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ABSTRACT

Deep Learning (DL) is applied to simulate non-adiabatic molecular dynamics of phenanthrene, us-
ing the Time-Dependent Density Functional based Tight Binding (TD-DFTB) approach for excited
states combined with mixed quantum-classical propagation. Reference calculations rely on Tully’s
Fewest-Switches Surface Hopping (FSSH) algorithm coupled to TD-DFTB, which provides elec-
tronic relaxation dynamics in fair agreement with various available experimental results. Aiming at
describing the coupled electron-nuclei dynamics in large molecular systems, we then examine the
combination of DL for excited-state potential energy surfaces with a simplified trajectory surface
hopping propagation based on the Belyaev-Lebedev scheme. We start to assess the accuracy of the
TD-DFTB approach upon comparison of the optical spectrum with experimental and higher-level
theoretical results. Using the recently developed SchNetPack[1] for DL applications, we train sev-
eral models and evaluate their performance in predicting excited-state energies and forces. Then, the
main focus is given to the analysis of the electronic population of low-lying excited states computed
with the aforementioned methods. We determine the relaxation timescales and compare them with
experimental data. Our results show that DL demonstrates its ability to describe the excited-state po-
tential energy surfaces. When coupled to the simplified Belyaev-Lebedev scheme considered in this
study, it provides reliable description of the electronic relaxation in phenanthrene as compared with
either the experimental data or the higher-level FSSH/TD-DFTB theoretical results. Furthermore,
the Deep Learning performance allows high-throughput analysis at a negligible cost.

∗posenitskiy@irsamc.ups-tlse.fr
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Introduction

Modelling the properties and evolution of large molecular systems is a challenging task in chemical and biological sci-
ences, which usually requires solving the stationary or the time-dependent Schrödinger equation. Recently, Machine
Learning (ML) has appeared as a promising tool that can be used to fully or partially avoid electronic structure calcu-
lations in atomistic simulations.[2, 3, 4, 5, 6, 7] ML methodologies may differ depending on the objective and can be
categorized in three main branches: (i) supervised learning, (ii) unsupervised learning and (iii) reinforcement learning.
The major focus in reinforcement learning is given to finding a balance between exploration (of uncharted areas) and
exploitation (of current knowledge).[8] The main objective of the unsupervised learning is to look for previously unde-
tected patterns in a dataset. The supervised learning aims to find optimal parameters for a function that maps an input
to an output based on a given set of input-output pairs (also called the training set). Ideally, the supervised ML model
should infer some knowledge from the training set in order to perform reasonably well on new data entries. For ex-
ample, the global structure optimization can be enhanced by each of the aforementioned techniques.[9, 10, 11, 12, 13]
Artificial Neural Networks (NNs) have been actively studied and used in various fields of science, thus forming a
Deep Learning domain of ML.[14] In particular, it has been proven that multilayer feed-forward NNs are "universal
approximators",[15, 16] i.e. they can approximate an unknown multidimensional function with an arbitrary accuracy
based on a set of known function values. The more hidden layers and nodes are included, the more flexible functional
form of the network is obtained. The supervised Machine Learning models can be used to construct complex inter-
atomic potentials[17, 3] that can in turn be used to perform extensive molecular dynamics simulations.[18, 19, 20]
Ideally, this would correspond to an ab initio accuracy at the computational cost of a force field. Some supervised ML
models include forces in the training process, which drastically improves the quality of a machine-learned Potential
Energy Surface (PES).[21, 22, 23, 24] Alternatively, NNs have also been used to correct DFT[25] and DFTB[26]
results based on a ∆-Machine Learning[27] approach. Several software packages are available for applications of
supervised ML to atomistic simulations, e.g. MLatom[28], DeePMD-kit[29] and SchNetPack[1].

Addressing electronically excited states and non-adiabatic dynamics in excited states obviously proves both method-
ologically and computationally much more demanding than merely ground electronic state properties and dynamics,
which involves among other things complex shapes of PES and the occurrence of conical intersections. Several theo-
retical approaches have been devised to incorporate non-adiabatic effects in the dynamics. The most accurate type is
fully ab initio and deals with quantum dynamics of nuclei, such as the Multi-Configuration Time-Dependent Hartree
(MCTDH) method[30, 31] propagating time-dependent wavepackets. Alternatively, mixed quantum-classical schemes
have been developed based on a classical description of the nuclear motion, e.g. the mean-field propagation[32] or the
Trajectory Surface Hopping (TSH) approach.[33, 34, 35] Within the generalized TSH picture, the nuclear wavepacket
evolution is simulated by an ensemble of independent classical trajectories and non-adiabatic effects are taken into
account via a probability to switch from the current electronic state to another one. Recently, a Deep Learning ar-
chitecture SchNet[24] has been interfaced with SHARC[36] code for non-adiabatic molecular dynamics.[37] Other
studies have also reported excited-state dynamics using supervised ML schemes.[38, 39, 40, 41, 42] Some of them
require an a priori knowledge about the location of conical intersections in order to include more training points in
this region[38, 39], while others attempt to include the non-adiabatic couplings in the ML model,[40, 41] which is
another challenging and computationally demanding task. Alternatively, direct quantum dynamics can be performed
within the Bayesian framework[43] or using the MCTDH propagation on a machine-learned PES[44]. Recent progress
regarding ML applications to electronically excited states has been reviewed by Westermayr et al.[45]

The main motivation of the present work is to investigate the ability of Deep Learning schemes at describing non-
adiabatic dynamics in relatively large molecular systems with no a priori knowledge about the topology of the
excited-state PESs, based on on-the-fly blind propagation involving all nuclear degrees of freedom and as many
excited states as needed. Electronic structure calculations can become computationally extremely demanding for
medium and large polyatomic molecules even within the commonly used linear response Time-Dependent Density
Functional Theory (TD-DFT) approach.[46] This has led us to choose the approximate Density Functional based
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Tight-Binding (DFTB)[47, 48, 49, 50] scheme that can be applied to large systems, due to the use of parameterized
(precomputed) integrals and of a minimal valence basis set. The linear response TD-DFTB approach has been de-
veloped in order to access excited states.[51] It has been coupled to nuclear dynamics via Tully’s Fewest-Switches
Surface Hopping (FSSH) scheme and has been applied to medium-sized systems (namely a few tens of atoms) by
several groups.[52, 53, 54, 55, 56]. Recently, we showed that this combined FSSH/TD-DFTB approach satisfac-
torily describes the relaxation of highly excited electronic states in polyacenes.[55, 57] Yet, achieving statistically
meaningful sampling of the initial conditions and/or propagating long-lasting trajectories beyond a few hundreds of
femtoseconds proves to be numerically involved. Moreover, for large systems beyond a few hundreds or a few thou-
sands atoms, the TD-DFTB scheme may no longer prove computationally feasible. In addition, the computational
cost of non-adiabatic coupling calculations scales as powers of the the number of involved states and the system size,
respectively. Thus, for large complexes, especially with high density of states,[58] the generation of training data for
non-adiabatic couplings might be overly demanding. Also, ML potentials are not at present well transferable from
small to large systems and there may be a need to avoid the explicit use of non-adiabatic couplings in the dynam-
ics, so that consideration of simpler hopping algorithms is of particular interest. Historically, the Landau-Zener (LZ)
approximation[59, 60] has been proposed to evaluate the hopping probability at diabatic state crossings. The LZ for-
mulation has been adapted by Belayev and Lebedev[61] in order to deal with adiabatic states. Alternatively, Zhu and
Nakamura[62, 63] have proposed an improved Landau-Zener formula for the switching probability. In recent years,
multidimensional extensions of the Zhu-Nakamura (ZN) theory have appeared in the literature.[64, 65].

The present study is dedicated to the application of Deep Learning through the use of the SchNet architecture, to
simplify quantum-classical dynamics in excited electronic states. The goals of the present study are to (i) obtain accu-
rate machine-learned energies and forces for excited states based on TD-DFTB reference data; (ii) perform molecular
dynamics and incorporate non-adiabatic effects via a simplified TSH approach without any a priori knowledge about
conical intersections or non-adiabatic couplings; (iii) benchmark the simplified TSH scheme against the reference
FSSH algorithm on the one hand and available experimental data on the other hand. The paper is organized as fol-
lows. In the next section, we briefly outline the basics of the TD-DFTB approach as well as some details regarding
the SchNet architecture. Next, we present and discuss the results required for the benchmark study on phenanthrene,
first assessing the accuracy of TD-DFTB and SchNet methods and then analyzing the electronic relaxation computed
with different hopping schemes. Complementary on-the-fly analysis, i.e. along some selected trajectories, has been
performed in order to shed light on the origin of the observed deviations between the simplified TSH and the FSSH
approaches. Finally, the conclusions and perspectives are given.

1 Methods

In this section, we present a brief outline of the TD-DFTB and Deep Learning methods to calculate excited state
properties and several TSH approaches to non-adiabatic dynamics, which are considered in this study.

1.1 Electronic structure calculations

The Self-Consistent Charge DFTB (SCC-DFTB) was developed by Elstner et al.[50] as an extension of the original
DFTB framework for the ground state.[47, 48] It is based on the second order expansion of the Kohn-Sham DFT total
energy around a reference electronic density, so the final expression for the DFTB total energy of a system with M
atoms reads

ESCC =

Nocc∑
i=1

ni

M∑
A=1

∑
µ∈A

M∑
B=1

∑
ν∈B

cµiH
0
µνcνi +

1

2

M∑
A=1

M∑
B=1

∆qAγAB∆qB + Erep, (1)
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where ni is the occupation number of i-th molecular orbital (MO), µ and ν are the Kohn-Sham atomic orbital (AO)
indices, ∆qA is the Mulliken charge of atom A, Erep is the atomic repulsive contribution, cµi are the Kohn-Sham MO
coefficients and γAB describes the Coulomb interaction between spherically symmetric charge distributions centered
on atoms A and B with a short-range exchange-correlation contribution. The total energy ESCC is further minimized
following the self-consistent procedure as proposed in the original work.[50] The remarkable computational efficiency
of the DFTB approach comes from the fact that AO overlap and Hamiltonian matrix elements as well as repulsive
potentials can be calculated only once and tabulated for a set of interatomic distances between different pairs of
elements. In practice, they are actually precomputed based on some reference electronic structure method (most often
DFT) and stored in an external file.

Linear response TD-DFTB was developed by Niehaus et al.[51] as a DFTB analogue of the conventional linear re-
sponse TD-DFT.[46] Excitation energies are given as eigenvalues ΩI of the following matrix equation:

(
A B

B A

)(
X

Y

)
= ΩI

(
I 0

0 −I

)(
X

Y

)
, (2)

where I is the identity matrix, A and B are matrices with the elements given by

Aia,jb = (εa − εi)δijδab + 2KΣ
ia,jb; (3)

Bia,jb = 2KΣ
ia,jb; (4)

and indices i, j and a, b denoting the occupied and virtual MOs with energies εi and εa, respectively; Σ = S(T )

if singlet (triplet) excited states have to be computed. The coupling matrix elements KS
ia,jb for singlet TD-DFTB

transitions can be calculated using the generalized Mulliken approximation as follows[51]

KS
ia,jb =

M∑
A=1

M∑
B=1

qiaA γABq
jb
B , (5)

where qiaA are Mulliken atomic transition charges. It is worth mentioning that the TD-DFTB absorption spectrum
neither involves doubly excited states, nor Rydberg states.

In order to perform molecular dynamics simulations coupled to TD-DFTB for electronic structure calculations, excited
state energy gradients have to be developed. Their derivation for linear response TD-DFTB relies on the so-called Z-
vector method, which was initially applied by Furche and Ahlrichs[66, 67] to compute analytical forces within the
TD-DFT approach. It was further adapted by Heringer et al.[68, 69] to compute the gradients of the TD-DFTB
excitation energy ΩI . Alternatively, one can follow derivations of TD-DFTB gradients with the long-range correction
from Ref.[53].

Application of Deep Learning to molecular dynamics is essentially based on learning complex multidimensional PES,
which has been reported for ground[24] and excited[37] states. We rely on a recently developed Deep Learning ar-
chitecture called SchNet[24], which is implemented in the open-source Python package SchNetPack.[1] There are
several reasons why this particular implementation has been chosen. First of all, SchNet is a continuous-filter con-
volutional neural network, which automatically generates filters that map one hidden layer to another one based on
pairwise interactions between a given atom and the surrounding ones.[70] It has been shown to yield accurate molec-
ular representations and energies, especially when forces are included in the training.[24] Furthermore, it satisfies
all the required symmetries and the resulting energies are rotationally and translationally invariant, while forces are
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rotationally equivariant, thus providing energy-conserving force models.[1] A shifted softplus is used as an activation
function:

ssp(x) = ln
(

ex + 1

2

)
, (6)

due to an infinite order of continuity, which allows to obtain smooth PES, forces and derivative properties. SchNet is
trained by minimizing the cost function J , which is computed as follows

J
(

[E,F1, . . . ,FM ], [Ẽ, F̃1, . . . , F̃M ]
)

= ρ||E − Ẽ||2 +
1

M

M∑
A=1

∣∣∣∣∣
∣∣∣∣∣FA −

(
− ∂Ẽ

∂RA

)∣∣∣∣∣
∣∣∣∣∣
2

, (7)

if both energies E and atomic forces F are included in the training. In the equation above, ρ is the trade-off between
the energy and force loss,[71] quantities with tilde denote the model (SchNet) predictions and plain symbols denote
reference data. The second term in Eqn. (7) can be neglected if only energies are provided. The initial dataset is split
into training, validation and test sets. The training set is used to optimize model parameters in order to minimize the
aforementioned cost function. The validation set is used for an early stopping in order to prevent overfitting, which
is a common issue in Machine Learning applications when model predictions are very accurate for the training data
but significantly less accurate for new inputs.[72, 45] The test set is used to evaluate the final model accuracy. More
details about the SchNet architecture and practical aspects can be found in Ref.[70].

1.2 Non-adiabatic molecular dynamics

We now briefly go through the details of the quantum-classical TSH method for incorporating the non-adiabatic effects.
In the TSH approach, the nuclear wavepacket motion is simulated by an ensemble of independent classical trajectories.
Each trajectory evolves on a single electronic state at a given time with a probability to switch (hop) from the current
state to another one.

In the Tully’s Fewest-Switches Surface Hopping (FSSH) approach, the switching between excited states is controlled
by the electron dynamics. Substituting the electronic wavefunction expanded in a basis of adiabatic electronic states
into the time-dependent electronic Schrödinger equation, one derives the following equation for the propagation of the
complex expansion coefficients CJ(t):[33]

i~
dCJ(t)

dt
= CJ(t)EJ(t)− i~

∑
K 6=J

CK(t)DJK(t), (8)

where EJ is the adiabatic energy of state J , DJK is the non-adiabatic coupling between states J and K, which is
calculated using a finite difference method as follows[73]

DJK(t+ ∆t/2) ≈ 1

2∆t
[〈ψJ(t)|ψK(t+ ∆t)〉 − 〈ψJ(t+ ∆t)|ψK(t)〉]. (9)

In the equation above and hereafter, ∆t denotes the nuclear time step that is used to propagate a trajectory. It is
important to apply the decoherence correction on CJ since the propagation of Eqn. (8) in FSSH is overcoherent,
which means that electronic coherences CIC

∗
J do not vanish after passing through the region of strong coupling

between states I and J . Decoherence corrections have been shown to be crucial in a number of applications,[74, 75]
and we rely on the commonly used energy-based correction[74] of the CJ coefficients.
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The FSSH probability to switch from the active state I to another state K during the electronic time step ∆τ (used to
propagate Eqn. 8) is estimated from the following equation[73]

P FS
IK(τ) = max

[
0;−2∆τ

Re (C∗I (τ)CK(τ))

|CI |2
DIK(τ)

]
, (10)

where |CI |2 is the electronic population of a given excited state I . A uniform random number 0 < ξ < 1 is generated
at each nuclear time step to determine whether the hop from the active state I to another state K is allowed from the
quantum point of view.[73] The hop is accepted if the following condition is fulfilled

K−1∑
J=1

P FS
IJ < ξ 6

K∑
J=1

P FS
IJ K 6= 1; (11)

ξ 6 P FS
I1 otherwise. (12)

More details regarding the implementation of the Tully’s FSSH scheme can be found in Refs.[53, 54, 52] for the TD-
DFTB approach in general and in Ref.[55] for the particular implementation in the deMon-Nano[76] code that has
been used in this study.

Even though the FSSH is a commonly used approach to non-adiabatic dynamics, it has a number of limitations. For
example, the wavefunctions overlap in Eqn. (9) can be computed differently within density-based methods like TD-
DFT(B)[77, 55], decoherence corrections are somewhat ad hoc[74] and there are numerical instabilities in NACs that
can require additional diabatization of Eqn. (8).[78, 53] However, it is possible to avoid the aforementioned issues of
the FSSH method if there is no electronic equation to propagate and no NACs to compute. This is one of the reasons
why results of simplified methods based on the Landau-Zener approximation still appear in the literature.[61, 79, 58,
65, 64, 38, 39] These schemes are essentially two-state models with one of the following switching probabilities: (i)
based on the Belyaev-Lebedev (BL) approach[61] or (ii) based on the Zhu-Nakamura (ZN) theory[62, 63]. The BL
hopping probability can be computed as follows

PBL
IJ = exp

(
− π

2~

√
Z3
IJ

Z̈IJ

)
, (13)

where ZIJ = |EI − EJ | is the adiabatic energy gap between states I and J and Z̈IJ is its second time derivative at
the crossing point tc, i.e. at the local minimum of ZIJ . It is worth mentioning that the equation above is applicable
only at the diabatic curve-crossing point.

One of the key differences between the simplified TSH and the FSSH is that the hopping probability PBL
IJ is evaluated

only at the local minimum of the adiabatic energy gapZIJ and only between neighboring states, which is a prerequisite
of the underlying Landau-Zener approximation. A switch from an active state I to state J is performed if PBL

IJ is larger
than a random number 0 < ξ < 1. Notably, the aforementioned simplified TSH scheme naturally accounts for
decoherence effects.[58] On the other hand, the electronic population |CI |2 of excited state SI cannot be computed
directly since coefficients CI are generally missing in the Landau-Zener approach. However, the population can
be approximated based on the fractional occupation that is a ratio NI/Ntraj, where NI is the number of trajectories
currently (at a given moment of time) running on a PES of SI and Ntraj is the total number of trajectories.
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To conserve the total energy after hopping, the nuclear velocities are rescaled uniformly by a factor β following the
energy conservation law

EI + Ekin = EJ + β2Ekin. (14)

Thus, the switch of two states can be still rejected if the energy gap EJ −EI > Ekin. Such hops are called "frustrated"
or classically forbidden hops. Alternatively, one may perform a more accurate velocity rescaling based on energy
gradients in order to conserve the total angular momentum.[80, 64]

1.3 Computational details

Dynamics in low-lying excited states of phenanthrene (C14H10) has been chosen as a test case due to both its relatively
large molecular size and the diversity of available experimental results, furthermore giving rise to some ambiguity[81]
in their interpretation. Also, phenanthrene is among the most abundant species observed in meteorites.[82]

The first part of the discussion in the next section is devoted to the comparison of TD-DFTB and TD-DFT absorption
spectra. The TD-DFT absorption spectrum was computed with Gaussian 09 package[83] using BLYP functional and
6-31G(d,p) basis set.

All DFTB calculations presented in this study have been performed with the deMon-Nano[76] code using the mio-1-
1[50] set of parameters. The ability to reproduce energies and geometries corresponding to low-lying excited states of
organic molecules has been critically assessed for different sets of DFTB parameters in Refs.[84, 85].

Three TD-DFTB datasets have been generated independently for the S2, S3 and S4 adiabatic excited states of phenan-
threne. These particular states have been chosen for the reasons given in the next Section. Each generated dataset
contains 10000 points that have been sampled from a single NV T trajectory equilibrated at T = 500 K in the corre-
sponding excited state during 50 ps using a chain of 5 Nosé-Hoover thermostats and ∆t = 0.5 fs. This temperature
allows to sample a wider region of the PES, which is desirable due to the absence of any a priori knowledge about
conical intersections between the states of interest. Excited state forces have been included in all generated datasets
in order to benefit from a relatively low computational cost of reference TD-DFTB calculations and to enhance the
training performance.

Next, each dataset is provided to SchNetPack with additional parameters that specify the network topology, i.e. the
number of interaction blocks and the number of features, which are specified in Section 2.2. In fact, SchNet consists
of a representation network (containing interaction blocks) and a prediction network.[24] We have only changed the
topology of the former while the latter was kept fixed to the default pyramidal configuration, namely 3 dense layers
with 24 input nodes (equal to the number of atoms) and 1 output node. Additionally, one may activate GPUs and/or
include forces in the training. All SchNet models have been trained with a mini-batch stochastic gradient descent,
using ADAM optimizer[86] with mini-batches of 100 samples, 1000 training epochs and the trade-off ρ = 1 in order
to put more emphasis on the energy loss.[24] The trade-off parameter has not been fine-tuned since the default value
was found to produce relatively accurate models. The learning rate is initially set to 10−4 and can decay exponentially
with a ratio 0.8 down to 10−6 with a patience of 25 steps. The maximum number of epochs is set to 5000. The total
number of model parameters varies between 238465 and 886529 depending on the SchNet topology for phenanthrene,
thereby achieving a computational regime taking full advantage of the use of GPUs.

It is worth mentioning that by default SchNet training and evaluation is performed in single precision for floating point
numbers. While this causes no issues during the training step, application of the resulting models to TSH simulations
with small time steps might be affected. In particular, the BL approach requires smooth PES since hops are only
possible at the local minima. We have performed TSH simulations with SchNet models evaluated in single or double
precision. Convergence issues and numerical artefacts associated with the use of single-precision SchNet models are
discussed in the Supplementary Information.
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Initial conditions for the TSH simulations were sampled from the thermal distribution of the ground state. A single
trajectory was equilibrated at T = 300 K during 50 ps using a chain of 5 Nosé-Hoover thermostats and ∆t = 0.5 fs.
Snapshots were taken every 50 fs to be further used as initial conditions.

Coupled FSSH/TD-DFTB simulations have been performed with the deMon-Nano code and serve as reference cal-
culations for the simplified TSH scheme. Each classical trajectory has been propagated using the Velocity Verlet
algorithm with ∆t = 0.25 fs during 1 ps and the conical intersection threshold[55] set to 10 meV for excited singlet
states. Eqn. (8) is integrated using a 4-th order Runge-Kutta algorithm with an electronic time step ∆τ = 0.048 as.
In order to be consistent, the same set of initial conditions has been used for Tully’s FSSH and for simplified TSH
scheme.

The SchNetPack is natively interfaced with the Atomic Simulation Environment (ASE) [87] – an open-source set of
Python tools for atomistic simulations. This is why the coupled TSH/SchNet simulations have been performed using
the molecular dynamics driver of the ASE with the BL switching probability computed on the fly. The ASE driver calls
the pre-trained SchNet model to compute adiabatic energies and forces at each nuclear time step, which are further
used to run the nuclear dynamics (using Velocity Verlet algorithm) and to detect the local minimum of the energy
gap. Due to the fact that the simplified TSH scheme requires data from three consecutive steps (to detect the local
minimum of ZIJ and to compute Z̈IJ with finite differences), one has to actually come back to step tc and make the
[tc]→ [tc + ∆t] step again on a new PES if the hop was accepted at tc. The second derivative of the energy gap Z̈IJ
at the crossing point tc is computed using finite differences as follows

Z̈IJ |t=tc ≈
ZIJ(tc + ∆t)− 2ZIJ(tc) + ZIJ(tc −∆t)

∆t2
. (15)

We have benchmarked our implementation of the BL scheme for a one-dimensional model problem, namely Tully’s
simple avoided crossing model from Ref.[33]. The computed transition probabilities (see Figure S2 in the Supple-
mentary Information) are in good agreement with the work of Hanasaki et al.[65] and the observed deviations are
associated with the use of different particle mass.

Finally, experimental results for phenanthrene have been extracted from Refs.[88, 89, 82, 90, 91]. We consider more
specifically the full width at half maximum (FWHM) assessed from early studies performed in supersonic jets[88, 89,
82] and the relaxation time from pump-probe experiments of Blanchet et al.[90] The approximate decay time τapp can
be derived from the FWHM as follows[81]

τapp =
1

2πcΓ
, (16)

where Γ is the FWHM in cm−1 and c is the velocity of light.
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2 Results

This section is dedicated to the results of several TSH models applied to the electronic relaxation in phenanthrene. It
includes: (i) the validation of the TD-DFTB excited states upon comparison of the computed absorption spectrum ver-
sus TD-DFT, CASPT2 and experimental results; (ii) the application of the SchNet model to learn energies and forces
based on the TD-DFTB reference datasets; (iii) the analysis of the results of the FSSH/TD-DFTB simulations and
their comparison with experimental findings; and finally (iv) the comparison of the simplified TSH simulations based
on the Belyaev-Lebedev scheme, with the FSSH/TD-DFTB results, in order to assess the relevance and performance
of non-adiabatic dynamics based upon machine-learned PESs with no a priori knowledge about couplings and conical
intersections.

2.1 Absorption spectra of phenanthrene

First, the positions of several low-lying singlet states of neutral phenanthrene together with the corresponding FWHMs
and decay times (where available) are deduced from the various experimental UV spectra and summarized in Table 1.

Table 1: Selected results from the experiments with neutral phenanthrene in different environments.

Environment Attributed transition Position, nm FWHM, cm−1 Decay time, ps

supersonic jeta S0 → S1 340.9 5.8 0.92
S0 → S2 282.6 11.1 0.48

supersonic jetb S0 → S1 340.9 — —
S0 → S2 282.6 12.6 0.42

isopentane glass at 4 Kc S0 → S2 — 67±7 0.08

supersonic jetd S0 → S2 — 12.0 0.44

Ne matrix at 4 Ke

S0 → S1 341.1 — —
S0 → S2 284.3 — —
S0 → S3 273.4 — —
S0 → S4 262.4 — —
S0 → S5 243.0 — —
S0 → S6 229.0 — —

gas phasef S0 → S1 341.6 — —
S0 → S2 283.7 — 0.52

aAmirav et al.[88] bOhta and Baba[89] cDick and Nickel[91]
dBrechignac and Hermine[82] eSalama et al.[92] fBlanchet et al.[90]

We have computed the absorption spectrum of neutral phenanthrene at both the TD-DFTB and the TD-DFT levels of
theory. These results together with selected experimental values are compiled in Figure 1. The agreement between
TD-DFTB and TD-DFT spectra is reasonably good and both methods predict positions of two experimentally observed
bright states around 284 nm and 266 nm with remarkable accuracy. It is important to note that the band at 284 nm (4.37
eV) corresponds to the S0 → S3 transition within both TD-DFT and TD-DFTB, whereas the available experimental
studies attribute it to the S0 → S2 excitation. However, this might be due to the relatively low oscillator strength
(≈10−3) of S1 compared to S2 (0.06–0.07). For more details, see Table S1 in Supplementary Information. Moreover,
the TD-DFTB ratio κ of oscillator strengths for S3/S2 and S3/S1 amounts to 1.5 and 79.4, respectively, the latter value
being in very good agreement with κ = 84 reported by Amirav et al.[88] As for TD-DFT, κ for S3/S2 and S3/S1

is 1.4 and 113.7, respectively. The TD-DFTB results can also be compared with the ab initio CASPT2 calculations
performed for neutral phenanthrene by González-Luque et al.[93] The first bright state in CASPT2 is S3 with an
excitation energy equal to 4.37 eV, which means that the TD-DFTB ordering is actually reasonable, while dark S1

and S2 states can be found at 3.42 eV and 4.26 eV, respectively. More recently, Nazari et al.[94] have performed a
detailed analysis of the PESs and of the ultrafast dynamics of monomeric phenanthrene and of some of its derivatives.

9



PREPRINT

Whereas both the TD-DFT and CASPT2 absorption spectra are in reasonably good agreement with previous studies,
the ordering of the states in Ref.[94] can be somewhat misleading since the higher-lying excited states (S3 and above)
have been discarded.
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Figure 1: Absorption spectra (sticks in the left panel, convoluted in the right panel) of neutral phenanthrene computed
with TD-DFT (orange) and TD-DFTB (blue) at the equilibrium geometry. All spectra have been truncated to 6.0 eV.
Green and red vertical dashed lines indicate positions of some excited states from the experiments in Ne matrix[92] and
in the supersonic jet[88, 89], respectively (see Table 1). Inset in the left panel is the balls and sticks representation of
phenanthrene (C14H10) where black and cyan balls correspond to carbon and hydrogen atoms, respectively. Adapted
from Ref.[95].

2.2 SchNet training

The performance of several SchNet models is summarized in Table 2. Notably, all of them achieve chemical accuracy
(errors smaller than 1 kcal/mol or 0.043 eV) on the TD-DFTB energies of phenanthrene. This is not surprising, tak-
ing into account the outstanding performance of SchNet for prediction of both ground state[24] and excited state[37]
properties. It is worth mentioning that the real accuracy of the machine-learned quantities may vary depending on
the underlying electronic structure method that has been used for training. For example, SchNet errors have exceeded
1 kcal/mol for wavefunction-based CASSCF data.[37] However and more generally, errors are larger for the SchNet
model #6, trained without forces, compared to model #3, which is consistent with previous studies.[96, 24] Further-
more, including forces in the SchNet training allows to optimize the model much faster due to a significant amount of
information provided by 3M energy gradients. The error does not vary significantly between models with 3 and 6 in-
teractions, which has already been pointed out by Schütt et al.[24] for the QM9[97, 98, 99] dataset. Yet, the difference
in accuracy of SchNets with 1, 2 and 3 interactions can be more pronounced.[2] Notably, using 3000 training and 1000
validation points, model #5 with 256 features achieves similar accuracy as model #4 that has been trained with twice
as much data. Overall, 128 features and 3 interactions seem to be a reasonable choice for the SchNet architecture.
All the aforementioned conclusions indicate an importance of the hyperparameter tuning for practical applications of
neural networks. In fact, thoroughly crafted neural networks can achieve remarkable accuracy even on relatively small
training sets.[70] For all SchNet-based calculations presented below (Sections 2.4 and 2.5), we have used models #1,
#3 and #7 for S2, S3 and S4 excited states, respectively.
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Table 2: Parameters of the considered SchNet models and the corresponding training times and errors. All models have
used forces (except #6) and one NVIDIA®V100 GPU in the training. The MAEs (RMSEs) for energies and forces
are given in eV and eV/Å, respectively. The MAE and RMSE have been computed for a test set (2000 structures for
all models except #5 and #7 where the remaining 6000 and 3000 structures, respectively, have been used).

Model parameters Dataset sizes

# State Features Interactions Training set Validation set Runtime, h Property MAE
(RMSE)

1 S2 128 6 6000 2000 14
energy 0.014

(0.018)

force 0.075
(0.126)

2 S2 128 3 6000 2000 15
energy 0.018

(0.023)

force 0.084
(0.138)

3 S3 128 6 6000 2000 13
energy 0.016

(0.022)

force 0.068
(0.113)

4 S3 256 3 6000 2000 15
energy 0.014

(0.018)

force 0.062
(0.106)

5 S3 256 3 3000 1000 5
energy 0.017

(0.022)

force 0.075
(0.124)

6 S3 128 6 6000 2000 40 energy 0.029
(0.038)

force —

7 S4 128 6 6000 1000 13
energy 0.023

(0.030)

force 0.137
(0.239)

2.3 FSSH/TD-DFTB simulations

In this subsection we assess the validity of the reference FSSH/TD-DFTB approach in the study of the radiationless
electronic relaxation from the S3 state of phenanthrene, by comparing the computed decay times with the experimental
results from Table 1. An ensemble of 250 trajectories has been launched and analysed, which can be viewed in Figure
2. Notably, the shapes of the average population curves change slightly as the number of trajectories is increased from
100 to 250. Also, the computed decay times are 745 fs and 860 fs for 100 and 250 trajectories, respectively. Hence,
convergence might not be fully achieved with respect to ensemble size but should at least be good enough. The S3

population curve can be roughly divided into two parts. The first one is located in the time window [0;400] fs and
corresponds to a relatively rapid decay of the initial population from S3 towards higher- and lower-lying states. It can
be approximated by an exponential decay rate of 550–600 fs. The population transfer after 400 fs appears to be slower
than the initial one. These results are in qualitative agreement with the complex multichannel relaxation, which is
expected for phenanthrene according to Ref.[94]. As pointed out by Nazari et al.[94], an internal conversion from the
first bright singlet state consists of fast (100 fs) and slow (600 fs) contributions. The same group has also performed
FSSH/TD-DFT simulations in the two lowest excited singlet states of a phenanthrene derivative. Their results are in
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qualitatively good agreement with experimental observations, despite neglecting the transitions towards higher-lying
excited states. However, the major fraction (80%) of the population is rapidly (within less than 200 fs) transferred
to the lowest excited state, in contrast with our FSSH/TD-DFTB simulations. Furthermore, the TD-DFT energy gaps
(computed with ωB97XD and BHandHLYP functionals)[94] between the two lowest excited states are smaller than
the ones in the CASPT2[93, 94] or TD-DFTB (this work) spectra. This is consistent with faster and more complete
(compared to the aforementioned FSSH/TD-DFTB results) relaxation reported by Nazari et al. in Ref.[94].
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Figure 2: Populations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 100 (left
panel) or 250 (right panel) FSSH/TD-DFTB trajectories. The initial state is S3. Reproduced from Ref.[95].

Overall, the FSSH/TD-DFTB approach applied to the electronic relaxation of neutral phenanthrene is in reasonably
good agreement with the available experimental data. It is worth mentioning that comparison of dynamical simulations
with experiments must be carried out with caution. Indeed, experimental access to excited-state dynamics is most often
not direct, depending on the experimental probes and setups, involving either transient spectroscopy or time-resolved
photo-electron spectroscopy. In the latter case, the probe signal stems from the ionization and realistic comparison
with experiment may require additional ingredients in the simulation such as ionization probabilities from excited
states.[100, 101]

2.4 TSH/SchNet simulations

We start with the analysis of the TSH simulations with the BL hopping probability coupled to the SchNet-learned
quantities (energies and forces) for two propagation steps, such as depicted in Figure 3. Clearly, there are no significant
differences in the calculated electronic relaxation. The computed decay time is about 416 and 421 fs with ∆t = 0.25

and ∆t = 0.05 fs, respectively, which means that the TSH dynamics is converged with time step ∆t = 0.25 fs.
The population transfer simulated with the BL/SchNet approach is slower than the one observed in the reference
FSSH/TD-DFTB calculation, which is related to the fact that the number of BL-induced surface hops is significantly
larger compared to that of FSSH.[79]. It is worth mentioning another pitfall of the simplified TSH schemes that has
been pointed out by Smith and Akimov[58], namely that BL-based approaches are well suited to study the dynamics in
manifolds of states with energy gaps below 0.1–0.2 eV, but may fail for states separated by gaps >0.5 eV. Nonetheless
in the present case, the BL/Schnet decay time seems to be in even closer agreement with the four experimental values
in the range [0.42–0.52] ps (see Table 1), with respect to the reference FSSH calculation. Yet, a direct comparison with
our theoretical results may be only semi-quantitative, depending on the experimental probe mechanism (see discussion
in the last paragraph of Section 2.3).
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Figure 3: Occupations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 500
trajectories. The initial state is S3. Each trajectory has been propagated with an indicated time step ∆t on machine-
learned PESs coupled to the Belyaev-Lebedev hopping probability.

Additional TSH calculations have been performed with the TD-DFTB energies and forces instead of the machine-
learned ones. The goal was to assess whether the aforementioned results are a direct consequence of using ML-based
quantities or is due to the particular TSH implementation presented in this work. Figure 4b shows the occupation
dynamics for an ensemble of 100 trajectories propagated using TD-DFTB energies and forces coupled to the BL
hopping probability. The results are qualitatively similar to those obtained with the machine-learned quantities (see
Figure 4a), yet with more rapid population transfer from S3 to S2.
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a) SchNet
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Figure 4: Occupations of the low-lying singlet excited states in phenanthrene averaged over an ensemble of 100
trajectories. Each trajectory has been propagated with the time step ∆t = 0.25 fs on PES provided by a) SchNet or b)
TD-DFTB coupled to the Belyaev-Lebedev hopping probability.
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2.5 Discussion

To gain further insight into the performance of the TSH algorithms, we evaluated the dependence of the number of
successful surface switches on the instantaneous adiabatic energy gap at the hopping event, which is compiled in
Figure 5. The number of hops peaks at small energy gaps of about 0.02 eV and about 0.01 eV for BL and FSSH
methods, respectively. Notably, the BL-induced switches are more frequent than the FSSH ones, despite the constraint
that switches are only possible at the local minimum of the adiabatic energy gap. This is also consistent with the
previous study on excited-state dynamics of a phenol molecule.[79]

Figure 5: Distribution of the number of successful surface hops computed with the Belayev-Lebedev (blue) and Tully’s
FSSH (red) approaches versus the corresponding adiabatic energy gap. Data collected from 200 trajectories.

We have performed additional analysis for one selected trajectory (see Figure 6) in order to demonstrate the numerical
issues associated with the use of single-precision SchNet models. This trajectory has been propagated in S3 with
∆t = 0.05 fs, coupled to TD-DFTB or SchNet (evaluated in single or double precision) for electronic structure
calculations starting from the same set of initial conditions and with surface switches disabled. The adiabatic energy
gap Z23 between the S3 and S2 states and its second time derivative Z̈23 at each local minimum has been computed
on the fly. As expected, the global energy gap evolution is not affected by the change of the SchNet precision. On
the other hand, the distribution of Z̈23 values is very different for trajectory runs based on SchNet. In particular, the
number of SchNet-visited local minima (each point in the bottom row corresponds to the finite difference calculation
at the detected local minimum) is significantly larger for the single precision case compared to either TD-DFTB or
double precision propagation. As can be seen from the inset in Figure 6, SchNet predicts several local minima when
using single precision and zero minimum using double precision within the short considered period of time between
1.5 and 2.5 fs. Thus, we conclude that the TSH simulations should be performed with double-precision SchNet (see
Supplementary Information for a more detailed discussion).
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Figure 6: Adiabatic energy gap Z23 between the S3 and S2 states (top row) and its second time derivative at the local
minima (bottom row) along the selected trajectory propagated with ∆t = 0.05 fs computed with TD-DFTB (red),
single-precision (SP) or double-precision (DP) SchNet models (green or blue, respectively). The inset corresponds to
adiabatic energy gaps in the time window [1.5:2.5] fs computed with DP (solid blue line) or SP (green dashed line)
SchNet models, see main text for discussion.

Finally, the computational costs are compared for the approaches considered in this study. A single FSSH-trajectory
propagation with ∆t = 0.25 fs (4000 steps) takes approximately 33 hours when 4 states are included and 13 hours
with 3 states (mean values averaged over 200 trajectories). Notably, the ML-based propagation of 3 states takes only
about 25–30 minutes with ∆t = 0.25 fs (4000 steps) and about 65–70 minutes with ∆t = 0.1 fs (10000 steps), which
is already a remarkable gain of the CPU time. However, one should also take into account the time consumed for the
training step of Deep Learning (SchNet) models, which varied between 4 and 15 hours depending on both the number
of training points and SchNet hyperparameters (see Table 2). On the other hand, the training has to be done only once
and the resulting SchNet model can be used in principal for an arbitrary number of trajectories. Thus, the TSH/SchNet
simulations can be at least one order-of-magnitude faster than the FSSH/TD-DFTB ones while avoiding exponential
scaling with respect to the number of excited states included in the propagation.

Conclusion

A detailed theoretical study dedicated to the application of Deep Learning to the non-adiabatic molecular dynamics
of neutral phenanthrene, based on TD-DFTB calculations and simplified TSH switching probability has been pre-
sented. The results of the BL approach coupled to machine-learned PESs have been compared with those from Tully’s
FSSH/TD-DFTB approach and with available experimental data.
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First of all, the accuracy of the TD-DFTB method has been assessed by calculating the absorption spectrum of neutral
phenanthrene and upon comparison with higher-level electronic structure and available experimental data. The agree-
ment for the low-lying excited singlet states is reasonably good. In a second step, the electronic relaxation from the
bright S3 state via the cascade of radiationless transitions has been investigated. The detailed analysis reveals good
agreement between the simulated decay and the experimental results. Notably, the computed electronic relaxation
in phenanthrene is significantly slower than what has been reported in our previous studies on polyacenes[55, 57],
which is well correlated with the large energy gap between the initially excited S3 state and the one below in energy
in the TD-DFTB spectrum. This study brings some insight in the photophysics of phenanthrene and has been con-
sidered as a reference for the evaluation of simplified approaches to non-adiabatic molecular dynamics. The present
results are of interest for astrochemistry and laboratory experiments concerned with atto- or femto-second laser spec-
troscopy of carbonaceous molecules. Consequently and due to the diversity of available experimental and theoretical
results, phenanthrene can be viewed as a benchmark system to either study photophysical processes or test advanced
theoretical tools.

The performance of several Deep Learning (SchNet) models trained on the TD-DFTB datasets has been evaluated.
Overall, the SchNet architecture has been found able to accurately reproduce the complex multidimensional PESs of
phenanthrene, especially when forces are included in the training. Notably, all of them achieve chemical accuracy
(errors smaller than 1 kcal/mol or 0.043 eV) on the TD-DFTB energies of phenanthrene. The mean absolute errors
could be lowered to less than 0.02 eV for the energy and 0.08 eV/Å for the forces. One should precise the limits
of the present conclusions. The real accuracy of the supervised Machine Learning methods is determined by the
training data. Thus, the aforementioned SchNet models naturally inherit all advantages and disadvantages of the
underlying TD-DFTB approach. The main drawback of some supervised Machine Learning algorithms is that there is
no confidence in the predictions for inputs that lie beyond the space of training points. Nevertheless, this should not
be an issue in this study since there is no fragmentation or isomerization involved.

Finally, a major focus has been given to the results computed with a simplified TSH scheme on SchNet-learned PESs.
The convergence of the Belyaev-Lebedev approach has been investigated. This TSH scheme coupled to SchNet for
electronic structure calculations provides reliable results when SchNet is evaluated in double precision whereas the
TSH dynamics propagated with small time steps fails to converge when the default single precision is used. The
computed decay time for the S3 state of phenanthrene is about 0.42 ps that is somewhat shorter than the decay in
the reference FSSH calculations (0.55–0.60 ps). Nevertheless, both calculated decay times are in reasonably good
agreement with the four experimental values in the range [0.42–0.52] ps (see Table 1). Indeed, a direct comparison
with our theoretical results may be only semi-quantitative, depending on the experimental probe mechanism. As far
as we know, this study is the first to investigate the electronic relaxation in excited states based on machine-learned
quantities derived for a system with more than 20 atoms.

The extreme acceleration provided by Deep Learning will prove invaluable for investigating larger systems with nu-
merous excited states and/or to allow for longer lasting trajectories or a much denser sampling of the initial conditions.
There is no doubt that simple hopping schemes can be of valuable interest in parallel with the alternative route con-
sisting in the application of supervised Machine Learning models to fit the non-adiabatic couplings thus enabling the
use of the Tully’s FSSH approach.[40, 37]

Data availability

All TD-DFTB datasets, pre-trained SchNet models (#1, #3, #7 from Table 2) and initial conditions used in this work
are available free of charge on zenodo.org with the following DOI:10.5281/zenodo.4266393. Codes developed in
this work are available on github.com/q-posev/ml-tsh.
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