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Application of the Wavelet-element Method to Linear Random Materials

This paper is devoted to the statistical study of the effective linear prop- erties of random materials, that is to say microstructures are random lattices given by a stochastic process. The local numerical procedure associated to homogenization techniques is based on a wavelet-element method. The numerical results are compared with classical theories. A new approach is obtained in order to determine these effective properties if the details of the microstructure are not well-known.

Introduction

The purpose of this paper is to determine and to compute the effective properties of linear random heterogeneous media. While natural geomaterials are heterogeneous, they are regarded as homogeneous with effective properties which manipulate the overall behavior. Grounds, for example, are usually modeled as a body consisting of homogeneous materials with such effective properties. Behavior of these grounds cannot be predicted if the effective properties are poorly determined. The necessity to incorporate more detailled informations on the microstructure is clearly recognized. In the last years, a large part of literature has presented measurements, empirical and theoretical techniques in order to determine these effective properties. Clearly, the numerical cost to attack this problem directly for a given material sample is prohibitive. In former papers, the authors have presented numerical scheme associated to homogenization techniques in order to take into account the details of the microstructure [START_REF] Dumont | Representation of plane elastostatics operators in Daubechies wavelets[END_REF][START_REF] Dumont | Wavelet-Galerkin method for heterogeneous media[END_REF][START_REF] Dumont | Wavelet-galerkin method for plane elasticity[END_REF][START_REF] Dumont | A numerical tool for periodic heterogeneous media. Application to interface in Al/ Sic composites[END_REF][START_REF] Lebon | Small parameter, homogenization and wavelets[END_REF]. These algorithms are based on wavelet basis and permit to predict the effective properties from the knowledge of the microstructure. Thus, it is possible to optimally design linear composite materials from real images of the sample. In most cases, unfortunately, the details of the microstructure are not absolutely known, and leads us to estimate the effective properties from statistical studies. In a famous paper [START_REF] Torquato | Random heterogeneous media: Microstructure and improved bounds on effective properties[END_REF], Torquato has presented results concerned with the case where a partial statistical information, as correlation functions, is given. Improved bounds on effectives properties of two-phase random heterogeneous media are obtained. In this paper, we suppose that only the volume fraction of each phase is known, and we intend to find the averaged effective properties of the composite. In addition, we suppose that the microstructure is given pixel by pixel i.e. the characteristic shape of the microstructure components is a small square and its characteristic lenght is the lenght of the pixel. In section 1, we present the notations and the mechanical problem. Section 2 is devoted to the numerical algorithm. In section 3, we present a statistical study for a AlSiC composite. The results obtained are compared with Hashin and Shtrickman bounds [START_REF] Hashin | A variational approach to the theory of the elastic behavior of multiphase materials[END_REF] and with the self-consistent schema [START_REF] Hill | A self-consistant mechanics of composite materials[END_REF]13]. At the end of the paper, perspectives to this work are presented.

The mechanical problem

We consider a two phase isotropic elastic composite and we intend to study the behaviour of this heterogeneous media. A step of homogenization consists in determining the effective properties which characterize the equivalent homogeneous medium. Let us consider a plane periodic composite fl (macroscale, variable x) and a rectangular periodicity cell Y (micro-scale, variable y). We assume that the bonds at all interfaces of the composite are perfect. The elasticity coefficients Cfjkl are supposed to be periodic on the period Y.

In elastostatics, the problem (Pc:) is written

Problem(PE:) Find uc: E V such that ac:(uc:,v) = L(v), V v E V, where ac:(u, v) = J Cfjkzekz(u)eij(v)dx, n ekz(u) = ~(uk,l + uz,k), L(v) = J fvdx + J Fvdl n a,n
The solution of the previous problem uc: tends to u in V, the space of admissible global displacements, u is the solution of problem P [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] Problem(?) In this section, we focus on the solution of problem Py. This problem is solved by a wavelet-element method [START_REF] Wells | Wavelet solutions for the Dirichlet problem[END_REF] associated to Daubechies wavelets [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. This method is based on the standard form of the discretized operator [START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF]. Details concerning this method can be found in previous papers of the authors [5,8,?]. Let Aj = [0,2J -1], the local displacement u = (u1,u2) is approached in the space VJmax as PJk(y) = ¢jk, (yl)¢;k 2 (y2), Pjk(y) = ~jk, (yl)~;k 2 (Y2), Pjk(y) = ~jk, (y1)¢;k2 (Y2), Pjk(y) = ¢jk, (yl)¢;k2 (y2), where ¢jk(x) = 2J1 2 ¢(2Jx -l) and ~jk(x) = 2J/ 2 ~(2Jx -l). ¢is the scale function and ~ is the associated wavelet. Problem (Py) is discretized using this approximation, well-conditioned stiffness matrices are obtained [START_REF] Wells | Wavelet solutions for the Dirichlet problem[END_REF][START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF].

Find u E V such that a(u,v) = L(v), V v E V,

Numerical results

In this part of the paper, numerical tests are presented. They are concerned by a AlSiC composite. The influence of two parameters is studied: the volume fraction of each component (Aluminium and Silicium) and the distribution of each material in the microstructure. For each volume fraction, we proceed to about 5000 draws (random lattices) and we study from a statistical point of view the results obtained. In the following the fourth order tensor A is repre- sented as a matrix of order 3. For a volume fraction of 70 % the variations of each elasticity coefficient are presented in Fig. 1 for about 5000 microstructures. At first sight, the fluctuations seem very large. In the other hand, one The averaged values of each coefficient of the elasticity tensor are given in Fig. 3. We observe the convergence of the coefficients to an mean value along the draws. The values obtained in Fig. 3 show t hat the numerical limit is an isotropic material. In particular, we have A13 = A23 = 0 and Au = A22• Thus, it is possible to compute the bulk and shear moduli of the limit material (Averaged bulk and shear moduli).

In the following we denote by L-HS and U-HS the Lower and Upper Hashin and Shtrickman bounds [START_REF] Hashin | A variational approach to the theory of the elastic behavior of multiphase materials[END_REF] . We denote by WAV the Averaged Value obtain by the Wavelet-element method. Fig. 6 shows t hat the relative behavior of the value is split ted in three phases: in the first one, for volume fraction lower than 0.25, the LHS and the WAV values are very closed. The second phase corresponds to volume fractions between 0.25 and 0.95. In t his phase, the WAV value is intermediate between the two HS bounds. The third phase, for a volume fraction larger than 0.95, shows WAV values closed to the U-HS bound.

2 0 0 , --------------. We compare the results with the self-consistant schema for the shear modulus and for volume fractions lower than 0.5. We observe in Fig. 7 that for the lower value of the volume fraction (lower than 0.1) the L-HS value, the self-consistant schema (denoted SCS) and the WAV value are quite similar. For larger values from 0.1 to 0.25 the values L-HS and WAV are equal and the SCS value is lower than the two other one. For volume fractions larger than 0.25 and lower than 0.4, the L-HS and SCS values are closed , and lower than the WAV value.

Concluding remarks and perspectives

Generally, it is impossible to determine exactly the effective properties of random heterogeneous media. In the literature, rigorous statements about these effective properties take the form of bounds. In this paper, we obtain another kind of bounds as the form of an average and a standard deviation. An important result is the numerical convergence of the stochastic process of homogenization to an averaged solution, that is to say that the limit, when the number of draws tends to infinity, of the potential energy corresponding 
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 3 where a(u,v) = J Aijklekz(u)eij(v)dx n and Aijkl = mea:(Y) j(Cijkl + Cijpqepq(uk 1 ))dy. y The determination of the displacements uij needs to solve three local problems on Y (Problem Py) in the space H = (H~er(Y)) 2 , the set of ad- missible local displacements: Problem(Py) Eij be given, find uij E H such that ay(uiJ,v) = l(v) Vv E H, where ay(u, v) =I cijkl(y)eij(u)ekz(v)dy y and l(v) =-I cijkl(y)Eijekz(v)dy. y Numerical procedure
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 1 Fig. 1. Homogenized plane elasticity tensor (MPa) versus draws (volume fraction 70 %), linen and column m correspond to Anm
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 2 Fig. 2. Histogram of plane elasticity tensor (volume fraction 70 %)
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 356747 Fig. 3 . Averaged homogenized elasticity tensor versus draws (volume fraction 70 %)
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chanica! couplings, plasticity [START_REF] Lebon | Homogenization and wavelet-Galerkin method for a nonlinear one-dimensional problem[END_REF], ... The efficiency of our method permits us to envisage to treat this kind of problems.