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Abstract. This paper is devoted to the statistical study of the effective linear prop
erties of random materials, that is to say microstructures are random lattices given 
by a stochastic process. The local numerical procedure associated to homogeniza
tion techniques is based on a wavelet-element method. The numerical results are 
compared with classical theories. A new approach is obtained in order to determine 
these effective properties if the details of the microstructure are not well-known. 

1 Introduction 

The purpose of this paper is to determine and to compute the effective prop
erties of linear random heterogeneous media. While natural geomaterials are 
heterogeneous, they are regarded as homogeneous with effective properties 
which manipulate the overall behavior. Grounds, for example, are usually 
modeled as a body consisting of homogeneous materials with such effective 
properties. Behavior of these grounds cannot be predicted if the effective 
properties are poorly determined. The necessity to incorporate more detailled 
informations on the microstructure is clearly recognized. In the last years, a 
large part of literature has presented measurements, empirical and theoret
ical techniques in order to determine these effective properties. Clearly, the 
numerical cost to attack this problem directly for a given material sample is 
prohibitive. In former papers, the authors have presented numerical scheme 
associated to homogenization techniques in order to take into account the de
tails of the microstructure [4-6,8,11]. These algorithms are based on wavelet 
basis and permit to predict the effective properties from the knowledge of 
the microstructure. Thus, it is possible to optimally design linear composite 
materials from real images of the sample. 
In most cases, unfortunately, the details of the microstructure are not ab
solutely known, and leads us to estimate the effective properties from sta
tistical studies. In a famous paper [14], Torquato has presented results con
cerned with the case where a partial statistical information, as correlation 
functions, is given. Improved bounds on effectives properties of two-phase 



330 F. Lebon, S. Dumont 

random heterogeneous media are obtained. In this paper, we suppose that 
only the volume fraction of each phase is known, and we intend to find the 
averaged effective properties of the composite. In addition, we suppose that 
the microstructure is given pixel by pixel i.e. the characteristic shape of the 
microstructure components is a small square and its characteristic lenght is 
the lenght of the pixel. 
In section 1, we present the notations and the mechanical problem. Section 
2 is devoted to the numerical algorithm. In section 3, we present a statistical 
study for a AlSiC composite. The results obtained are compared with Hashin 
and Shtrickman bounds [9] and with the self-consistent schema [10,13]. At 
the end of the paper, perspectives to this work are presented. 

2 The mechanical problem 

We consider a two phase isotropic elastic composite and we intend to study 
the behaviour of this heterogeneous media. A step of homogenization con
sists in determining the effective properties which characterize the equivalent 
homogeneous medium. Let us consider a plane periodic composite fl (macro
scale, variable x) and a rectangular periodicity cell Y (micro-scale, variable 
y). We assume that the bonds at all interfaces of the composite are perfect. 
The elasticity coefficients Cfjkl are supposed to be periodic on the period Y. 
In elastostatics, the problem (Pc:) is written 

Problem(PE:) 
Find uc: E V such that ac:(uc:,v) = L(v), V v E V, 

where ac:(u, v) = J Cfjkzekz(u)eij(v)dx, 
n 

ekz(u) = ~(uk,l + uz,k), 

L(v) = J fvdx + J Fvdl 
n a,n 

The solution of the previous problem uc: tends to u in V, the space of 
admissible global displacements, u is the solution of problem P [1] 

Problem(?) 
Find u E V such that a(u,v) = L(v), V v E V, 

where a(u,v) = J Aijklekz(u)eij(v)dx 
n 

and Aijkl = mea:(Y) j(Cijkl + Cijpqepq(uk1))dy. 
y 
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The determination of the displacements uij needs to solve three local 
problems on Y (Problem Py) in the space H = (H~er(Y)) 2 , the set of ad
missible local displacements: 

Problem(Py) 
Eij be given, find uij E H such that ay(uiJ,v) = l(v) Vv E H, 

where ay(u, v) =I cijkl(y)eij(u)ekz(v)dy 
y 

and l(v) =-I cijkl(y)Eijekz(v)dy. 
y 

3 Numerical procedure 

In this section, we focus on the solution of problem Py. This problem is 
solved by a wavelet-element method [15] associated to Daubechies wavelets 
[3]. This method is based on the standard form of the discretized operator 
[2]. Details concerning this method can be found in previous papers of the 
authors [5,8,?]. Let Aj = [0,2J -1], the local displacement u = (u1,u2) is 
approached in the space VJmax as 

PJk(y) = ¢jk, (yl)¢;k2 (y2), Pjk(y) = ~jk, (yl)~;k2 (Y2), 

Pjk(y) = ~jk, (y1)¢;k2 (Y2), Pjk(y) = ¢jk, (yl)¢;k2 (y2), 

where ¢jk(x) = 2J12¢(2Jx -l) and ~jk(x) = 2J/2~(2Jx -l). ¢is the scale 
function and ~ is the associated wavelet. Problem (Py) is discretized using 
this approximation, well-conditioned stiffness matrices are obtained [15,2]. 

4 Numerical results 

In this part of the paper, numerical tests are presented. They are concerned 
by a AlSiC composite. The influence of two parameters is studied: the volume 
fraction of each component (Aluminium and Silicium) and the distribution of 
each material in the microstructure. For each volume fraction, we proceed to 
about 5000 draws (random lattices) and we study from a statistical point of 
view the results obtained. In the following the fourth order tensor A is repre
sented as a matrix of order 3. For a volume fraction of 70 % the variations of 
each elasticity coefficient are presented in Fig. 1 for about 5000 microstruc
tures. At first sight, the fluctuations seem very large. In the other hand, one 
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Fig. 1. Homogenized plane elasticity tensor (MPa) versus draws (volume fraction 
70 %), linen and column m correspond to Anm 

can present the histogram of each component of the elasticity tensor. We 
observe a Gaussian distribution of the values (Fig. 2) . 

The averaged values of each coefficient of the elasticity tensor are given in 
Fig. 3. We observe the convergence of the coefficients to an mean value along 
the draws. The values obtained in Fig. 3 show that the numerical limit is an 
isotropic material. In particular, we have A13 = A23 = 0 and Au = A22· 
Thus, it is possible to compute the bulk and shear moduli of the limit material 
(Averaged bulk and shear moduli). 

In the following we denote by L-HS and U-HS the Lower and Upper 
Hashin and Shtrickman bounds [9] . We denote by WAV the Averaged Value 
obtain by the Wavelet-element method. Fig. 6 shows that the relative behav
ior of the value is split ted in three phases: in the first one, for volume fraction 
lower than 0.25, the LHS and the WAV values are very closed. The second 
phase corresponds to volume fractions between 0.25 and 0.95. In t his phase, 
the WAV value is intermediate between the two HS bounds. The third phase, 
for a volume fraction larger than 0.95, shows WAV values closed to the U-HS 
bound. 
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Fig. 2. Histogram of plane elasticity tensor (volume fraction 70 %) 

We compare the results with the self-consistant schema for the shear mod
ulus and for volume fractions lower than 0.5. We observe in Fig. 7 that for 
the lower value of the volume fraction (lower than 0.1) the L-HS value, the 
self-consistant schema (denoted SCS) and the WAV value are quite similar. 
For larger values from 0.1 to 0.25 the values L-HS and WAV are equal and 
the SCS value is lower than the two other one. For volume fractions larger 
than 0.25 and lower than 0.4, the L-HS and SCS values are closed , and lower 
than the WAV value. 

5 Concluding remarks and perspectives 

Generally, it is impossible to determine exactly the effective properties of 
random heterogeneous media. In the literature, rigorous statements about 
these effective properties take the form of bounds. In this paper, we obtain 
another kind of bounds as the form of an average and a standard deviation. 
An important result is the numerical convergence of the stochastic process of 
homogenization to an averaged solution, that is to say that the limit , when 
the number of draws tends to infinity, of the potential energy corresponding 
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Fig. 3 . Averaged homogenized elasticity tensor versus draws (volume fraction 70 
%) 

to a 'random lattice' is the potential energy of an isotropic material. This 
material has effective properties depending on the volume fract ion of each 
component. For lower volume fraction, the material has properties closed to 
the lower Hashin and Shtrickman bounds and to the self-consistant schema. 
A 'numerical t heorem' is obtained. Similar results are obtained for different 
kinds of materials (Resin-Glass mixture for example). 
Two ways to this work are proposed : the first one is a study of the influence 
of the shape of the lattices. We propose to study the same problem with 
different morphologies : n-pixels in one direction, association of n-pixels in 
a neibourough of a point, .. . Another perspective is to study the effective 
properties for more complex behavior: piezoelectricity couplings, t hermome-
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Fig. 4. Averaged homogenized elasticity coefficients All and A22 (volume fraction 
70 %). If we study in details the variations of the averaged coefficients, we observe 
that the mean is obtained for a small number of draws and that the standard 
deviation is small compared to the coefficients. In the case presented in Fig. 4, 
i.e. for a volume fraction equal to 70 %, the mean is equal to 12358 Mpa and 
the standard deviation to 768 Mpa (± %) . The values are included in the interval 
(12083,12682]. 

chanica! couplings, plasticity [12], ... The efficiency of our method permits us 
to envisage to treat this kind of problems. 
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