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Interaction Energy in some Phenomenological 
Modelings of Phase Transitions in Crystalline 
Solids 

Christian Licht 

Laboratoire de Mecanique et Genie Civil, 
cc 048, Universite Montpellier II, 
F-34095 Montpellier Cedex 5, France 

Abstract. Some phenomenological and macroscopic modelings of solid/solid phase 
transitions involve a so-called interaction term which may imply the nonconvexity 
of the strain energy function. Nevertheless, it is shown that, if this term is not too 
large, these modelings are valuable and account for some experimental facts. 

1 Introduction 

I will present some remarks on a category of phenomenological modelings 
of phase transition in crystalline solids. These modelings involve a so-called 
interaction term which may imply the nonconvexity of the strain energy den­
sity function of the medium. This lack of sacrosanct convexity generates some 
controversy, warning, or nonuse (see some comments in [2], [8], [9], [13], [19]). 

I will show that, if this term is not too large, the modeling is valuable. 
Certainly, the stored energy density function is not convex but quasiconvex 
and, consequently, inherits a double-well like structure which may account 
for some experiments. 

From a technical, say mathematical, standpoint, this study is nothing but 
a slight variant of the beautiful papers [11], [12] ... Nevertheless, I hope it may 
interest people concerned with the modeling of shape memory alloys. 

2 Setting the problem 

First, the phenomenological modelings, that I will discuss, describe the state 
of the medium by a triple ( E, x, T) ; E, T stand respectively for the linearized 
strain tensor and the temperature, while 0 :::; x :::; 1 denotes a volume frac­
tion. Since a volume fraction is put forward, note that this modeling operates 
at a large, say macroscopic, scale. Moreover, x being a scalar, I will consider 
only two phases; indeed considering more phases implies some substantial 
difficulties (except in obvious symmetry related phases). Thus this modeling 
concerns the detwining of two variants of martensite (martensite may present 
two variants in the case of soda, neodynium pentaphosphate, wolfram, ... 
) or is appropriate to polycristalline alloys where the variants of martensite 
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are not told apart in the austenite-martensite mixture. Next, a free energy 
density function is defined by a function W of the state variables. At last, the 
phase transitions are assumed nondissipative, which seems rather realistic, so 
that the medium has a thermoelastic behavior with a stored energy density 
function 

W(E,T) = Inf{W(E,T,x), O~x~1} 

Of course, the whole point is the choice of W ; at least two approaches 
lead to the category of modelings that I consider. The first approach, which 
models the medium as a generalized standard medium [10], splits the free­
energy into three terms: 

(1) 

The first term is the thermoelastic one, xa being the phase transformation 
part of the total strain E , while the second one concerns the latent heat 
exchange. The last one is the stored part due to internal changes, it is affected 
by the interactions between phases thus it has to be minimal and equal to 0 
at x = 0 or x = 1. Obviously x E [0, 1] f-----7 x(1-x) is a simple and smooth 
function which satisfies the previous conditions, so a proposal for w<~> is: 

w<~>(x, T) = ¢(T) X (1- x) ) ¢ 2': 0 

Note that in [14], [15], [16], it is reported that x (1- x) is proportional 
to the expectation value of the interfacial area, if the phases are randomly 
distributed over the specimen ... Moreover, this modeling implicitly assumes 
that the elastic coefficients of the phase are equal, so this modeling confines 
to detwining. 

The second approach regards the medium as a mixture such that the free 
energy may be ax-weighted combination of the energies Wi, i = 1, 2, of each 
phase. But, referring to homogenization, subtracting a term we , minimal 
and equal to 0 at x = 0 or x = 1 , yields a better estimate: 

(2) 

Once again, a convenient choice is 

wc(x,T) = c(T)x(1-x), c2':0 

Note that this approach does not assume the identity of the elastic laws 
of the two phases. From the mixture standpoint, another approach, which 
will be detailed in remark 3.1, leads to an expression like (1) in the case of 
two linearly elastic phases with identical elastic moduli. More deeply, this 
last assumption, which will stand for all the sequel, implies the identity of 
the two approaches. More precisely, I assume 
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,i = 1,2 

where ai is the stress-free strain of the i-th phase, Wi the associated minimum 
energy and o: the tensor of elastic moduli, a positive symmetric linear map 
on the space 8 3 of symmetric matrices. Then the obvious identity 

x W1(E, T) + (1- x) W2(E, T)- c(T) x (1- x) = 

where 

1/2 o: (E- a(T)) · (E- a(T)) + w(x, T) + rj>(T) x (1- x) 

a=xa1+(1-x)a2 'W=XW!+(1-x)w2 
1> = 1/2 o: a· a - c , a= a2 - a1 

(3) 

yields a single modeling where two equivalent expressions of the free en­
ergy are given by the two members of this identity! 

It is not my purpose to list all the authors who, specifically or vaguely, 
proposed or discussed this modeling. Due to the many studies devoted to 
Shape Memory Alloys, it is impossible to be exhaustive. Generally, some 
information may be found in [2], [6]-[9], [13]-[17], [19] and in the references 
therein. My main thrust is to decide on the value of a nondissipative modeling 
where the free energy and the strain energy functions are : 

Wq,(E, x, T) = 1/2o:(E- a(T)) · (E- a(T)) + w(T) + rj>(T)x(1- x) 

= xW1(E, T) + (1- x)W2(E, T)- c(T)x(1- x), c = 1/2o:a.a -1> (4) 

and 

Wq,(E,T) = Jnf{Wq,(E,T,x), O::;x::; 1} (5) 

Clearly, from the first expression, 1> non positive implies that Wq, is a 
convex function of the couple ( E, x) and, consequently, that W q, is a convex 
function of E • But, as previously noted, 1> negative does not seem plausible! 
... Moreover, it is not difficult to see that W q, is a convex function in E if 1> is 
positive. In fact, it is not a disaster. I will show that if 1> is positive, but not 
too large, the modeling is valuable ... In the following technical discussions, 
temperature will only play a role of parameter, thus temperature dependence 
is suppressed hereafter. 
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3 (Quasi)convexity properties of W <P 

A mechanical interpretation of the mathematical theory of quasiconvexifica­
tion [5], [18] may be : "at the macroscopic scale the behavior of a hyperelastic 
material is not governed by the true stored energy function but by an ap­
parent one : its quasiconvexification, which is the infimum of those average 
energies that can be attained in deformations with a given average". Hence a 
first criterion of a good macroscopic modeling is the quasiconvexity property 
of the stored energy density function W which, in our case, may be read as : 

where the choice of the domain U is unimportant. Note that convexity 
implies quasiconvexity but the converse is generally false. Here are some 
(quasi )convexity properties of the strain energy function W <P : 

Theorem 3.1. Let 

h =Min { 1/2o:(z- a)· (z- a); z = k 0 v + v 0 k, k, v E R 3 } E [0, 1/2o:a ·a] 

then 
¢ ::; 0 implies W <P is convex, 
h > 0 and 0 ::; ¢ ::; h implies W <P is not convex but quasiconvex, 
h < ¢ implies W <P is not quasiconvex. 

Moreover, W <P equals W 1/2 aa·a if ¢?: 1/2 o: a· a . 

As noted in [11], h differs from 0 if and only if the full transformation 
strain a is not a symmetrized tensor product, in other words if the two 
stress-free strains are not compatible. Thus if h > 0 , it can be claimed that 
the modeling with ¢ E [0, h] , is a "good" macroscopic modeling, whereas 
only ¢ = 0 yields a good modeling if h = 0 ! 

Proof of theorem 3.1. Several arguments of [11] pp 201-203 are used with­
out giving details. First, in the definition of quasiconvexity, a unit cell Y and 
periodicity conditions may be used in place of U and Dirichlet conditions. 
Standard results on mesurable selections imply : 

I:= lnf { ~ W ¢(E + E(u)) dy; u E C~er(Y)} 

= lnf {! W¢(E + E(u), (}(y)) dy; u E C~er(Y), (} E B(Y)} 
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where B(Y) :={BE £CXl(Y); 0:::; B:::; 1}. An elementary calculation using the 
second expression of Wq~ in ( 4) gives 

I= Inf { m W 1 (E) + (1- m) W 2 (E)- em + J(m) ; 0:::; m:::; 1 } , 

J(m) = Inf{f c82 + 1/2at:(u) · t:(u) + Bat:(u) ·a; 
y 

u E C~erCf'), BE B(Y), J B = m}. 

As in [11] p. 202, Fourier analysis yields 

J(m) 2: In!{ cm2 + (h- ¢) L:k'f"O e(k) 2 ; 

y 

Y E Y r--+ B(y) = 2:kEZ3 e(k) e 2i-rrk·y E B(Y)} 

which proves the quasiconvexity of W 1> if 0 :::; ¢ :::; h. 

Clearly, ( 4), (5) imply that W q>, 2: W q\2 if ¢ 1 > ¢ 2 , and that W q\ 

W 1; 2aa.a = Min (W1 , W 2 ) if¢ 2: 1/2aa ·a . Moreover, it is shown in [11] 
that the quasiconvexification and the convexification of Min (W1 , W 2 ) are 
respectively W h and W 0 . Thus, W 1> is not convex if 0 < ¢ and is not quasi­
convex if h < ¢ , because quasiconvexification and convexification preserve 
the order. 

Remark 3.1. A rough way to define the strain energy function of a 
mixture of two phases described by the energy density functions wi ' in 
proportions x and ( 1-x), is to consider 

With Wi as in (3), it is shown in [11] that 

w,;nix(E, x) = Wo(E, x) = 1/2 a (E- a(x)) . (E- a(x)) + w(x) 

Thus, as announced previously, in order to account for interactions at 
a macroscopic level, some modelings ([6]-[9], [13]-[16], [19]) add a term de­
pending on x, vanishing at x = 0,1. Their common proposal is cj;x (1- x) , 
hence they get Wq~ as free energy density function for the medium! However, 
the previous definition w,;nix presupposes constant and compatible strains in 
each phase, which is open to criticism. A better definition is 

Wbix(E, x) = Inf {1/\YI fy Xx(y)W 1 (E(u)) + (1- Xx(Y))W 2 (c(u))dy; 
Xx characteristic function JY Xx(y)dy = xiYI,u(y) = EyonaY} 
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It is proved in [11] that w;nix = Wh . Hence, adding a macroscopical term of 
interaction I x( 1 - X) yields a free energy equal to wh+l· Then the quasicon­
vexity criterion of good modeling implies that I must be non positive. This 
sign, which is the opposite of what is widely used in the literature, corre­
sponds exactly to what in [4] is termed, through microscopic considerations, 
mismatch energy. 

4 Double-well like structure of W ¢ and experiments 

From now on, I confine to the more interesting case 0 < ¢ :S h and will show 
that the lack of convexity of W q, accounts for some experimental results, 
which also guarantees a good modeling. Let 

w=w1-w2, H1={eES3 ; o:(e-ar).a=w} 

Some elementary manipulations, as in [11] pp. 205-207, provide the following 
geometric properties of the graph of W q,: 

Proposition 4.1. W q, is piecewise quadratic and differentiable on S3 . If 
lwl > ¢, W q, has only one absolute minimizer: a1 (resp. a2) if w > ¢ (resp. 
w < -¢), and no other relative minimizers. If lwl :S ¢, W q, has exactly 
two relative minimizers a 1 anda2: a1 (resp. a2) is an absolute minimizer 
if and only if w ::>: 0 (resp. w :S 0). 

Proposition 4.2. For each e1 of H 1 , the function W q, - L\ · , with 
L\ = o: (e1 - ar) , has exactly two absolute minimizers e1 and e2 = e1 +a . 

Since W q, is differentiable, the previous properties can be interpreted in 
terms of stress and strain. First, it appears that along all straight paths 
ELl in the strain space S 3 ' t E R f----+ ELl ( t) = Eo + t a ' pamllel to a, the 
derivative of the energy Wq,(ELl(t)) is not monotone. In other words, "the 
stress-strain relation is not monotone along ELl ". Thus it should be of interest 
to do such strain controlled tests which must be isothermal and biaxial (in 
this direction see [6], [14], [15]). These hard device tests seem difficult to 
do, conversely it is easier to do isothermal and biaxial loading experiments 
[3]. Leaving hysteresis considerations aside, it seems clear that two different 
equilibrium configurations may occur when a specimen of shape memory 
alloy is subjected to certain uniform biaxial extension loadings. The present 
modeling may account for this fact. If f2 is a reference configuration of the 
specimen and n the unit outward normal to 8f2 , the total energy read as 

h:(v) =I Wq,(E(v))dx- I En.vds = I Wq,(E(v))- E·E(v) dx 
n an n 

The previous propositions make it possible to use the arguments in [12] pp 
82-83 and to prove the following metastability theorem : 

Theorem 5.1. For every e1 E H 1 , there exists 8 > 0 such that for 
every E in a ball in S 3 of center E 1 = o: ( e1 - ar) and radious 8 , the 
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functional h; has two distinct L 1 -local minimizers (one of them being an 
absolute minimizer in H 1 (S?) 3 ). As E goes to E 1 , they converge strongly 
in L 1 towards "x f----t e1x" and "x f----t (e 1 +a) x" , absolute minimizers of 
h, in H 1 (S?) 3 . 

The L1 topology is rough : in L1 neighborhoods the displacements are 
near in the mean, but their strains may be very remote. These local, but 
non absolute, minimizers may be observed, they correspond to metastable 
equilibrium configurations : experimentalists [3] report that specimen can 
undergo large deformations from an equilibrium configuration to another one 
only by slightly hitting the strings of the device or through a small disturbance 
in the room. A similar metastability analysis, in the more difficult framework 
of finite strains, may be found in [1]. 

5 Conclusion 

I believe that all the foregoing arguments clearly show that the considered 
modeling is coherent and able to account some phenomena involved by phase 
transitions in crystalline solids. According to remark 3.1, a nice introduc­
tion of this phenomenological and macroscopic modeling is adding a rational 
micro-macro definition of the energy function of a mixture to a woolly termed 
function, I x (1- x), I:::; 0 , of the volume fraction x of one phase. It should 
be interesting to derive this last term through a rational scale transition that, 
for instance, takes into account micro-scale surface interactions. 

Eventually, I thank my friend C. Lexcellent who told me about some 
pertinent earlier works. 
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