexibility of facial communication with an evolutionary framework (Waller
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the impact of these characteristics on single AU movements 179 and control for temporal autocorrelation. However, AUs 180 themselves do not act independently from each other: almost 181 no facial signal consists of a single muscle moving 182

[START_REF] Krumhuber | Affect Bursts: Dynamic Patterns of Facial Expression[END_REF]

. This raises the possibility that 183 AUs are not the smallest unit of facial communication, and 184 that the combination of AUs rather than their individual oc-185 currence is of relevance. Structural equation modelling, 186 if extended for categorical variables (Kupek, 2006), 187 could potentially satisfy some of these requirements, 188 but would require large amounts of data given the num-189 ber of action units of interest. 190 The role of AU usage in facial signal perception has been 191 described in detail, including using probabilistic and informa-192 tion theoretical approaches (Jack & Schyns, 2017), notably 193 nonnegative matrix factorisation to decompose dynamic inter-194 actions between different AUs (Delis et al., 2016). To move 195 towards an interactional approach, removing the need for re-196 cipient judgement, we propose the use of a method that has 197 been successfully applied to vocal communication, both in 198 humans and non-human animals, in an attempt to enable re-199 searchers to study facial communication as a communication 200 system like others. Network theory has been used to under-201 stand the co-occurrence of syllables and words in different 202 languages as a measure of how similar languages are 203

[START_REF] Baronchelli | Networks in cognitive science[END_REF][START_REF] Čech | The role of syntax in complex networks: Local and global importance of verbs in a syntactic dependency network[END_REF] Ferrer i Cancho 

  If the test condition and null condition differ 582 in the composition of the participant pool (e.g., male partici-
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	627	single AU (but could be context specific as part of a combi-		
	628	nation), or could be indicative of an underlying dimension that		
	629	connects conditions (e.g., their valence). If AUs are specific to	pants provided more fearful videos), the selection of events for	583
	630	and common in one condition, they are likely part of a	the null distribution maintains the ratio of male and	584
	631	standardised facial signal of this condition. If they are context	female participants of the test condition, to ascertain	585
	632	specific and rare in that condition, their occurrence might in-	that observed differences in the use of AUs are not	586
	633	dicate a change in meaning, for example if they signal sender	biased by the sampling effort.	587
	634	uncertainty. The AU might also be very rare and their occur-		
	635	rence in this specific condition might be accidental, or it might	Networks	588
	636	have been miscoded. Alternatively, there could be inter-		
	637	individual differences, and only a subset of individuals dis-	For this study, we use networks to answer representative ques-	589
	638	plays the AU.	tions on the individual, dyadic, signal, and system level. We	590
	639	To create the network, we compared the dataset of each	will use bipartite, undirected, and directed networks; links	591
	640 641 642	condition against all other data points using bootstraps. Thus, to determine whether 'angry' faces show specific fea-tures at the AU level, we compared the probabilities of AUs	between nodes will be either weighted or unweighted (Newman, 2010; see Glossary). Bipartite networks connect nodes of two different categories: in our case, condition and P R O F O	592 593 594
		N C O R R E C T E D	
		U		
			signals?	612
			Method	613
	665	Results	To understand the strength of the link between action units	614
			and the different conditions, we use a weighted and directional	615
	666	The network characterising the occurrence probability of AUs	bipartite network of the conditional probabilities of AUs hap-	616
	667	in conditions can be found in Fig. 1a. Only AUs that were	pening given each condition. This tells us how rare or com-	617
	668	significantly more likely than expected to occur in a condition	mon an AU is in each condition: for example, if the condition	618
	669	at p < 0.01 have links to that condition. The weights of edges	is 'happy', how likely is it that AU 12 is observed? We also	619
	670	between AUs and conditions are the conditional probability of	analyse the conditional probabilities of each condition given	620
	671	the AU being active in each condition (e.g., the probability	an AU is observed, indicating how specific the AU is to a	621
	674			

tion will not be normally distributed. Users can specify control variables (e.g., gender, place of origin), and the selection of 580 events or individuals for the bootstraps will consider these 581 control variables. 595 AU. In undirected graphs, the links A ➔ B and B ➔ A are the 596 same. In directed graph, A ➔ B can be different from B ➔ A. 597 In unweighted networks, edges are either present or absent, 598 while edges in weighted networks have different values (in 599 our case, probabilities of co-occurrence). In addition to quan-600 tifying dyadic connections, networks allow us to calculate a 601 number of standardised metrics related to the position of the 602 AU in the network-for example its centrality or membership 603 in tight clusters of recurring combinations-and the connec-604

tivity of the network as a whole

[START_REF] Croft | Exploring animal social networks[END_REF]

. In the 605 following, we will describe the networks used for each 606 of the questions; all of these were conducted using the 607 bespoke 'NetFACS' package in R, with networks creat-608 ed, analysed, and plotted using the 'igraph' package 609

[START_REF] Csardi | The igraph software package for complex network research[END_REF]

. 610 Results 611 (a) How specific are AUs to certain stereotypical 622 condition: for example, if I observe AU12, how likely is it 623 that the condition is 'happy'? For an AU to be a good signal 624 for a condition, it would have to have a high probability to 625 occur in one condition, but not in others. If an AU is 'shared' 643 occurring in 'angry' faces to the null model that AU probabil-644 ities across all conditions were the same. Each event was con-645 sidered independent, i.e., not taken from the same individual 646 or part of a sequence. No information on other variables, such 647 as gender or place of origin, was available in the database we 648 used. Edges between an AU and a condition were assigned if 649 the conditional probability of the AU occurring in this condi-650 tion was significant at p < 0.01, i.e., the observed probability 651 was higher than in 990 out of 1000 bootstraps of the null 652 condition. We represent two distinct graphs for easier com-653 prehension, one quantifying the conditional probability of the 654 AU given the condition ('Occurrence Probability') and anoth-655 er quantifying the conditional probability of the condition to 656 the AU ('Context Specificity'). To test whether distinct 'clus-657 ters' of nodes existed in the network (signifying groups of 658 AUs and conditions that have strong connections with each 659 other but weak connections to the outside (Girvan & 660 Newman, 2002)), we used the 'cluster_fast_greedy' commu-661 nity detection algorithm

[START_REF] Clauset | Finding community structure in very large networks[END_REF] 

from the 662 'igraph' package

[START_REF] Csardi | The igraph software package for complex network research[END_REF]

. Modularity values 663 above 0.3 are considered to indicate clear-cut communities of 664 nodes

[START_REF] Clauset | Finding community structure in very large networks[END_REF]

. 672 that AU4 is active in an 'angry' face is 0.89). Figure

1b

por-673 trays the concurrent context specificity of action units (e.g.,

  Network summary statistics for the seven conditions

						The largest cluster, containing AU4, 7, 9,
						15, 17, 23, and 24, represents the previous cluster for
						angry/disgusted/sad faces. The best indicator for contempt
						(AU14) was not part of a cluster, because it did not have
						strong connections with any other AU in that condition
						and 'contempt' itself was much rarer than the other con-
	t1:2	Number of nodes Number of edges Density Transitivity	ditions. AU10, 16, 18, and 26 were not consistently con-nected to any of the other clusters. Thus, even without
	t1:3 Anger	18	23	0.15	0.78	knowledge about the conditions underlying the facial sig-
	t1:4 Contempt 18	4	0.03	0.60	nals, we would be able to detect that there is a highly
	t1:5 Disgust	18	14	0.09	0.78	stereotypical signal containing AU6 + 12. We would be
	t1:6 Fear	18	35	0.23	0.56	able to distinguish between signals with lowered (AU4)
	t1:7 Happy	18	6	0.04	0.55	and raised (AU1 + 2) eyebrows, which was a central dis-
	t1:8 Sadness	18	10	0.07	0.78	
	t1:9 Surprise 18	17	0.11	0.81	

tinction in this dataset. However, the results also demonstrate how the accuracy of this method relies on sufficient available data for all conditions.

t1:1 Table

1

  These shared AUs were largely

	937	centred on the brows: conditions clustered into those with
	938	raised eyebrows ('surprise', 'fear') and those with lowered
	939	eyebrows ('anger', 'sadness', 'disgust'); those without strong
	940	eyebrow activity ('happy', 'contempt') formed their own clus-
	941	ters. This lack of specificity of eyebrow movements might
	942	explain why some observers seem to prefer using the mouth
	943	region to distinguish between conditions (Blais et al., 2012),
	944	even though this is not a culturally universal feature (Jack
	945	et al., 2012). These differences can be replicated partially
	946	without knowledge of the original conditions, evidence for
	947	the ability of the network approach to recreate the structural
	948	features underlying large datasets with unknown properties.
	949	Looking beyond the use of single AUs, the network approach
	950	revealed that important information is contained in the com-
	951	bination of AUs and their conditional probabilities. For exam-
	952	ple, while both 'sadness' and 'surprise' show the use of AU1
	953	and AU2, these were strongly linked in surprised faces, while
	954	AU2 is only sporadically used in sad faces.

955

The Extended Cohn-Kanade Database

(Kanade et al., 956 2000;[START_REF] Lucey | The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression[END_REF] 

uses highly stereotypical signals, 957 which is not representative of the expressivity and flexibility 958 of human facial behaviour. The network approach visualises 959 that beyond the standardised signals, other AUs are often ac-960 tive in a subset of signals, while the 'stereotypical' AUs were
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