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Abstract: Brain-related experiments are limited by nature, and so biological insights are often
restricted or absent. This is particularly problematic in the context of brain cancers, which have
very poor survival rates. To generate and test new biological hypotheses, researchers started using
mathematical models that can simulate tumour evolution. However, most of these models focus on
single-scale 2D cell dynamics, and cannot capture the complex multi-scale tumour invasion patterns
in 3D brains. A particular role in these invasion patterns is likely played by the distribution of
micro-fibres. To investigate explicitly the role of brain micro-fibres in the 3D invading tumours,
in this study we extend a previously-introduced 2D multi-scale moving-boundary framework to
take into account 3D multi-scale tumour dynamics. T1 weighted and DTI scans are used as initial
conditions for our model, and to parametrise the diffusion tensor. Numerical results show that
including an anisotropic diffusion term may lead in some cases (for specific micro-fibre distributions)
to significant changes in tumour morphology, while in other cases it has no effect. This may be
caused by the underlying brain structure and its microscopic fibre representation, which seems to
influence cancer-invasion patterns through the underlying cell-adhesion process that overshadows
the diffusion process.

Keywords: Cancer invasion, Cell adhesion, Multi-scale modelling, 3D computational modelling, T1
weighted image, DTI, Glioblastoma

1. Introduction

Glioblastoma multiforme is a highly invasive and aggressive type of brain tumour,
typically with poor patient prognosis [1–7] (median survival rate is less than 1 year [? ]).
These tumours arise from abnormal glial cells located in the central nervous system, and
shortly after their appearance they invade the surrounding tissues in a heterogeneous
fashion. This heterogeneous invasion pattern leads to tumours whose outer edges are
difficult or impossible to determine with current imaging technologies, including for
instance magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), both of which
measure the diffusion of water molecules and enable the study of brain structures.

Due to the limited experimental approaches that one can use to study the brain,
researchers have started using mathematical models to provide certain biological insights
that otherwise would be difficult to obtain experimentally. Such models can help predict
how tumours grow for specific patients, aiding clinicians in decision-making, or they can
help test and provide new hypotheses about potential anti-tumour treatments. Math-
ematical modelling of tumours has seen significant advances over the last few decades,
which broadened our understanding of tumour dynamics and how cells interact with their
environment [8–32]. Although the majority of these models do not restrict themselves to
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a specific tumour type and rather focus on general tumours, there are some models that
focus on the evolution of gliomas within the brain [33–41]. Recently, models also started
to incorporate the structure of the brain, by including MRI and DTI scans [34–36,42–45].
Even though these images are generated in 3D, most of these models are simulating the
tumour growth in 2D and only a few of them are 3D models [42,46,47]. Moreover, the ma-
jority of published models focus on tumour progression only on one spatio-temporal scale.
However, tumour progression is characterised by various biological processes occurring
on different scales, and thus their effects on the overall tumour dynamics cannot be ne-
glected. Hence, recent efforts have been made to establish new multi-scale frameworks for
tumour progression [25–29,34–36,48], which were able to capture some of these multi-scale
underlying biological processes usually involving the extracellular matrix (ECM).

In this paper, we extend the general 2D multi-scale moving-boundary modelling
framework introduced in [19,25] to capture the invasion of glioblastomas within a 3D
fibrous brain environment. To this end, we incorporate the information provided by both
the T1 weighted and DTI scans into our multi-scale framework and use the resulting model
to simulate numerically the growth of 3D gliomas within the brain. We focus on a few
cases showing tumour growth in different regions in the brain, with different distributions
of grey/white matter densities, which leads to different tumour invasion patterns.

The model presented in this paper is a first to advance the multi-scale moving bound-
ary modelling of 3D brain gliomas in two key ways compared to previous ones, see for
instance [34–36]. On the one hand, using this modelling framework, we explicitly address
the micro-fibres and their rearrangement dynamics caused by the macro-scale movement
of the cancer cell population (a process of great importance as the micro-scale structural
changes of the underlying tissue can significantly influence the cell population motility).
On the other hand, we also model another vital proteolytic process that occurs along
the invasive edge of the tumour, allowing us to explicitly model tumour morphological
changes and how the tumour boundary progresses over a time interval.

The paper is organised as follows. First, we formulate our extended multi-scale
moving boundary framework in Section 2. Then, following a brief description of the
numerical methods, we present the computational simulation results in Section 3. Finally,
in Section 4 we summarise and discuss these results.

2. Multi-Scale Modelling of the Tumour Dynamics

To model the evolution of glioblastomas within a 3-dimensional brain, we employ
a multi-scale moving boundary model that was initially introduced in [19] and later
expanded in several other works [25–29,48]. To account for the brain’s structure, we aim to
use 3D T1 weighted and DTI scans that ultimately influence the migration of the cancer
cells as well as affect both micro-scale dynamics. Hence, here we aim to explore the impact
of the brain structure on the interlinked macro-scale and micro-scale tumour dynamics.

2.1. Macro-Scale Dynamics

Since in this work we extend the 2-dimensional (2D) modelling framework introduced
in [19,25], we begin by describing briefly some of the key features of this framework and by
giving a few useful notations. First, we denote by Ω(t) the expanding 3-dimensional (3D)
tumour region that progresses over the time interval [0, T] within a maximal tissue cube
Y ⊂ RN with N = 3, i.e., Ω(t) ⊂ Y, ∀t ∈ [0, T]; see also Figure 1. Then at any macro-scale
spatio-temporal point (x, t) ∈ Y× [0, T] we consider a cancer cell population c(x, t) that is
placed within and interacts with a two-phase ECM: the non-fibre l(x, t) and fibre F(x, t)
ECM phases [25–29]. On the one hand, the fibre ECM phase accounts for all major fibrous
proteins such as collagen and fibronectin, whose micro-scale distribution induces the spatial
orientation of the ECM fibres. Hence, the macro-scale spatio-temporal distribution of the
ECM fibres is represented by an oriented vector field θ f (x, t) that describes their spatial
bias, as well as by F(x, t) :=‖ θ f (x, t) ‖ which denote the amount of fibres at a macro-scale
point (x, t) [25–29]. On the other hand, in the non-fibre ECM phase we bundle together
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Figure 1. Schematics of the multi-scale model. (a) Illustration of the sensing region B(x, R), the
two vectors y and y + θ f (y + x, t) and the overall travelling direction Ac. (b) An example of a fibre
micro-domain δY(x) containing fibres (blue lines) that induces an overall orientation θ f (x, t) for
δY(x). (c) An example of a boundary micro-domain εY(x) where the blue volume represents the
tumour volume at the current time-step with boundary point x and the red volume represents the
evolved tumour at next time-step with shifted boundary point x∗εY .

every other ECM constituent such as non-fibrous proteins (for example amyloid fibrils),
enzymes, polysaccharides and extracellular Ca2+ ions [25–29]. Furthermore, in this new
modelling study we incorporate the structure of the brain by extracting data from DTI and
T1 weighted brain scans, and then using this data to parametrise the model. Specifically,
we denote by DWater(x) the water diffusion tensor that is induced by the DTI scan. Also,
we denote by w(x) the white matter density and by g(x) the grey matter density, both of
which are extracted from the T1 weighted image. Finally, to facilitate the description of the
model and to make the mathematical notations more compact, we denote by u the global
tumour vector which at each (x, t) is given by

u := (c(x, t), l(x, t), F(x, t))ᵀ.

With this notation, the total space occupied by the macroscopic tissue is denoted by ρ(u)
and is defined as

ρ(u) = ρ(c(x, t), l(x, t), F(x, t)) := c(x, t) + l(x, t) + F(x, t).

2.1.1. Cancer cell population dynamics

To describe the spatio-temporal evolution of the cancer cell population c(x, t), we first
assume a logistic-type growth with rate µ [25–29,49–51]. For the movement of this cell
population, we use the structure of the brain by taking into account both the T1 weighted
and DTI scans (from the IXI Dataset [? ]), as well as the various adhesion mediated
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processes [52–57]. Hence, the spatio-temporal dynamics of the cancer cell population is
described by

∂c
∂t

= ∇∇ :
[
DT(x)c

]︸ ︷︷ ︸
fully anisotropic

diffusion

−∇ ·
[
cAc(x, t, u, θ f )

]︸ ︷︷ ︸
adhesion processes

+ µc
[
1− ρ(u)

]+︸ ︷︷ ︸
logistic-type
proliferation

. (1)

Here, the operator ∇∇ : denotes the full second order derivative [34], i.e., it is defined as

∇∇ :
[
DT(x)c

]
:=

N

∑
i,j=1

∂

∂xi

∂

∂xj

(
Di,jc

)
, N = 3,

with Di,j denoting the components of the tumour diffusion tensor DT . Since classical
diffusion models with constant coefficient cannot capture any directional cues, as those
provided by the DTI data, in Eq. (1) we use a tensor model (involving a fully anisotropic
diffusion term) that is able to incorporate the anisotropic nature of the cancer cell movement.
These tensor models were proposed in [58–61] and have been used to mathematically model
the gliomas within the brain; see for instance [34–36]. The main idea of this approach
is to use the measured water diffusivity in the structured, fibrous brain environment
characterised by a symmetric water diffusion tensor [? ]

DWater(x) =

dxx(x) dxy(x) dxz(x)
dxy(x) dyy(x) dyz(x)
dxz(x) dyz(x) dzz(x)

, (2)

and appropriately construct a macroscopic diffusion tensor for the cancer cell population.
Since this water tensor (2) is naturally symmetric (due to the DTI scans) [? ], it can be diago-
nalised. Denoting its eigenvalues by λ1(x) ≥ · · · ≥ λN(x) and the associated eigenvectors
by φ1(x), · · · φN(x), we follow [36,62,63] and construct the 3D tumour diffusion tensor as

DT(x) := Dc DWG(x)
[(

r + (1− r)
(

coth k(x)
k(x)

− 1
k(x)2

))
I3

+ (1− r)
(

1− 3 coth k(x)
k(x)

+
3

k(x)2

)
φ1(x)φᵀ

1 (x)
]

.
(3)

Here Dc > 0 is the diffusion coefficient, r ∈ [0, 1] specifies the degree of isotropic diffusion,
I3 denotes the 3× 3 identity matrix, k(x) is given by

k(x) := KFAFA(x),

with KFA ≥ 0 being a proportionality constant measuring the sensitivity of the cells to the
environments’ direction, and FA(x) denotes the fractional anisotropy index [64] given by

FA(x) :=

√
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ1 − λ3)

2

2(λ2
1 + λ2

2 + λ2
3)

.

Finally, it is well known that the malignant glioma cells positioned in the white matter
exercise quicker motility than those situated in the grey matter [38,65–67]. To account for
this effect, in (3), we use a regulator term DWG(·) that is given by

DWG(x) = a + (1− a)
((

DG g(x) + w(x)
)
∗ ψρ

)
(x), (4)

where 0 ≤ DG ≤ 1 is the grey matter regulator coefficient, ∗ is the convolution operator [68],
ψρ := ψ(x)/ρN denotes the standard mollifier and g(x) and w(x) are the grey and white
matter densities provided by the T1 weighted image (following an image segmentation
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process). Finally, 0 ≤ a ≤ 1 is a parameter that distinguishes between different cases (see
Section 3).

In addition, the movement of the cancer cells is further biased by various adhesion
mediated process [52–57]. Due to the increasing evidence that gliomas induce a fibrous
environment within the brain [69–79], in (1) we model the overall adhesion process using
a non-local flux term that was introduced in [25] (see also [18,26–29,48,80,81] for similar
terms). Specifically, we explore the adhesive interactions of the cancer cells at x ∈ Ω(t)
with other neighbouring cancer cells, with the distribution of the non-fibre ECM phase
[82–85] as well as with the oriented fibre ECM phase [86,87], all located within a sensing
region B(x, R) of radius R > 0. For this, we define the non-local flux term as

Ac(x, t, u, θ f ) :=
1
R

∫
B(0,R)

K(y)
[
n(y)

(
Sccc(x + y, t) + Scl l(x + y, t)

)
+ n̂(y, θ f (x + y, t))ScFF(x + y, t)

][
1− ρ(u)

]+ dy,

(5)

where Scc, Scl , ScF > 0 are the strengths of the cell-cell, cell-non-fibre ECM and cell-fibre
ECM adhesions, respectively. While we take both Scl and ScF as positive constants, we
consider the emergence of strong and stable cell-cell adhesion bonds to be positively
correlated with the level of extracellular Ca+2 ions (one of the non-fibre ECM component)
[88,89]. Hence, following the approach in [25–29], we describe the cell-cell adhesion
strength by

Scc(x, t) := Smin + (Smax − Smin) exp
[

1− 1
1− (1− l(x, t))2

]
,

where Smin > 0 and Smax > 0 are the minimum and maximum levels of Ca+2 ions.
Furthermore, in (5) we denote by n(·) and n̂(·, ·) the unit radial vector and the unit radial
vector biased by the oriented ECM fibres [25–29] defined by

n(y) :=


y
‖ y ‖2

if y ∈ B(0, R) \ {0},

0 if y = 0,

n̂(y, θ f (x + y)) :=


y + θ f (x + y, t)
‖ y + θ f (x + y, t) ‖2

if y ∈ B(0, R) \ {0},

0 if y = 0,

respectively (for details on the fibre orientation θ f see Section 2.2.1). Also, to account for
the gradual weakening of all adhesion bonds as we move away from the centre point x
within the sensing region B(x, t) in (5), we use a radially symmetric kernel K(·) [28,29]
given by

K(y) = ψ
( y

R

)
, ∀y ∈ B(0, R),

where ψ(·) is the standard mollifier. Finally, in (5) a limiting term [1− ρ(u)]+ := max(0, 1−
ρ(u)) is used to prevent the contribution of overcrowded regions to cell migration [81]. For
a schematic of this adhesion process, we refer the reader to Figure 1(a).

2.1.2. Two phase ECM macro-scale dynamics

In addition to the cancer cell population, the rest of the macro-scale tumour dynamics
are described by the two-phase ECM. Here, both fibres and non-fibres ECM phases are
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assumed to be simply described by a degradation term due to the cancer cell population.
Hence, per unit time, their dynamics is governed by

∂F
∂t

=− βFcF,

∂l
∂t

=− βlcl,
(6)

where βF > 0 and βl > 0 are the degradation rates of the fibre and non-fibre ECM phases,
respectively.

2.1.3. The complete macro-dynamics

In summary, equations (1) for cancer cells dynamics and (6) for the two-phase ECM
dynamics lead to the following non-dimensional PDE system describing the evolution of
tumour at macro-scale:

∂c
∂t

=∇∇ :
[
DT(x)c

]
−∇ ·

[
cAc(x, t, u, θ f )

]
+ µc

[
1− ρ(u)

]
,

∂F
∂t

=− βFcF,

∂l
∂t

=− βlcl.

(7)

To complete the macro-scale model description, we consider zero-flux boundary conditions
and appropriate initial conditions (for instance the ones given in Section 3).

2.2. Micro-Scale Processes and the Double Feedback Loop

Since the cancer invasion process is genuinely a multi-scale phenomenon, several
micro-scale processes are closely linked to the macro-scale dynamics [90]. In this work,
we consider two of these micro-processes, namely the rearrangement of the ECM fibres
micro-constituents [25] and the cell-scale proteolytic processes that occur at the leading
edge of the tumour [19]. Here we briefly outline these micro-processes, in addition to the
naturally arising double feedback loop that ultimately connects the micro-scale and the
macro-scale.

2.2.1. Two-scale representation and dynamics of fibres

To represent the oriented fibres on the macro-scale, we follow [25]. There, the authors
characterised not only the amount of fibres F(x, t), but also their ability to withstand
incoming cell fluxes and forces through their spatial bias. By considering a cell-scale micro-
domain δY(x) := x + δY of appropriate micro-scale size δ > 0, both of these characteristics
are induced by the microscopic fibre distribution f (z, t), with z ∈ δY(x). In fact, both of
them are captured though a vector field representation θ f (x, t) of the ECM micro-fibres
[25] that is defined as:

θ f (x, t) :=
1

λ(δY(x))

∫
δY(x)

f (z, t)dz ·
θ f ,δY(x)(x, t)
‖ θ f ,δY(x)(x, t) ‖2

, (8)

where λ(·) is the Lebesgue measure in Rd and θ f ,δY(x)(·, ·) is the revolving barycentral
orientation given by [25]

θ f ,δY(x)(x, t) :=

∫
δY(x)

f (z, t)(z− x)dz∫
δY(x)

f (z, t)dz
.
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Hence, the fibres’ ability to withstand forces is naturally defined by this vector field
representation (8) and their amount distributed at a macro-scale point (x, t) is given by

F(x, t) :=‖ θ f (x, t) ‖2,

which is precisely the mean-value of the micro-fibres distributed on δY(x). Since both
of these macro-scale oriented ECM fibre characteristics (F(x, t) and θ f (x, t)) that we use
in the macro-scale dynamics (7), genuinely emerge from the micro-scale distribution of
the ECM fibres f (z, t), we refer to this link as the fibres bottom-up link. An illustration of a
micro-domain δY(x) and its corresponding macro-scale orientation θ f (x, t) can be seen in
Figure 1(b).

On the other hand, there is also a naturally arising link that connects the macro-scale
to this micro-scale, namely the fibres top-down link. This connection is initiated by the
movement of the cancer cell population that trigger a rearrangement of ECM fibres micro-
constituents on each micro-domain δY(x) (enabled by the secretion of matrix-degrading
enzymes that can break down various ECM proteins). Hence, using the fact that the fully
anisotropic diffusion term can be rewritten as ∇∇ :

[
DT(x)c

]
= ∇ · [DT(x)∇c + c∇ ·

DT(x)], the fibre rearrangement process is kicked off by the cancer cell spatial flux

Fc(x, t) := DT(x)∇c + c∇ ·DT(x)− cAc(x, t, u, θ f ), (9)

which is generated by the tumour macro-dynamics (7). Then, at any spatio-temporal point
(x, t) ∈ Ω(t) × [0, T] this flux (9) gets naturally balanced in a weighted fashion by the
macro-scale ECM fibre orientation θ f (·, ·), resulting in a rearrangement flux [25]

r(δY(x), t) := ω(x, t)Fc(x, t) + (1−ω(x, t))θ f (x, t), (10)

with ω(x, t) := c(x, t)/(c(x, t) + F(x, t)), that acts uniformly upon the micro-fibre distri-
bution on each micro-domain δY(x). Ultimately, this macro-scale rearrangement vector
(10) induces a micro-scale reallocation vector νδY(x)(z, t) [25], enabling us to appropriately
calculate the new position z∗ of any micro-node z ∈ δY(x) as

z∗ := z + νδY(x)(z, t). (11)

For further details on the micro-fibre rearrangement process, we refer the reader to Ap-
pendix B and [25–29].

2.2.2. MDE micro-dynamics and its links

The second micro-scale process that we take into consideration is the proteolytic
molecular process that occurs along the invasive edge of the tumour and is driven by
the cancer cells’ ability to secrete several types of matrix-degrading enzymes (MDEs) (for
instance, matrix-metalloproteinases) within the proliferating rim [91–95]. Subsequent to the
secretion, these MDEs are subject to spatial transport within a cell-scale neighbourhood of
the tumour interface and, as a consequence, they degrade the peritumoral ECM, resulting
in changes of tumour boundary morphology [90].

To explore such a micro-scale process, we adopt the approach that was first introduced
in [19] where the emerging spatio-temporal MDEs micro-dynamics is considered on an
appropriate cell-scale neighbourhood of the tumour boundary ∂Ω(t). This neighborhood is
represented by a time-dependent bundle of overlapping cubic micro-domains {εY}εY∈P(t),
with ε > 0 being the size of each micro-domain εY, which allows us to decompose
the overall MDE micro-process, transpiring on

⋃
εY∈P(t) εY, into a union of proteolytic

micro-dynamics occurring on each εY; see also Figure 1(c). Hence, choosing an arbitrary
micro-domain εY and a macroscopic time instance t0 ∈ [0, T], we follow the evolution of
the MDE micro-dynamics during the time period [t0, t0 + ∆t], with appropriately chosen
∆t > 0 and within the associated micro-domain εY. By denoting the spatio-temporal
distribution of the MDEs by m(y, τ) at any micro-point (y, τ) ∈ εY× [0, ∆t], we observe
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that the cancer cell population, located within an appropriately chosen distance γh > 0
from y ∈ εY, induce a source h(y, τ) of MDEs which can be mathematically described via a
non-local term [19]

h(y, τ) =


∫

B(y,γh)∩Ω(t0)

c(x, t0 + τ) dy

λ(B(y, γh) ∩Ω(t0))
y ∈ εY ∩Ω(t0),

0 y /∈ εY \ (Ω(t0) + {z ∈ Y | ‖z‖2 < ρ}),

(12)

where 0 < ρ < γh is a small mollification range and B(y, γh) denotes the ‖ · ‖∞ ball of
radius γh centred at a micro-node y. Since the calculation of this micro-scale MDE source
(12) directly involves the macro-scale cancer cell population c(·, ·), we observe a naturally
arising MDE top-down link that connects the macro-scale to the MDE micro-scale. In fact,
such source term (12) allows us to describe the spatio-temporal evolution of the MDEs
micro-scale distribution m(·, ·) by [19]

∂m
∂τ

= Dm∆m + h(y, τ),

m(y, 0) = 0,
∂m
∂n

∣∣∣
∂εY

= 0,

(13)

where Dm > 0 is the constant MDEs diffusion coefficient and n denotes the outward normal
vector. As it was shown in [19], we can use the solution of the MDEs micro-dynamics
(13) to acquire both movement direction and magnitude of a tumour boundary point x∗εY
within the peritumoral area covered by the associated boundary micro-domain εY. This
ultimately causes a boundary movement, and as a consequence we obtain a new evolved
tumour macro-domain Ω(t0 + ∆t), the link of which we refer to as the MDE bottom-up
link. For illustration of the boundary movement we refer the reader to Figure 1(c) and for
further details of the MDE micro dynamics see Appendix C or [19,25–29].

3. Computational Results: Numerical Simulations in 3D

We start this section by briefly discussing the numerical method that we use to solve
the macro-scale dynamics (7), and for details on the numerical approach used for the two
micro-scale dynamics (fibres and MDE) we refer the reader to [28,29]. Here, we use the
method of lines approach to discretise the macro-scale tumour dynamics (7) first in space,
and then, for the resulting system of ODEs, we employ a non-local predictor-corrector
scheme [25]. In this context, we carry out the spatial discretisation on a uniform grid,
where both spatial operators (fully anisotropic diffusion and adhesion) are accurately
approximated in a convolution-driven fashion. First, we note that the fully anisotropic
diffusion term can be split into two parts

∇∇ :
[
DT(x)c

]
= ∇ ·

[
DT(x)∇c

]︸ ︷︷ ︸
diffusive

+∇ ·
[
c∇ ·DT(x)

]︸ ︷︷ ︸
advective

, (14)

which enables us to use a combination of two appropriate distinct schemes for an accurate
approximation. While for the diffusive part in (14), we use the symmetric finite difference
scheme [96,97], for the combination of the advective (14) and adhesion operators (5) (i.e.,
∇ ·

[
c
(
Ac(x, t, u, θ f ) +∇ ·DT(x)

)]
) we use the standard first-order upwind finite difference

scheme which ensures positivity and helps avoiding spurious oscillations in the solution.
Finally, to approximate the adhesion integral Ac(x, t, u, θ f ), we consider an approach
similar to [28,29], and use Ns random points located within the sensing region B(0, R) and
sums of discrete-convolutions.



9 of 19

Y

δY

δY

(a)

(b)

Figure 2. Schematics of the initial condition of the micro-fibres (blue lines) within a micro-domain
δY(x) of orientation θ f (x, t) located in the (a) white matter and in the (b) grey matter.

3.1. Initial Conditions

For the numerical simulations presented in this paper, we consider the tissue cube
Y = [0, 4]× [0, 4]× [0, 4] with the following initial condition for the cancer cells

c(x, 0) =
1
2

exp
(− ‖ x ‖2

2
0.02

)
· χB((2,2,2),0.25) ,

and for the non-fibre ECM phase, the initial condition l(x, 0) is acquired by appropriately
scaling the T1 weighted image via a normalising constant. Current DTI scans do not
provide suitable resolution to determine the underlying micro-fibre distributions, and
so here, we describe the initial micro-fibre distribution within a micro-domain δY(x) as
follows. When the macro-scale point x that corresponds to the micro-domain δY(x) is
located in the grey matter, then within δY(x) we randomly draw straight lines until the
ratio between the points that belong and the points that do not belong to the collection of
lines is about 35% : 65%. On the other hand, when the point x is located within the white
matter, we use a set of predefined lines with the same point ratio (35% : 65%), ultimately
achieving a random orientation within the grey matter and an aligned orientation within
the white matter [? ]. Finally, the grey matter’s fibre density is assumed to be 1/DG times
smaller than the density in the white matter [? ]. A schematics of this initial condition for
the micro-fibres can be seen in Figure 2. Hence, we also incorporate the information about
the white and grey matter tracks provided by the T1 weighted image into our micro-scale
fibre distribution.

3.2. Numerical Simulations in 3D

Here, we present the 3D numerical solutions of the multi-scale model described above,
for the parameter values listed in Table 1 in Appendix A (any alteration from these values
will be stated accordingly). To display the advanced tumours at time 50∆t, we show four
panels for each simulation results. In the first three panels we show the three classical
cross-section planes i.e., the coronal plane (the head of the subject is viewed from behind),
the axial plane (the head of the subject is viewed from above) and the sagittal plane (the
head of the subject is viewed from the left). In the last panel of each simulation we show
the 3D image of the brain with the embedded tumour alongside the 3D tumour in isolation.

The three Figures shown below investigate tumour evolution when the initial tumour
starts in different regions of the brain. To present the simulations, we divide each result
into four panels: coronal, axial, sagittal and 3D view. Within each coronal, axial and sagittal
views, we show the tumour embedded within the brain on the left, the cancer cell density
on the top-right and the ECM density on the bottom-right. In the 3D view (the most right
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Figure 3. 3D computer simulation results (a) with only white-grey matter dependency (r = 1), (b) with only DTI data used
(DG = 1) (c) with both white-grey matter dependency and DTI data incorporated. To present the simulations, we divide
each result into four panels: coronal, axial, sagittal and 3D view. Within each coronal, axial and sagittal views, we show
the tumour embedded within the brain on the left, the cancer cell density on the top-right and the ECM density on the
bottom-right. In the 3D view (the most right panel in each results) we show the cross-section of the whole brain with the
tumour on the bottom-left corner and on the top-right corner we show the isolated tumour.

panel in each results) we show the cross-section of the whole brain with the tumour on the
bottom-left corner and on the top-right corner we show the isolated tumour.

In Figure 3 we present three distinct cases obtained by varying different parameters1

that appear in the tumour diffusion tensor DT(x) defined in (3). In Figure 3 (a) we assume2

that the tensor DT(x) depends on the white-grey matter and for that purpose we set r = 13

in (3) and a = 0 in (4); this results in isotropic tumour diffusion. In Figure 3 (b) we use4

the DTI data (i.e., there is no a-priory assumption about the preferential direction for cell5

movement in white matter) and thus we set a = 1 in (4) (with r = 0.1, as in Table 1); this6

results in an anisotropic diffusion that does not depend explicitly on the white-grey matter.7

In Figure 3 (c) we use both DTI data and the white-grey matter dependency (i.e., r = 0.18

and a = 0), with the baseline parameters from Table 1. Here, it is worth mentioning that9

even though we do not use the T1 weighted image to obtain functions w(x) and g(x) that10

appear in DWG (as DWG = 1 in Figure 3 (b), since a = 1) we still use the T1 weighted image11

to initialise the micro-scale non-fibre initial density as well as the initial micro-scale fibre12

distributions as described above.13

In all these simulations shown in Figure 3, we place the small initial tumour in the14

middle-right part of the brain, and we show the results of the three cases at time 50∆t where15

we observe significant tumour morphology changes across the three cases. By comparing16

Figure 3 (a) to (b) and Figure 3 (b) to (c), we see that when we include the white-grey matter17
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Figure 4. 3D computer simulation results (a) with only white-grey matter dependency (r = 1), (b) with only DTI data used
(DG = 1) (c) with both white-grey matter dependency and DTI data incorporated. To represent the simulation results, we
use the same format as in Figure 3.

dependency function DWG within the tumour diffusion tensor it leads to a more advanced18

tumour. On the other hand, comparing Figure 3 (a) to (c) shows that including the DTI19

data, which creates an anisotropic tumour diffusion term, leads to a slight reduction in20

tumour spread. Furthermore, in all three cases, we can notice that the advancing tumour21

tends to mostly follow the white matter tracks and usually avoids the invasion of tissues22

located in the grey matter. This invasion resulted in the degradation (and rearrangement)23

of the ECM that we can see in the bottom-right of each panel (coronal, axial and sagittal)24

which enabled the tumour to further expand into the surrounding tissues.25

In Figure 4 we keep the same three cases as in Figure 3, i.e., Figure 4 (a) only white-grey26

matter dependency, Figure 4 (b) only DTI data and Figure 4 (c) both. However, here we27

place the initial tumour in the front-right part of the brain and show the results of tumour28

invasion at the final time 50∆t. Due to the initial position of the tumour, we can see a29

tumour that is growing away from the skull towards the centre of the brain as well as30

it is mainly following the white matter. This creates a highly heterogeneous elongated31

tumour with many branching outgrowths. On the other hand, in Figure 4 we only see32

slight differences between the three cases. This contradicts the results from Figure 3 and33

suggests that both the DTI data and white-grey matter dependency may not always be34

decisive factor in tumour morphology.35

Similarly to Figure 3 and Figure 4, in Figure 5 we keep the same three cases (Figure 536

(a) only white-grey matter dependency, Figure 5 (b) only DTI data and Figure 5 (c) both)37

while we place the initial tumour mass in the middle of the brain and present the results38

at time 50∆t. As a consequence of the initial location, we see a "butterfly" shaped tumour39
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Figure 5. 3D computer simulation results (a) with only white-grey matter dependency (r = 1), (b) with only DTI data used
(DG = 1) (c) with both white-grey matter dependency and DTI data incorporated. To represent the simulation results, we
use the same format as in Figure 3.

that branched to both the left and right side of the brain with some asymmetry. Also, as in40

Figure 4 we can see that all three cases are quite similar, and so the additional information41

provided by both the DTI data and white-grey matter dependency seems to be unnecessary42

for this initial condition. However, we must note that the initial conditions (fibre and43

non-fibre ECM) still uses the information provided by the T1 weighted image, and so here,44

we only investigate the effect of changing the diffusion tensor.45

As we mentioned, we see significant differences between the three cases only in Figure46

3. This either indicates that the anisotropic diffusion tensor provides valuable information47

only in certain cases or that the initial micro-fibre density differs from the one that produced48

the DTI scan (i.e., the actual distribution). Since we use an artificial micro-fibre structure49

that does not depend on the DTI scan which also aid the movement of the cancer cell50

population via the adhesion integral Ac(·, ·, ·, ·) defined in (5), it is possible that in this51

specific case the micro-scale fibre distribution introduced a significantly different travelling52

direction than the DTI data, resulting in discrepancies between the simulations. However,53

due to the resolution of current DTI scans, it is not possible to construct a unique fibre54

distribution within a micro-domain δY(x). Hence, to genuinely capture the underlying55

brain structures that we can use within a mathematical model, our results suggest that56

DTI scans with their present resolution may not be sufficient, and one might need to57

look into either obtaining better resolution DTI scans or combine this with the strength of58

different technologies such as magnetic resonance elastography. Nonetheless, this exceeds59

the current scope of this work and requires further investigation.60
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4. Discussion and Final Remarks61

In this study, we have further extended the 2D multi-scale moving-boundary frame-62

work previously introduced in [19,25], by developing it to 3D and applying it to the study63

of glioma invasion within the brain. Since experiments are limited within the brain, we fo-64

cused on incorporating DTI and T1 weighted scans into our framework to provide insights65

into the structure of the brain, the tumour, and the surrounding tissue.66

The original framework developed in [19,25] modelled a generic tumour in a 2D67

setting, and so to model gliomas within a 3D brain, we extended this modelling approach68

by considering the structural information provided by both DTI and T1 weighted scans.69

We used both DTI and T1 weighted scans to construct the tumour diffusion tensor DT(x)70

defined in (3), which resulted in a fully anisotropic diffusion term. While the T1 weighted71

image can give different diffusion rates based on whether the cancer cells are located in the72

white or grey matter, the DTI data is used to incorporate the underlying brain structure73

and to give higher diffusion rates along specific directions based on how the measured74

water molecules behaved within the brain. The T1 weighted image, which provided the75

white-grey matter densities, were also used in our initial conditions for both ECM phases.76

Hence, the initial density of the non-fibre ECM phase was taken as a normalised version77

of the T1 weighted image, and the initial condition of the micro-fibre distribution and78

magnitude were also considered to be dependent on the white-grey matter structure.79

Furthermore, as the available DTI scans lack the adequate resolution required to construct80

more appropriate micro-fibre distributions, in this work we considered a simple case where81

we set the fibre distributions to be either random or oriented based on whether they are82

positioned in the grey or white matter, respectively.83

Therefore, compared to other previous 3D models such as those in [34–36], here we can84

explicitly capture the underlying tissue structure changes via the micro-fibre rearrangement85

process and trace how the boundary of the tumour changes over time. Moreover, the cancer86

cells’ movement is not only influenced by the T1 weighted and DTI scans (through an87

anisotropic diffusion term) but also biased by crucial non-local adhesions such as cell-cell88

and cell-fibre ECM adhesion the latter of which is naturally interconnected to the tissue89

structural changes. Hence, our model presents a novel approach that can incorporate90

several vital processes for tumour development and have not been available in other91

previous models. This allowed us to produce exciting and valuable results/outcomes92

which provide further insights into the overall tumour development process.93

To that end, we used this new 3D model to explore the effects of the anisotropic94

diffusion term for the cancer cell population. Our numerical simulations in Figure 395

showed that including an anisotropic diffusion term may lead to significant changes in the96

overall tumour morphology. However, it seems that these changes depend on the position97

of the tumour inside the brain, as Figures 4 and 5 do not exhibit changes consistent to98

the ones observed between the three sub-panels of Figure 3. This may be the result of the99

underlying brain structure and its microscopic fibre representation, which seems to take a100

leading role in influencing cancer-invasion patterns through the underlying cell-adhesion101

process (see Eq. (5)), overshadowing this way the diffusion process. More precisely, the102

simplified fibre representation might not be sufficient for Figure 3, where the initial tumour103

was positioned in the right-middle part of the brain. However, this fibre representation104

might be enough for Figure 4 (with tumour positioned in the front-right of the brain) and105

for Figure 5 (with tumour positioned in the middle of the brain), where we did not see106

significant morphological differences between the three sub-panels considered in each of107

these figures.108

To conclude this study, we mention that further investigation is needed to determine109

whether these changes in tumour invasion patterns are caused by the lack of directional in-110

formation on the fibre micro-scale level or an anisotropic diffusive cell motility is necessary111

to better represent the invasion process. A feasible approach would also be to use a new112

imaging technology called magnetic resonance elastography, but this is beyond the scope113

of this current work. Nonetheless, these results are not only interesting and important from114
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a mathematical modelling point of view but from a medical one as well. For instance, we115

showed how different model parameters change the evolution of the tumour boundary,116

this being a vital and desired information in any clinical/medical decision-making process.117

Such a model with tuned parameters (to specific patients) could help, for example, decide118

the optimal amount of tissue to resect so that the chance of survival is maximised.119

Finally, as our simulations are able to reproduce known tumour patterns of growth120

seen clinically, future experiments will be refined by MRI data collected prospectively from121

glioma patients and also incorporate the effects of their radiotherapy and chemotherapy122

treatments.123
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Appendix A. Parameter Values132

In Table 1, we summarise the parameter values that were used in the presented133

numerical simulations.134

Appendix B. Further Details on the Micro-Fibre Rearrangement Process135

In Section 2.2.1, we highlighted the fact that the rearrangement of micro-fibre dis-136

tribution f (z, t) within each δY(x) is initiated by the macro-scale cell fluxes, resulting137

the redistribution of each micro-fibre pixel z to a new position z∗. To calculate this new138

position z∗, we use the so-called reallocation vector νδY(x)(z, t) which takes into account the139

rearrangement vector r(δY(x), t), defined in (10), the degree of alignment between r(δY(x), t)140

and the barycentral position vector xdir := z− x and also incorporates the level of fibres at141

position z. Hence, following [25], we define it as142

νδY(x)(z, t) :=
[
xdir(x) + r(δY(x), t)

]
· f (z, t)[ fmax − f (z, t)]

f ∗+ ‖ r(δY(x), t)− xdir(x) ‖2
· χ{ f (z,t)>0},

where fmax > 0 is the maximum level of fibres, f ∗ := f (x, t)/ fmax is the saturation level143

and χ{ f (z,t)>0} is the characteristic function of the micro-fibres support. To move the144

appropriate amount of fibres from position z to the new position z∗, given in (11), we145

also monitor the available amount of free space at this target position z∗ via a movement146

probability pmove that we define it as147

pmove := max

(
fmax − f (z∗, t)

fmax
, 0

)
.
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Table 1: Parameter set used for the numerical simulations.

Variable Value Description Reference

Dc 1.25× 10−4 Diffusion coeff. for the cancer cell population [36]
DG 0.25 Grey matter regulator coefficient Estimated
r 0.1 Degree of randomised turning [36]
a 0 Model switching parameter Estimated
KFA 100 Cell’s sensitivity to the directional information [36]
Smax 0.5 Cell-cell adhesion coeff. [25]
Smin 0.01 Minimum level of cell-cell adhesion [28]
Scl 0.01 Cell-non-fibre adhesion coeff. [25]
ScF 0.3 Cell-fibre adhesion coeff. [18]
µ 0.25 Proliferation coeff. for cancer cell population [18]
βF 1.5 Degradation coeff. of the fibre ECM [29]
βl 3.0 Degradation coeff. of the non-fibre ECM [29]
β 0.8 Optimal tissue environment controller [19]
R 0.15 Sensing radius [25]
fmax 0.636 Maximum of micro-fibre density at any point [25]
∆x 0.03125 Macro-scale spatial step-size [19]
ε 0.0625 Size of a boundary micro-domain εY(x) [19]
δ 0.03125 Size of a fibre micro-domain δY(x) [25]
Ns 450 Number of random points used for the Estimated

approximation of the adhesion integral Ac

Consequently, we transport pmove · f (z, t) amount of fibres to the new position z∗ and the148

rest (1− pmove) · f (z, t) remains at the original position z.149

Appendix C. Further Details on the MDE micro-scale150

Following [19], we briefly detail here the way the MDE micro-dynamics (13) deter-151

mines the macro-boundary of the progressed tumour domain Ω(t0 + ∆t). To that end,152

on any arbitrary boundary micro-domain εY ∈ P(t0) we consider an appropriate dyadic153

cubes decomposition {Dk}I , and we denote the barycentre of each Dk by yk. Then, a154

subfamily of small dyadic cubes {Dk}J ∗ is sub-sampled by selecting only those dyadic155

cubes that are furthest away from the boundary point x∗εY while being located outside of156

the tumour domain Ω(t0) and carrying an above average mass of MDEs. This enables us157

to define the associated direction ηεY and displacement magnitude ξεY of the movement,158

which are given by159

ηεY(x∗εY)
:= x∗εY + ν ∑

l∈J ∗

( ∫
Dl

m(y, τ) dy

)(
yl − x∗εY

)
, ν ∈ [0, ∞),

ξεY(x∗εY)
:= ∑

l∈J ∗

∫
Dl

m(y, τ) dy

∑
l∈J ∗

∫
Dl

m(y, τ) dy

∣∣∣−−→x∗εYyl

∣∣∣.
Although a movement direction and a displacement magnitude can be this way determined160

for each boundary point ξεY, the actual relocation of ξεY only occurs if sufficient but not161

complete ECM degradation will have occured in the peritumoural region εY \Ω(t0). To162

quantify the amount of ECM degradation, we use a transitional probability that we define by163

q(x∗εY) :=

∫
εY(x∗εY)\Ω(t0)

m(y, τ)dy∫
εY(x∗εY)

m(y, τ)dy
,
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Then, the movement of a boundary point is exercised only when adequate but not complete164

degradation of the peritunoural ECM occurs, which is characterized by the situation when165

this transitional probability q(x∗εY) exceeds a certain tissue threshold ω(·, ·) (as defined in166

[19]), namely167

ω(β,εY) :=


sin
[

π

2

(
1−

v(x∗εY, t0 + ∆t)
β · sup

ξ∈∂Ω(t0)

v(ξ, t0+∆t)

)]
if

v(x∗εY, t0+∆t)
sup

ξ∈∂Ω(t0)

v(ξ, t0+∆t)
≤ β,

sin
[

π

2(1−β)

(
v(x∗εY, t0 + ∆t)
sup

ξ∈∂Ω(t0)

v(ξ, t0+∆t)
− β

)]
otherwise,

where β ∈ (0, 1) controls the optimal level of ECM for cancer invasion and v(x, t) :=168

l(x, t) + F(x, t).169
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