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1 Introduction 

Some contemporary structures like cable nets, membranes and tensegrity sys­
tems are initially stressed systems and require form finding processes. The 
final shape has to fulfil equilibrium conditions. Corresponding relations are 
not linear and initially a so-called "forcedensity method" has been developed 
by Linkwitz and Scheck (1971) in order to linearise the problem. This paper 
describes its utilisation, and an innovative form-finding process the Surface 
Stress Density Method, based upon the use of isotropic stress tensors, which 
allows the calculation of broad range of structures and appears as an ex­
tension of the existing Force Density Method. Several illustrative examples 
point out the efficiency of the procedures and also their adaptation to the 
requirements of either architects or engineers. 

2 Force density method 

This method is used when the system is modelled by an assembly of straight 
links: cable nets, membranes in case of assimilation to cable nets and tenseg­
rity systems. 

2.1 Equilibrium relation 

Notations The following notations and definitions are used: 
n, number of nodes, b number of links 
z;ib ' manufacture length of element "j" ' "free" length 
lJ , Length of element "j" in reference configuration (assembled and not 

loaded) 
lj , Length of element "j" in current configuration (assembled and loaded) 
Vectors of node coordinates (global reference system) 

{X} = { X1, ... ,Xi, ... , Xn} t, {y} = {Yl, ···, Yi, ... , Yn} t, { Z} = { Z1, ... , Zi, ... , Zn} t 



342 R. Motro, B. Maurin, N. Vassart 

Vector of external applied actions {!} = { ... ,fix' fiy' fiz, ···} t 

External action on node "i", {fi} = {fix,fiy,fiz}t 

Force density coefficient q1 = f& with T1, internal effort in element "j" , 
J 

T1 > 0, traction, T1 < 0, compression. 

Equilibrium equation Equilibrium equation for node "i" with force density 
coefficient is given by: 

L (xi - xh) ·% = fix 
j3i 

L (Yi - Yh)·qj = fiy 
j3i 
L(Zi- zh)·qj = fiz 
j3i 

For the whole system: 

[A]. {q} = {!} 

(1) 

(2) 

With [A], equilibrium matrix defined by components of members. This 
matrix has "3n" lines corresponding to the "n" nodes, and "b" columns, one 
by element. The number of lines is then reduced toN, N being the number 
of degrees of freedom. 

It is convenient to build this matrix with the connectivity matrix [C], 
which traduces the relational structure of the system. [C] is a b lines, n 
columns matrix. General term is C1i ; for nodes "i" and "j" with no link, C1i 

is equal to zero. When nodes are linked, then: 

cji = -1 or cji = 1 (3) 

Negative value for i < j in the numbering of nodes, and positive value 
for the opposite case. Each line of equilibrium matrix, corresponding to node 
"i" and X-direction is given by: 

[ALx,• = [CJ!,i . [X] (4) 

In this expression [X] is a diagonal matrix comprising the components of 
the b members along X direction. Similar expressions are derived for Y and 
Z-directions. The whole matrix of equilibrium can be written line by line and 
organised sequentially according to X, Y and Z directions. 

The writing of equilibrium equation of node "i" along X -direction in terms 
of force densities is given by: 
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[CJ!,i [X] { q} = {fix} (5) 

According to diagonal matrix properties, we may express: 

[X] {q} = [Q] {X} 

With [Q], diagonal matrix of force densities. 
And since: 

[X]= [C] {x} 

(6) 

(7) 

Equilibrium equation for all nodes with degree of freedom along X direc­
tion, takes the following form: 

[C]t [Q] [C] {x} = Ux} (8) 

Values associated with nodes are split in two parts to introduce boundary 
conditions (for pre stressed systems with fixed nodes). This leads to a par­
tition of the connectivity matrix. The first part is built with terms related 
to free nodes (subscript "l", and subscript "lx" for x-direction), second one 
with those which qualify fixed nodes along the considered direction (subscript 
"f" is mentioned for these values, and" fx" for X-direction). If, in equations 
(8), we consider only the ntx equilibrium equations associated with ntx free 
nodes, we have: 

(9) 

We define [Dx] as" connection matrix" containing force density coefficients 
of nodes which are free along the direction X, as follows: 

(10) 

And if we note: 
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(11) 

We reach the matrix writing of equilibrium with force density method 
along X -direction: 

(12) 

and similar expressions along Y and Z-directions. 
It is convenient to notice that in case of completely fixed or free nodes, 

connection matrices are identical for X, Y and Z. 

Solving system (12) for each direction leads to a geometry satisfying equi­
librium equation with chosen force density coefficients. 

2.2 Applications 

Pre and self stressed systems For initially stressed systems, values of 
force density coefficients are chosen by the designer. These values are stored 
in matrix [Q0 ], and consequently matrices [D~] and [D~1 ] are defined 

Two cases can be examined: 

- pre stressed systems: equilibrium equation [D~]. {xz} = -[D~1 ]. {xt} 
- self stressed systems: equilibrium equation [D~]. {xz} = {0} 

Cable nets and membranes Force density method has been developed for 
cable nets and membranes with an analogy depending on cable net modeling 
for membranes. Many examples are described in literature. The first studies 
on tensile membranes were carried out by physical modelling and significant 
results ensued from F. Otto's works (1973) on soap films. However, these 
methods are cumbersome and may not provide sufficient accuracy or restrict 
the variety of possible shapes to minimal area surfaces. Form-finding is to­
day performed with computer-aided numerical procedures. We may firstly 
distinguish the mechanical approaches based upon a discrete representation 
of the domain by use of cable networks. This consideration has led to the 
Force Density Method (Linkwitz and Scheck, 1971). We developed a specific 
software called Architectural Membranes Design illustrated below according 
to the different steps of the method 
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Fig. 1. Formfinding with AMD. 
a) initial mesh, b) boundary conditions, c) first shape of Form finding with AMD 

Tensegrity systems Tensegrity systems are systems in a stable equilibrium 
state comprising a discontinuous set of compressed components inside a con­
tinuum of tensioned components. It is necessary to emphasise on the fact 
that matrices for these self stressed systems, are always singular, since for 
any column or row, the sum of terms is always equal to zero. 

rank([D~]) = rank([D~]) = rank([D~]) < n (13) 

Consequently equilibrium equations admit an infinity of solutions, since 
all characteristic determinants vanish when the system to be solved is homo­
geneous. In case of non specific self stress coefficients, the rank of matrices is 
generally equal ton - 1. Solutions are then parametered by only one redun­
dant coordinate, but all the other nodes are confounded with this redundant 
node. In order to have self stressed geometries, which are not restricted to one 
point (or one straight line) , it is necessary to reduce the connection matrix 
rank ton- 2 (respectively n- 3).When this rank is equal ton- 3, solutions 
are parametered by three redundant coordinates. The resulting self stressed 
forms are then planar at best. For planar reticulated systems it is sufficient, 
but for spatial systems it is necessary to further reduce the rank by one. 
When the connection matrix rank is reduced to n- 4, the four redundant 
nodes which parameter the solutions are then sufficient to generate spatial 
reticulated self stressed systems. 

Example We call "triplex" every tensegrity system comprising six nodes, 
three struts and nine cables, such as every node is connected to one strut and 
three cables. In order to find irregular triplexes, we know that it is necessary 
to reduce the rank of the self stress coefficient connection matrix until n - 4. 
Matrices being of dimension 6, the rank will be equal to 2. Required self stress 
coefficients have to be different from zero and to satisfy q0 > 0 for cables and 
q0 < 0 for struts. All self stress coefficient combinations which lead to a rank 
equal or less than two can be taken in account. 

If, for instance, we choose identical coefficients for members pertaining to 
a same set of members, that is: 
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lower triangle cables: (14) 

bracing cables: (15) 

upper triangle cables: (16) 

struts: (17) 

We find after an analytical study (based on Gaussian elimination) that 
the following relationship has to be satisfied in order to reduce the rank to 
two: 

(18) 

Consequently, if q? = q~ = 1, then q0 can be derived: 

(19) 

For every direction, there remain only two independent equilibrium equa­
tions. There are then four redundant nodes, which can be located anywhere. 
Some examples are given on the following figures (in plane views) 

Fig. 2. Different triplex resulting from form finding. Plane views 
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3 Surface stress density method 

3.1 Introduction 

The stress distribution in a fabric remains an unknown factor even if refer­
ence to tensions in cable are done. Most generally, the question is related to 
the equivalence between a tensile cable net and a pre stressed membrane. 
Developments point out the inacurracy of this equivalence and therefore the 
inadequacy of such approach which may lead to significant mistakes. Thus, 
several methods based on a continuous representation of the fabric with mem­
brane surfacic elements has been proposed. We may quote processes using 
the Dynamic Relaxation (Barnes, 1975) or Finite Elements methods under 
large displacement context (Haug and Powell, 1972). They are related to geo­
metrically nonlinear analysis and determinate an equilibrated geometry by 
deforming a trial configuration whose boundary conditions are modified ac­
cording to designer's specifications. However, several drawbacks may be put 
forward. Both the final shape and stresses in the membrane are difficult to 
control and some areas of the structure may end up in compression. More­
over, these techniques require most of time the use of unfriendly softwares 
for the architect and high performances hardwares. 

3.2 The Surface Stress Density Method 

This approach is based upon a continuous representation of the domain 
with triangular membrane surface elements. We note that the mechanical 
requirement of absence of compressive areas may be satisfied if every el­
ementary Cauchy stress tensor is isotropic, which implies in its local axis 
(xtm Ym ?m), that {a-O'isoV = (a-0a-00) with a-0 > 0. Therefore, the inter­
nal forces exerted by the element at its nodes may be written in the global 
axis of the structure (X V Z) by: 

1 ·m _ -epm m~ ~ 
Ij - -2-a-o {_bj n J (20) 

where epm is the fabric thickness and 'it J a normed vector orthogonal to 
the opposite side of the node. It comes for node 1: 

(21) 

with Sm = !£bl fhl being element area 
,.o 

By considering the ratio qsm = .:...m. as the surface stress density for the 
Sm 

element 
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Fig. 3. Membrane element and equilibrium of node 

(22) 

When mi elements are adjacent to the node i (noted li on Fig. 3), the 
total internal force is then 

(23) 

With {xi}T = (X 1Y1Z 1), the equilibrium position of node li verifies the 
matrix relationship: 

(24) 

This equation is the main feature of the Surface Stress Density Method 
(SSDM)(Maurin and Motro, 1998). It allows to determinate the position of 
every node in an easy way (the most intricate requirement is a 3 x 3 inversion 
matrix) and to modify it by acting on the q81 values. 
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Indeed, [I d3] is the 3 x 3 identity matrix and 

mi 

with q 5 j = Q sj (L qsjf~j) 
j=l 

Combining with the Force Density Method (FDM) The process al­
lows the management of reinforcing cables located at the edges or above the 
fabric. If Ci cable elements are connected to node l i, the total internal force 
may be expressed as: 

(25) 
j=l j=l 

Fig. 4. Membrane with cables 

Applications 

Fig. 5. Some examples of SSDM applications for membranes 

When cable elements are located on the edges, their curvature may be 
managed by changing the ratio between surface coefficients Qsj and force 
density coefficients% (Fig.6 a to c). 
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a b c 

Fig. 6. Combination of SSDM and FDM for different values of coefficients 
a) q8 j = 1 and%= 6 b) q8 j = 1 and%= 25 c) q8 j = 1 and% = 100 

4 Conclusion 

Force density methods appear to be very useful as far as form finding processes 
are required for initially stressed systems. We contributed to extend the clas­
sical force density method to surface stress density method opening also com­
bination possibilities. 
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