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Convex Difference Algorithm and Applications to Some Mechanical Problems

The splitting of functional into two convex functions provides a specific algorithm to determine the local minima. This approach is applied to two mechanical problems with non convex potentials: the modeling of shape memory alloys and the buckling of thin beams.

Introduction

In non linear mechanics, the equilibrium states minimize the potential energy which is not necessary convex. Consequently solve such a mechanical problem consists in finding the local minima of the potential energy. The functions which may be written as the difference of two convex functions constitute a first set of non convex functions. Some properties associated with the convexity may be used in order to formulate some extremality characterizations [9] and to define appropriate solution algorithms. Such an approach is not very easy to handle in infinite spaces because the convexity is a power tool to get compactness theorems in such a way to prove existence of solutions of a minimization problems. Then the numerical results presented in the following have to be considered with caution; they may depend on the mesh and not necessary converge towards a continuous solution when the discretisation step tends to zero. But we have to try new algorithms to reach possible equilibrium states in non linear mechanics often characterized by instability; these possible solutions have to be discussed from a mechanical point of view a posteriori; these paper dedicated to two applications is a first attempt in this way.

CD formulation and CD algorithm

Let consider a boundary problem on an open domain f? of the space. The potential energy II associated with this mechanical problem is written, JI(v) 

= P1(v)-(<1>2 o D)(v), (1) 
where <1>1 (v) = l ¢1 (v, Vv) dx-l(v), <P2 (Dv) = l ¢ 2 (Dv) dx and Dis a linear partial differential operator.

A critical point u of the potential energy II is defined by,

0 E 8II(u) = cN>1(u)-o(<h o D)(u).
(2)

where [) denotes the generalized gradient introduced by Clarke [START_REF] Clarke | Optimizat ion and Non-smooth Analysis[END_REF] for the locally Lipschitz functions and 8 denotes the subdifferential of a convex func- tion. Since <P1 is a strictly differentiable function [2] the set equality in Eq. 2 holds and the previous inclusion is equivalent to ,

8(<P2 o D)(u) n 8<1>1 (u) i-0.
Among the critical points, a local minimum u satisfies,

(3) But this relation characterizes a local minimum only if <P2 o D is a piece- wise affine function [START_REF] Hiriart-Urruty | From convex optimization to nonconvex optimization[END_REF][START_REF]Quelques aspects de Ia) Modelisation numerique du com ortement des al iages a memoire de forme par des potentiels non convexes, PhD Thesis , Univiversite Montpellier II[END_REF]. This last property is not true in general for the continuum problem but can be verified in finite dimensional cases, i.e. after finite element approximation. This decomposition leads to define a type II Lagrangian [START_REF] Auchmut | Dua ity algorithms for non-convex variationa l principles[END_REF][START_REF]Quelques aspects de Ia) Modelisation numerique du com ortement des al iages a memoire de forme par des potentiels non convexes, PhD Thesis , Univiversite Montpellier II[END_REF]9] depending on two fields , [START_REF] Hiriart-Urruty | From convex optimization to nonconvex optimization[END_REF] where the density ¢2(v,T2) = supe {e: T2-¢2(e)} is the classical Fenchel conjugate function. Thi8 Lagrangian is 8eparately convex in each of the dual variables, but the convexity of Lrr is not guaranteed in general; a very simple example is illustrated in the Fig. 1. Consequently a min-min problem is naturally related to this Lagrangian who8e the arguments are called 8-critical points (cf. Table 2). \__..
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• Initialization of the algorithm with ( u 0 , ug),

• with (un-I,u~-1 ) known, we have to determine un, u?] as follows, step 1 : un 3 Two applications 3.1 A set of models for Shape Memory Alloys (SMA)

In the first example we use the model of Shape Memory Alloys (SMA) given in [3, [START_REF]Quelques aspects de Ia) Modelisation numerique du com ortement des al iages a memoire de forme par des potentiels non convexes, PhD Thesis , Univiversite Montpellier II[END_REF][START_REF] Pagano | Solid-Solid phase t ransition modelling : relaxat ion procedures , config urational energies and t hermomechanica l behaviours[END_REF] in an isothermal case. To do this, let us consider a decomposition into the difference between two convex functions <Jh and P2g of the potential energy II associated with the mechanical problem,

II(v) = <!>1 (v)-(<P2g o e)(v), (5) 
where (6) [START_REF] Pagano | Solid-Solid phase t ransition modelling : relaxat ion procedures , config urational energies and t hermomechanica l behaviours[END_REF] where l(v) is the work of the external loading, o:, r, care thermo-mechanical constants, e is the small strain tensor and Q is a parameter characterizing the scale the phase transition is modelized (Q = 0 for the microscopic scale and Q = 9c for a macroscopic scale [5,6]). This decomposition leads us quite naturally to introduce a type II Lagrangian which depends on the displacement field u and on the "stress" phase transformation field u 2 ; in that case <P; 9 is easy to compute and is given in [5,7]. The CD algorithm may catch the local minima and so reproduce hysteretic processes and phase propagations [6] (an augmented Lagrangian technique finds a global minimum which is more homogeneous).

<P1 (v) = L ¢ 1 (e(v)) dx -l(v)

Buckling of rods by the Elastica theory

We are interested to modelize the buckling of flexible and inextensible rods.

It is well known that a force applied to the ends of the rod and oriented according to the rod may lead to different equilibrium states if the magnitude of the force is large enough. The critical values and buckling modes around the trivial solution may be obtained by a stability theory using a linear modeling of the rod; but the deformed shape may be reached only by a non linear modeling. Moreover the possible buckling shapes, if unilateral conditions have to be considered (cf. Fig. 5), are an open problem (cf. [START_REF] Nguyen | Convex multilevel decomposition algorithms for non-monotone problems[END_REF]). The existence of local minima in buckling problems constitutes a motivation to try a CD approach. In a first approach we use the Elastica theory where a single scalar field 8 must be found. We have to minimize the following potential where P is an horizontal force, 8 the angle between the deformed rods and horizontal axe, E the young modulus and I the inertial momentum. We remark that the non quadratic part is due to the work of the external force since the bulk energy is still a quadratic form,

1 c EI ,2
inf -

(J -P cos(] dx, e 0 2 p < 0. (8)
We postulate the following CD splitting by introducing a parameter /3, (h(e) = ~I e'2 _ 13 P e;, (9a) ¢2 ( (J) = -p (j3 (J: -cos (J) .

(9b)

The first energy density is convex if j3 :;:: 0 because P < 0 and the second one is convex if j3 2: 1 for all (J. By restricting 8 to the interval ].!f, lf [which may be relevant in some cases -the convexity holds for j3 non negative. The previous decomposition gives an optimal CD algorithm in the following meaning : the first minimization consists of a linear global problem since the second one is local and consists only in deriving ¢ 2 to update the u 2 multiplier. The two numerical examples show the ability of the CD algorithm to reach equilibrium states if they are local minima of the potential. But only a first mode is obtained (even if the load permits others modes). In the first case ( cf. Fig. 2 and Table 1) the first critical value is equal to IT 4 ~Ifjl :::::: 25 and the buckling may be recovered only for (3 equal to 0. For P less than 50, the solution satisfies the condition () E ] If, If [and the CD algorithm converges for (3 non negative. On the contrary, for P bigger than 50 it is necessary to choose (3 2': 1. The convexity assumption for ¢2 is therefore essential. But the parameter (3 has not to be too big otherwise the convergence rate slows down. p Fig. 2. The first buckling test and some deformed shapes (two elements)

The second example is quite different : a kinet ic condition is imposed at the end of the beam ( cf. Fig. 3) in such a way the first buckling mode may occur for P equal to II;tJI : : : : : : 100. With the Elastica theory this condition is satisfied implicitly by imposing the slope at the end opposite to the slope at the origin. This fact is a severe limit t o use Elast ica theory in more complex boundary problems. However the conclusions of the parametric study on (3 and P are the same than the previous case as illustrat ed in the Table 1 and in Fig. 3. 

CD algorithm and coupling

It may be interesting to compare a non convex optimization problem whose the objective function may be splitted into the difference of convex functions and a convex optimization problem with constraints ( cf. Table 2). Indeed the two formulations underline a part of the objective function as a convex perturbation which is either added or subtracted. Moreover this perturbation may often involve a linear operator by composition. Consequently a Lagrangian approach leads to similar problems, the first as a Inf Sup problem and the other as a Inf Inf problem. The arguments of such problems are either saddle points or a-critical points according to the definition of Auchmuty [START_REF] Auchmut | Dua ity algorithms for non-convex variationa l principles[END_REF]. The algorithms associated with these formulations (Uzawa algorithm and CD algorithm) consist of two steps: the first step is a classical minimization problem according to the primal variable, the second one is either an updating of the Lagrange multipliers or a minimization problem according to the multipliers. A last common point concerns the formulation of the critical points of the augmented Lagrangian of a convex constrained problem and of critical points of the initial CD function; but this fact is out of our purpose here.

Such a analysis leads to consider a set of algorithms to solve the problems which couples a CD formulation with convex constraints, by combining the previous CD and Uzawa algorithms. The following example concerns the buckling of rods submitted to unilateral contact conditions. A previous study about coupling sleeves using SMA structure with contact was based on a similar approach. We consider a rod submitted to a concentrated force at the end and an obstacle. A distance e separates the obstacle from the initial configuration of the rod. To account for the eventual contact of the rod with the obstacle, concentrated reactions are introduced at the nodes of the finite elements. The problem consists then in minimizing the new functional in (10) under the constraints (11) which are written as complementarity conditions on the gap hi(B) at each node and the contact reaction Ri• i~f ((~I 8' 2 -P cosB)dx + f: ri Ri sinBdx, (10)

~

•=l~ hi(()) = e -1xi sin8dx ~ 0; Ri ::=; 0; hi(B)Ri = 0. (11)

The CD splitting has to be completed as follows with the same conditions for /3i, i = 1, .. , n as for (3, (

) 12 
where Xi is the abscisse of the ith node and The figure 5 shows three situations for different positions of the obstacle. For the lowest position no contact occurs and the low mode of buckling is obtained. For an higher posit ion contact occurs only at the end of the rod and for the highest position the algorithm converges to the upper fundamental mode of buckling without contact because the solution with contact is unstable. The numerical experiments show that such an algorithm is unstable (because the process is unstable too). Moreover the contact treatment is not easy to handle in the context of the Elastica t heory which is essentially dedicated to situations with concentrated forces. An other approach is performed today based on the modeling of inextensible rods by the bidimensional displacement field and a non convex constraint imposing the inextensibility condition. Uzawa algorithm, i) u k+l = argminL(.,Ak), ii) Ak+ 1 E argmin-L(uk+ 1 ,.)
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  and <P2g(e) = L ¢ 2g(e) dx. According to the temperature range ( c = c(T)) we have two behaviours; a pseudo-elastic behaviour with five regimes and a quasi-plastic one with three regimes, if c + ~ > 0, if c + % ::; 0, -aT: ec 2J (aT : e + c + ~) 2 0 2J (aT : e -c -~) 2 aT: ec { -aT: e-c ¢29 (e) = 2J (aT : e) 2 -c -~ aT: ec if aT : e ::; -c + ~ if iar : e + ci ::; -~ if air : ei ::; c + ~ if iar : e-ci ::; -~ if ar: e ~ c-~ if ar: e::; Q if air : ei ::; -9 if ar: e ~ -Q

10 - 2 Fig. 3 .

 23 Fig.3. The second buckling test and some deformed shapes (ten elements)

)Fig. 4 .

 4 Fig. 4. Coupled Uzawa-CD algorithm and discrete nodal contact reactions R i
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 2 Fig.5. A buckling test with contact and some deformed shapes (six elements)

  Then the second minimization, involving eventually a non differentiable ¢2 function, may be performed locally, i.e. in each finite element for instance. On the contrary, the first minimization always stays global on the structure and may take advantage to be quadratic in order to restrict this step to a linear solution. This situation (global but linear first step / non linear but local second step) compares the CD algorithm to augmented Lagrangian techniques based on this splitting.

		• 1 ( n-1) arg mm rr . , u 2
	step 2 :	E argminLrr(un, .)
	Since Dis a partial differentiable operator, by duality the field r 2 belongs to a
	less regular space than u.	

Table 1 .

 1 Number of iteration for the CD algorithm. * : No buckling

	p			Example 1					Example 2	
	(3	26	30	40	50	75	100 105 120 150 200 300
	0	1053 30	9	19	00	00	104	34	14	36	00
	0.25	* 41 14	9	25	00	133	46	32	13	45
	1	* 71 31 23 16 13 219 81 42 28 22
	2	* 111 54 41 32 30 334 129 72 51 41