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1 Introduction 

The ability to track the dynamic and physical behaviour of a class of large 
and flexible structures - typically discrete spatial structures or adaptable 
structures for which inertia or stiffness may vary significantly - is of great im
portance. Likewise, the development of new structural concepts and original 
applications such as tensegrity systems [1] made up of both cables and bars, 
shell's folding/unfolding and deployable covers involves creating skillfull tools 
to accurately identify the structure even after marked alterations. 
In contrast to traditional approaches, we decided to build the model directly 
on the basis of the experimental results - the selected control and measure
ment points - without any preliminary theoretical model. The recent and 
relatively unknown subspace-state methods, which identify a discrete space 
state model (being composed of the following quadruple of matrices: A, B, C 
and D) of the studied system, has proven [2] very efficient for solving such 
problems. 
Besides also identification of classical modal parameters, the state space rep
resentation allows relatively easy recognition of physical matrices provided 
that the number of outputs l tested is the same as the number of identified 
modes n. This ability to solve the inverse problem is of great interest in the 
control domain, particularly for discrete structures with concentrated masses 
and separate elements. Few preliminary numerical results have confirmed the 
principle. Unfortunately, the main theoretical condition, recalled just above 
( l = n), is difficult to apply practically. 
In order to overcome this initial limitation, several methods have thus been 
developed which combine two at a time "sub-state space" models (e.g. partial 
models including only a few inputs/outputs and a few modes) of the same 
structure. Finally, the result is an enlarged space-state model including all 
inputs, outputs and modes coming from these different models. Several data 
records 1 can thus be associated in order to yield an extended dynamic rep
resentation of the structure. 
The theoretical background is then briefly summarized, and the paper presents 
numerical and experimental results acquired with this identification scheme. 

1 ... collected sucessively at different points. 
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First, to initially obtain good identifications, the algorithm - named N4sidr 
- derived from subspace methods is used. Secondly, the modal and physical 
parameters are computed when a sufficiently enlarged space-state model is 
reached. Physical matrices identified from corrupted data are compared with 
true matrices. A real variable mass system is also studied to assess the dy
namic tracking of variable factors. 

2 Theoretical background 

In the identification field, frequency domain techniques are often the best 
known and the most frequently used. Yet many time domain identification 
methods have been described over the past few years. They are able to iden
tify dynamic parameters and often produce models more accurately. 
More recently, a class of subspace-state methods have been developed and 
shown their superiority in relation to the classical time domain approaches [2]. 
Instead of classically pre-estimating a large-sized block Hankel matrix made 
up of Markov parameters, subspace-state algorithms estimate the model di
rectly from the input/output data without requiring such accuracy-consuming 
steps. Moreover, they make use of numerically stable methods such as RQ 
decomposition and singular value decomposition (SVD) [3]. 
The subspace identification algorithm taken into account in this paper is the 
robust version of N4sid (N4sidr ), which stands for "Numerical algorithm for 
Subspace State Space System Identification" of P. Van Overschee and B. De 
Moor [4], [5]. 

2.1 State space representation 

It provides a discrete time, linear, time-invariant state space model which is 
mathematically described by the following set of equations2 : 

where: 

• xk E ~2n is the state vector of the process which contains the numerical 
values of 2n states 3 , uk E ~m and vk E ~~ are respectively the measure
ments of the m inputs (forces) and l outputs (usually accelerations). 

• A E ~2nx 2n , B E ~2nxm and C E ~lx 2n are respectively the state ma
trix, the input and the output matrix. D E ~lxm is the direct feedthrough 

2 E is the expected value operator and lipq the Kronecker delta. 
3 Consequently, n is the number of modes. 
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term4 . A characterizes the complete dynamics of the system: the n fre
quencies wi and n damping ratios Ei are easily determined from its com
plex eigenvalue pairs Ai 
(i = 1,··· ,2n) with Ai = ±(Ei x wi) +i x wiJ(1-s;). 

wk and vk are umeasurable vector signals; they are supposedly zero mean, 
stationary, white noise vector sequences. Q, S and R are their associated 
covariance matrices. 

2.2 State space identification problem 

Given N measurement of the input and output of the unknown real system, 
the multi input/output identification problem as described by (1) involves 
estimating: 

• the order n of the unknown system. 

• the quadruple state space matrices within a similarity transformation T, 
i.e. (TAT- 1 , TB, CT- 1 , D). 

The key elements of subspace methods are using geometric tools and ma
nipulation of subspaces spanned by rows and columns. Irrespective of an 
specific subspace algorithm, the identification process is twofold [3]. The first 
step performs both state sequence Xs and extended observability matrix Fs 
directly from the given input/output data, where: 

Fs= [ ~] 
CAs- 1 (ls,2n) 

(2) 

In a second step, the state space representation up to a similarity trans
formation is obtained. Distinctions between the different subspace algorithms 
are ultimately due to different numerical implementations. 

2.3 Physical parameters identification 

In order to subsequently identify m, c and k (mass, damping and stiffness 
matrix respectively ) , the main problem involves retrieving the "physical" 
form of the estimated state space model usually expressed in continuous time 
([ ]c ) as: 

(3) 

4 D is most often 0 in continuous time. 
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To solve this problem, it has been shown in [6] that there is a unique simi

larity transformation P, defined as P = [ c~.5t] , that reaches this "physical" 
space. 

Note that m, c and k can be determined only if the number of output 
l equals the number of modes n. P must be invertible and then square; a 
condition that is seldom satisfied under real tests. 

2.4 Re-association methods 

AcBc Cc De 
n modes/outputs 

m inputs 

A2B2C2Dl 
n2 modes 
m2 inputs 
11 outputs 

Fig. 1. Re-association principle 

Methods that combine two at a time sub-state space representations (Fig
ure 1) have been developed in order to increase the number of outputs but 
also the number of inputs and the number of modes of a reduced model. 
A detailed description of three related methods can be found in [7]. The key 
step lies in the projection properties into a common base [8] of each sub-state 
space representation allowing subsequently linear association of input, output 
and modes. 

3 Simulation results 

In this section, a constant 4 degrees of freedom system is considered, defined 
as: 

m = diag ([ 300 220 300 310]) 
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[ 
23 -15 0 8] c- 102 -15 26 11 - 8 -11 13 -2 

0 -2 12 
[ 

32 -16 0 8] k- 104 -16 36 -20 - 8 -20 35 15 
0 -15 29 

(4) 

In order to validate the efficiency of the physical parameters autonomous 
5 identification principle, we first excite the studied system with 1 white noise 
input, and 4 outputs are used. Given that the number of modes ( 4) equals 
the number of outputs, no combining methods are necessary here. 

1200 data samples are used with the sampling frequency set at 30Hz. The 
number of data block rows s is set at 12. 50 runs are systematically performed 
and the true system order (namely 4) is specified for each one. The data are 
then averaged. 

For zero noise level, the identification results agree perfectly with the true 
physical matrices. For 1% and 10% noise level, the Figure 2 shows the bands 
covered by the evaluated relative estimation errors 6 when the four inputs 
are selected successively. 

Examination of these results highlights the fact that the stiffness matrix 
is the easiest to identify with the mass matrix. On the other hand, increasing 
the noise level is detrimental to the overall consistency; the damping matrix 
remains the most sensitive. 

5 10 20 40 60 70 [% 

Fig. 2. Relative estimation errors of m ,c & k versus selected input 

Finally, Table 1 gives the estimated matrices for 10% noise and demon
strates a good identification process. 

5 Nothing of m, c or k is known. 
6 Ern = 100 'j;,t ' where m is the true mass matrix . Alike for c and k. 
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m = diag([302.56 222.97 317.42 290.85]) 
c= k= 

22.81 -14.738 -0.162 0.05 32.026 -15.94 -0.106 -0.071 

102 -14.373 25.223 -10.679 0 .107 104 -15.94 35.784 -19.988 - 0.109 
-0.072 -11.094 13.054 -2.053 0.036 -19.988 34.911 -14.947 
0.313 -0.48 -1.782 12.273 0.255 -0.444 -14.947 29.443 

Table 1. Estimated matrices - 10% noise level 

In a second step, with the same 4 d.o.f. system and the same numerical 
conditions, the capacities of the re-association methods are evaluated. Many 
inputs/outputs sequences are tested (with at least here one input and two 
outputs per identification) with the aim of producing an enlarge state-space 
representation made of 4 outputs. In order to identify the physical matrices , 
we assume the mass matrix m is entirely known. 

For zero noise level, the results are perfect and are not shown. For 1% and 
10% noise level, F igure 3 summarizes the evaluated level errors . Compara
tively, they are almost equivalent to previous simulations performed without 
sub-models association highlighting the efficiency of such combining tech
niques. But lower results can be expected if m is autonomously identified 
rather than assumed to be known. 

~ 1 
S: 1' 

5 10 20 40 60 70 [% 

Fig. 3. Relative estimation errors of c & k wit h sub-models association 

4 Experimental results 

This section describes the results of tests which were conducted on a simple 
cantilevered beam. This structure was excited consecutively at different lo
cations using only one random noise input. 2 or 4 accelerometers were used 
for measuring the dynamic response. Two analyses were carried out on this 
st ruct ure. 

'--7 The first experimental sequence involved evaluating the capacity of t he 
whole identification scheme to track noticeable alterations in t he physique 
of the system. We chose to modify the mass distribution of an equivalent 
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2 degrees of freedom structure by successively overloading each node with a 
1.2 kg mass. The analysis was performed on a 0-100 Hz frequency range. The 
sampling frequency was set at 1000 Hz and 2000 data points were collected 
during the test. The number of data block rows s was preset at 10 to effec
tively identify 10 modes (one input only). Nevertheless, after the reduction 
process (unstable and out of range modes are removed), only 2 modes were 
clearly selected. 

Inspection of the identified mass matrices (Table 2) clearly highlighted the 
capacity to track weight variations despite a slight overestimation probably 
due to the comparatively high mass of the electromagnetic exciter. 

no over loading 1.2 kg on node 1 1.2 kg on node 2 

[3.80 . ] 
. 1.25 

[5.94 . ] 
. 1.51 

[4.28 . ] 
. 2.85 

Table 2. Identified mass matrices under test 

As for the stiffness matrix, its different estimations were logically sta
ble (less than 5.5% variation). On the other hand, the damping matrix was 
more affected; its high sensitivity has already been shown with numerical 
simulations. 

no overloading 1.2 kg on node 1 1.2 kg on node 2 

k 105 [ 6.91 -2.62] 
-2.62 1.13 

105 [ 7.22 -2.73] 
-2.73 1.19 

105 [ 6.59 -2.49] 
-2.49 1.08 

c [ 72.27 166.45] 
-137.43 -24.06 

[ 113.79 183.19] 
-153.82 -26.17 

[ 126.63 316.60] 
-147.73 -77.26 

Table 3. Identified stiffness and damping matrices under test 

Y The second field tests were aimed at experimentally validating the 
capacities of the re-association methods. In order to obtain an equivalent 4 
d.o.f. model having 4 outputs, each sub-identification involved 3 measurement 
outputs and one input (either at the middle or end of the beam). 2000 data 
points were gathered on a 0-500 Hz frequency range with a 2000 Hz sam
pling frequency (just 1 second!). The same four modes were systematically 
selected among 10 identified (s = 10), thus avoiding the need to combine 
modes during these tests. Simultaneously, direct identification (without any 
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sub-models association) using whole outputs was performed to obtain a com
parative base. 
Regardless of the test, all physical matrices were entirely identified without 
any preliminary knowledge of them. As shown in Figure 4, the reconstructed 
outputs calculated with the combined state space model or with the direct 
identification were very close to the real data. These traces illustrate the high 
efficiency of the N4sidr algorithm and the low effects of such re-association 
processes on each other. Good subsequent autonomous identifications of the 
physical matrices could thus be expected. The Table 4 sums up the values of 
m, c and k obtained by the direct or the combining method respectively. 
The comparison gives similar results. However, note that parameters that are 
supposed to be zero in the stiffness and damping matrices were not correctly 
identified. 

Re-building of the output y 4 with N4sid,. 
Identifications performed wit h filtered data (hanning)- Id n°1: u2Yl2:! - ld n°2: u2Y234 

X 105 

er-----.-----or-----.-----,------.-----.-~--~--. 

6 

·6 

0.02 

··.: .. 
10\ ;I I . . 

·· . ... 

0.12 0.14 

Fig. 4. Comparison between reconstructed output and real output 
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Direct identification 
m kx 107 ex 103 

r5· l [ 1.12 -0.92 0.35 -008] [ 0.03 1.09 -0.45 0.45] 
4.60 -0.92 1.31 -0.79 0.24 -1.04 -0.34 0.07 -0.89 

3.19 0.35 -0.79 0.71 -0.27 0.85 -0.53 0.67 0.61 
0.90 -0.11 0.27 -0.27 0.11 -0.43 0.50 -0.53 -0.11 

Identification with combining method 
m kx 107 ex 103 

r·
9 l [ 1.15 -0.95 0.36 -009] [ 0.10 1.34 -0.01 0. 71 l 

4.77 -0.95 1.35 -0.81 0.24 -1.52 -0.57 -0.42 -1.18 
3.30 0.36 -0.81 0.73 -0.28 0.93 -0.42 0.98 0.78 

0.93 -0.11 0.28 -0.28 0.12 -0.46 0.46 -0.65 -0.17 

Table 4. Identified physical matrices with and without re-associated outputs 

5 Conclusion 

In order to perform high level dynamic and autonomous identification of phys
ical parameters of structures, an algorithm from the class of subspace state 
methods was successfully evaluated. Subsequently, the principles of original 
methods which are able to combine several sub-state space models of the 
same system have been succinctly outlined and numerically validated. 

Then these different identification processes were tested on a simple real 
structure and showed their high robustness, particularly concerning mass and 
stiffness matrices. 
These encouraging results allow to extend this identification scheme to larger 
structures. 
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