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Convex Difference Algorithm and Applications 
to Some Mechanical Problems 

Pierre Alart, Stephane Pagano 

Laboratoire de Mecanique et Genie Civil, 
cc 048, Universite Montpellier II, 
F-34095 Montpellier Cedex 5, France 

Abstract. The splitting of functional into two convex functions provides a specific 
algorithm to determine the local minima. This approach is applied to two mechani­
cal problems with non convex potentials: the modeling of shape memory alloys and 
the buckling of thin beams. 

1 Introduction 

In non linear mechanics, the equilibrium states minimize the potential energy 
which is not necessary convex. Consequently solve such a mechanical problem 
consists in finding the local minima of the potential energy. The functions 
which may be written as the difference of two convex functions constitute a 
first set of non convex functions. Some properties associated with the con­
vexity may be used in order to formulate some extremality characterizations 
[9] and to define appropriate solution algorithms. Such an approach is not 
very easy to handle in infinite spaces because the convexity is a power tool to 
get compactness theorems in such a way to prove existence of solutions of a 
minimization problems. Then the numerical results presented in the follow­
ing have to be considered with caution; they may depend on the mesh and 
not necessary converge towards a continuous solution when the discretisa­
tion step tends to zero. But we have to try new algorithms to reach possible 
equilibrium states in non linear mechanics often characterized by instability; 
these possible solutions have to be discussed from a mechanical point of view 
a posteriori; these paper dedicated to two applications is a first attempt in 
this way. 

2 CD formulation and CD algorithm 

Let consider a boundary problem on an open domain f? of the space. The 
potential energy II associated with this mechanical problem is written, 

JI(v) = P1(v)- (<1>2 o D)(v), (1) 

where <1>1 (v) = l ¢1 (v, Vv) dx- l(v), <P2 (Dv) = l ¢2 (Dv) dx and Dis a 

linear partial differential operator. 



A critical point u of the potential energy II is defined by, 

0 E 8II(u) = cN>1(u)- o(<h o D)(u). (2) 

where [) denotes the generalized gradient introduced by Clarke [2] for the 
locally Lipschitz functions and 8 denotes the subdifferential of a convex func­
tion. Since <P 1 is a strictly differentiable function [2] the set equality in Eq. 2 
holds and the previous inclusion is equivalent to , 

8(<P2 o D)(u) n 8<1> 1 (u) i- 0. 

Among the critical points, a local minimum u satisfies, 

(3) 

But this relation characterizes a local minimum only if <P2 o D is a piece­
wise affine function [4,5]. This last property is not true in general for the 
continuum problem but can be verified in finite dimensional cases, i.e. after 
finite element approximation. This decomposition leads to define a type II 
Lagrangian [1,5,9] depending on two fields , 

(4) 

where the density ¢2(v,T2) = supe {e: T2- ¢2(e)} is the classical Fenchel 
conjugate function. Thi8 Lagrangian is 8eparately convex in each of the dual 
variables , but the convexity of Lrr is not guaranteed in general; a very simple 
example is illustrated in the Fig. 1. Consequently a min-min problem is nat­
urally related to this Lagrangian who8e the arguments are called 8-critical 
points (cf. Table 2). 
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CD Algorithm 

• Initialization of the algorithm with ( u0 , ug), 
• with (un-I,u~- 1 ) known, we have to determine 

un, u?] as follows, 

step 1 : un · 1 ( n-1) arg mm rr . , u 2 

step 2 : E argminLrr(un, .) 

Since Dis a partial differentiable operator, by duality the field r 2 belongs to a 
less regular space than u. Then the second minimization, involving eventually 
a non differentiable ¢2 function, may be performed locally, i.e. in each finite 
element for instance. On the contrary, the first minimization always stays 
global on the structure and may take advantage to be quadratic in order 
to restrict this step to a linear solution. This situation (global but linear 
first step / non linear but local second step) compares the CD algorithm to 
augmented Lagrangian techniques based on this splitting. 

3 Two applications 

3.1 A set of models for Shape Memory Alloys (SMA) 

In the first example we use the model of Shape Memory Alloys (SMA) given 
in [3,5, 7] in an isothermal case. To do this, let us consider a decomposition 
into the difference between two convex functions <Jh and P2g of the potential 
energy II associated with the mechanical problem, 

II(v) = <!>1 (v)- (<P2g o e)(v), (5) 

where <P 1 (v) = L ¢ 1(e(v)) dx -l(v) and <P2g(e) = L ¢2g(e) dx. According 

to the temperature range ( c = c(T)) we have two behaviours; a pseudo-elastic 
behaviour with five regimes and a quasi-plastic one with three regimes, 
if c + ~ > 0, 

if c + % ::; 0, 

-aT: e- c 

2J (aT : e + c + ~) 2 

0 

2J (aT : e - c - ~) 2 

aT: e- c 

{
-aT: e- c 

¢29 (e) = 2J (aT : e) 2 - c - ~ 
aT: e- c 

if aT : e ::; - c + ~ 
if iar : e + ci ::; -~ 

if air : ei ::; c + ~ 
if iar : e- ci ::; -~ 

if ar: e ~ c- ~ 

if ar: e::; Q 

if air : ei ::; -9 
if ar: e ~ -Q 

(6) 

(7) 
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where l(v) is the work of the external loading, o:, r, care thermo-mechanical 
constants, e is the small strain tensor and Q is a parameter characterizing 
the scale the phase transition is modelized (Q = 0 for the microscopic scale 
and Q = 9c for a macroscopic scale [5,6]). This decomposition leads us quite 
naturally to introduce a type II Lagrangian which depends on the displace­
ment field u and on the "stress" phase transformation field u 2 ; in that case 
<P;9 is easy to compute and is given in [5,7]. The CD algorithm may catch the 
local minima and so reproduce hysteretic processes and phase propagations 
[6] (an augmented Lagrangian technique finds a global minimum which is 
more homogeneous). 

3.2 Buckling of rods by the Elastica theory 

We are interested to modelize the buckling of flexible and inextensible rods. 
It is well known that a force applied to the ends of the rod and oriented 
according to the rod may lead to different equilibrium states if the magnitude 
of the force is large enough. The critical values and buckling modes around the 
trivial solution may be obtained by a stability theory using a linear modeling 
of the rod; but the deformed shape may be reached only by a non linear 
modeling. Moreover the possible buckling shapes, if unilateral conditions have 
to be considered (cf. Fig. 5), are an open problem (cf. [8]). The existence of 
local minima in buckling problems constitutes a motivation to try a CD 
approach. In a first approach we use the Elastica theory where a single scalar 
field 8 must be found. We have to minimize the following potential where P 
is an horizontal force, 8 the angle between the deformed rods and horizontal 
axe, E the young modulus and I the inertial momentum. We remark that 
the non quadratic part is due to the work of the external force since the bulk 
energy is still a quadratic form, 

1c EI ,2 
inf - (J - P cos(] dx, 
e 0 2 

p < 0. (8) 

We postulate the following CD splitting by introducing a parameter /3, 

(h(e) = ~I e'2 _ 13 P e;, (9a) 

¢2 ( (J) = - p (j3 (J: - cos (J) . (9b) 

The first energy density is convex if j3 :;:: 0 because P < 0 and the second 
one is convex if j3 2: 1 for all (J. By restricting 8 to the interval ].!f, lf [ -
which may be relevant in some cases - the convexity holds for j3 non negative. 
The previous decomposition gives an optimal CD algorithm in the following 
meaning : the first minimization consists of a linear global problem since 
the second one is local and consists only in deriving ¢ 2 to update the u 2 

multiplier. The two numerical examples show the ability of the CD algorithm 
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to reach equilibrium states if they are local minima of the potential. But only 
a first mode is obtained (even if the load permits others modes). In the first 

case ( cf. Fig. 2 and Table 1) the first critical value is equal to IT4~Ifjl :::::: 25 and 
the buckling may be recovered only for (3 equal to 0. For P less than 50, the 
solution satisfies the condition () E ] If, If [and the CD algorithm converges 
for (3 non negative. On the contrary, for P bigger than 50 it is necessary to 
choose (3 2': 1. The convexity assumption for ¢2 is therefore essential. But 
the parameter (3 has not to be too big otherwise the convergence rate slows 
down. 

p 

Fig. 2. The first buckling test and some deformed shapes (two elements) 

The second example is quite different : a kinet ic condition is imposed at 
the end of the beam ( cf. Fig. 3) in such a way the first buckling mode may 
occur for P equal to II;tJI :::::: 100. With the Elastica theory this condition is 
satisfied implicitly by imposing the slope at the end opposite to the slope at 
the origin. This fact is a severe limit to use Elast ica theory in more complex 
boundary problems. However the conclusions of the parametric study on (3 
and P are the same than the previous case as illustrat ed in the Table 1 and 
in Fig. 3. 

10 

-2 

Fig. 3. The second buckling test and some deformed shapes (ten elements) 
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Table 1. Number of iteration for the CD algorithm. * : No buckling 

p Example 1 Example 2 

(3 26 30 40 50 75 100 105 120 150 200 300 

0 1053 30 9 19 00 00 104 34 14 36 00 

0.25 * 41 14 9 25 00 133 46 32 13 45 

1 * 71 31 23 16 13 219 81 42 28 22 

2 * 111 54 41 32 30 334 129 72 51 41 

4 CD algorithm and coupling 

It may be interesting to compare a non convex optimization problem whose 
the objective function may be splitted into the difference of convex functions 
and a convex optimization problem with constraints ( cf. Table 2). Indeed the 
two formulations underline a part of the objective function as a convex pertur­
bation which is either added or subtracted. Moreover this perturbation may 
often involve a linear operator by composition. Consequently a Lagrangian 
approach leads to similar problems, the first as a Inf Sup problem and the 
other as a Inf Inf problem. The arguments of such problems are either saddle 
points or a-critical points according to the definition of Auchmuty [1]. The 
algorithms associated with these formulations (Uzawa algorithm and CD al­
gorithm) consist of two steps: the first step is a classical minimization problem 
according to the primal variable, the second one is either an updating of the 
Lagrange multipliers or a minimization problem according to the multipliers. 
A last common point concerns the formulation of the critical points of the 
augmented Lagrangian of a convex constrained problem and of critical points 
of the initial CD function; but this fact is out of our purpose here. 

Such a analysis leads to consider a set of algorithms to solve the problems 
which couples a CD formulation with convex constraints, by combining the 
previous CD and Uzawa algorithms. The following example concerns the 
buckling of rods submitted to unilateral contact conditions. A previous study 
about coupling sleeves using SMA structure with contact was based on a 
similar approach. We consider a rod submitted to a concentrated force at 
the end and an obstacle. A distance e separates the obstacle from the initial 
configuration of the rod. To account for the eventual contact of the rod with 
the obstacle, concentrated reactions are introduced at the nodes of the finite 
elements. The problem consists then in minimizing the new functional in (10) 
under the constraints (11) which are written as complementarity conditions 
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on the gap hi(B) at each node and the contact reaction Ri· 

i~f ((~I 8'2 -P cosB)dx + f: ri Ri sinBdx, (10) 
~ •=l~ 

hi(()) = e - 1xi sin8dx ~ 0; Ri ::=; 0; hi(B)Ri = 0. (11) 

The CD splitting has to be completed as follows with the same conditions 
for /3i, i = 1, .. , n as for (3, 

(12) 

where Xi is the abscisse of the ith node and X[O,x;J is the characteristic function 
of the interval [0, xi]. The coupled algorithm consists then of overlapped loops, 
the Uzawa loop containing the CD algorithm as summarized in Fig. 4. 

Uzawa loop 

[ 

CD loop 

) en = argminLrr(.,u~- 1 ) 

i) u2 E argminLrr(un, .) 

Ri t-- min(Ri + phi(B); 0) 

p ·-
Fig. 4. Coupled Uzawa-CD algorithm and discrete nodal contact reactions R i 

The figure 5 shows three situations for different positions of the obstacle. 
For the lowest position no contact occurs and the low mode of buckling is 
obtained. For an higher posit ion contact occurs only at the end of the rod 
and for the highest position the algorithm converges to the upper fundamen­
tal mode of buckling without contact because the solution with contact is 
unstable. The numerical experiments show that such an algorithm is unsta­
ble (because the process is unstable too). Moreover the contact treatment is 
not easy to handle in the context of the Elastica t heory which is essentially 
dedicated to situations with concentrated forces. An other approach is per­
formed today based on the modeling of inextensible rods by the bidimensional 
displacement field and a non convex constraint imposing the inextensibility 
condition. 
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Fig. 5. A buckling test with contact and some deformed shapes (six elements) 

Table 2. Comparison between a non convex problem and a convex problem with 
constraints. N is the trace operator on the contact boundary rc, c + is the admis­
sible displacements convex set and c- is the polar cone set for the mult iplier 

Non smooth convex problem (contact), 
infv <Pl(v) + Ic+(Nv). 

Non convex problem (SMA), 
infv(loc) <Pl(v ) - <P2(Dv) 

Lagrangian, Type II Lagrangian, 
L(v,/) = <P1 (v)- Ic- (!)+ < Nv,/ > . Lrr(v, r2) = <P1 (v) + <P~(r2)- < Dv, T2 > 

Saddle point of L, 
infv sup"Y L(v, 1) 

Uzawa algorithm, 
i) u k+l = argminL(.,Ak), 
ii) Ak+ 1 E argmin-L(uk+1 ,.) 
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Critical point of Lrr, 
infv inf.,.2 Ln ( v , T2) 
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