
HAL Id: hal-03342622
https://hal.science/hal-03342622

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Role of crystallographic orientation on intragranular
void growth in polycrystalline FCC materials

Paul Christodoulou, Sylvain Dancette, Ricardo Lebensohn, Eric Maire, Irene
Beyerlein

To cite this version:
Paul Christodoulou, Sylvain Dancette, Ricardo Lebensohn, Eric Maire, Irene Beyerlein. Role of crys-
tallographic orientation on intragranular void growth in polycrystalline FCC materials. International
Journal of Plasticity, 2021, 147, pp.103104. �10.1016/j.ijplas.2021.103104�. �hal-03342622�

https://hal.science/hal-03342622
https://hal.archives-ouvertes.fr


Role of crystallographic orientation on intragranular

void growth in polycrystalline FCC materials

Paul G. Christodouloua,∗, Sylvain Dancetteb, Ricardo A. Lebensohnc, Eric
Maireb, Irene J. Beyerleina

aMaterials Department, University of California, Santa Barbara, Santa
Barbara, 93117, CA, USA

bMATEIS, CNRS UMR5510, INSA Lyon, Univ Lyon, 69100, Villeurbanne, France
cTheoretical Division, Los Alamos National Laboratory, 87845, Los Alamos, NM, USA

Abstract

In this work, we study the effect of crystallographic orientation and ap-
plied triaxiality on the growth of intragranular voids. Two 3D full-field mi-
cromechanics methods are used, the dilatational visco-plastic fast-Fourier
transform (DVP-FFT) and the crystal plasticity Finite Elements (CP-FE),
both of which incorporate a combination of crystalline plasticity and di-
latational plasticity. We demonstrate with several select cases that pre-
dictions of void growth from both formulations agree qualitatively. With
the more computationally efficient DVP-FFT, additional effects of polycrys-
talline microstructure and the influence of nearest neighborhood are inves-
tigated. Crystals bearing a single intracrystalline void are studied in three
types of 3D microstructural environments: isolated single crystals, individ-
ual equal-sized grains within a regular polycrystal, and individual variable
sized grains within a polycrystal with grains and voids randomly located. We
show that loading type plays a significant role. In strain-rate controlled con-
ditions, voids in the hardest [111]-crystals grow the fastest in time, whereas in
stress-controlled conditions, voids in the softest [100]-crystal grow the fastest
in time. The analysis reveals that on average void growth is slower for the
same starting orientation in the polycrystal than in the single crystal. We
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find that at the highest triaxiality tested that the correlation between crys-
tal orientation and void growth rate in the polycrystal strengthens, drawing
closer to that seen in the isolated single crystals. These results and model
can help guide the microstructural design of polycrystalline materials with
high strength and damage-tolerance in high-rate deformation.

Keywords: A. Voids and Inclusions, B. Polycrystalline Material, B. Crystal
Plasticity, B. Viscoplastic Material, C. Finite Elements,

1. Introduction

Over several decades, progress in the fundamental understanding of dam-
age and failure of metallic materials has enabled the engineering of more
reliable structural components. In most applications, metallic parts are
polycrystalline aggregates made of anisotropic crystals of complicated shapes
containing a variety of defects. This complexity determines microstructure-
sensitive damage and failure behavior under thermo-mechanical processing.
Recent advances in materials characterization techniques include in situ 3-D
microscopic visualization of ductile damage due to porosity evolution, from
nucleation to growth and coalescence of cavities. In polycrystalline mate-
rials, these techniques revealed a large diversity in void growth-rates likely
due local crystalline environments [1, 2]. Despite these recent experimental
observations, damage and failure models remain largely insensitive to local
microstructural characteristics, due to a lack of consideration of the control-
ling processes at the scale of single crystals, whose elastic and plastic prop-
erties vary from grain to grain depending on orientation and, in some cases,
are strongly anisotropic. Dealing with and quantifying these microstructural
effects on ductile damage from a micromechanical perspective requires com-
bining single crystal/polycrystal plasticity and dilatational plasticity models,
which is the main focus of this work. When the metal contains inclusions,
which is the case for most industrial alloys, damage nucleation is connected
to these inclusions (e.g. Goods and Brown [3]) and these inclusions are not
always located at grain boundaries, especially when grains are large. As a
consequence, it is important to study intragranular growth of cavities.

Crystal plasticity (CP) models, which approximates plastic deformation
accommodated by dislocation slip in single crystals, have been combined with
the finite element (FE) method (e.g. Roters et al. [4]) to account for spatial
variations of mechanical properties of fully-dense polycrystalline materials.
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The implementation of CP constitutive behavior in FFT-based formulations,
conceived as an efficient alternative to CP-FE (e.g. Lebensohn [5], Lebensohn
et al. [6] in the rigid-viscoplastic (VP-FFT) regime, Lebensohn et al. [7] and
Eisenlohr et al. [8] in the small-strain and large-strain elasto-viscoplastic
(EVP-FFT) regimes), has enabled fine-scale microstructural information in
polycrystalline materials to be accounted for with an unprecedented level of
detail.

Analytical dilatational plasticity models, on the other hand, describe the
growth of a cavity in a plastically deforming homogeneous matrix. These
models are largely based on the analysis of the mechanical response of a
hollow sphere with isotropic rigid-perfectly plastic behavior and were pio-
neered by Rice and Tracey [9] and Gurson [10], and have been generalized to
consider different geometries and material behavior [11–18]. Other analyt-
ical homogenization methods were extended to the problem of dilatational
plasticity [19, 20]. Concurrently, FE-based cell calculations have been used
extensively, either in purely numerical studies, or for validation and cali-
bration of analytical dilatational plasticity models, including the study of
void growth in single crystals [21–25]. A number of similar studies conduct
simulations on single crystals and a singular void at a grain boundary or
triple junction [26, 27]. These integrated dilatational/single crystal plastic-
ity analyses and numerical calculations showed that the directionality of the
plastic response of the single crystal strongly affect void growth. However,
the ideal configurations considered by the aforementioned analytical and nu-
merical dilatational plasticity models are unable to capture the complex way
in which the microstructure of polycrystalline materials affects damage evo-
lution associated with void growth. For such more realistic configurations,
analytical expressions are not available and numerical models are very lim-
ited. Analytical model extensions may be adopted to capture some effects
related polycrystalline character of the matrix, e.g. texture-induced plastic
anisotropy, by first homogenizing the polycrystalline matrix’s properties and
then applying anisotropic extensions of limit-analysis models [15, 16, 18].
Liu et al. [28] conducted a series of CP-FE simulations on a single void in a
heterogeneous FCC polycrystal with random orientations. They found that
macroscopic triaxiality played an important role in the growth of voids, and
that at lower triaxialities, the effect of the orientation of the crystals around
the void had a greater effect on the void growth, particularly the dispersion
of said growth between individual simulations. Ultimately, they proposed a
statistical micro void growth model to capture the dispersion of the results
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from the study. There is relatively little studied on orientation effects within
polycrystals. One exception is this study Liu et al., although the study used
only CPFEM, and only includes one void in the central grain with a cuboid
arrangement of grains. In addition, less orientations are simulated than in
the current study.

Only a handful of numerical simulations have dealt with configurations
involving multiple interacting voids. In the context of FE, Fritzen et al. [29]
investigated the effective material response of metals with multiple spherical
voids for different volume fractions with varying loading types. It was found
that the Gurson-Tvergaard-Needleman [30] analytical model only required
one additional parameter to efficiently predict the macroscopic stress for all
examined porosities. Ghosh et al. [31] performed FE calculations on a metal
with hard inclusions and individual, albeit isotropic, domains representing
grains. The source of the heterogeneity was the voids that eventually formed
near the inclusions.

In the context of FFT-based models, Bilger et al. [32] performed calcu-
lations on isotropic, perfectly-plastic materials with voids in various config-
urations to determine the effect of the void distribution on yielding. These
simulations showed that the clustering of voids reduced the yield strength
of the material, which motivated Bilger et al.’s [33] proposal of analytical
expressions to predict the yield stress of a material using a clustering pa-
rameter. However, they found that at high triaxialities, the yield strength
was difficult to predict in microstructures with highly clustered voids. None
of these models, neither in FEA nor FFT-based simulations, used crystal
plasticity, and as such lacked the ability to account for crystal orientation.

Lebensohn et al. [34] and Vincent et al. [35] used FFT-based methods
with explicit representation of voids in polycrystalline and isotropic matrices,
respectively, but their analysis was limited to fixed configurations, i.e. study-
ing the dilatational plastic response under different applied stress conditions,
but without porosity evolution. Lebensohn et al. [36] extended the VP-
FFT formulation to account for dilatational effects (resulting in dilatational
viscoplastic (DVP-FFT) formulation) associated with the presence of inter-
granular voids in a polycrystalline matrix. This DVP-FFT model included
specific algorithms inspired by the particle-in-cell (PIC) method (e.g. Sul-
sky and Schreyer [37], FFT-based implementation of Lahellec et al. [38]) to
take porosity evolution into account. DVP-FFT calculations allowed, for the
first time, consideration of microstructural effects on porosity growth-driven
ductile damage, with crystals and voids represented explicitly. In particu-
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lar, DVP-FFT calculations were performed on two materials with identical
initial porosity distribution: one representing an FCC polycrystal with uni-
form texture and intergranular cavities, and the other representing a porous
material with homogenous isotropic matrix. Comparative calculations were
performed on these two materials to study the effect of the matrix’s polycrys-
tallinity on porosity evolution. Although intragranular growth of cavities in
single crystals is a widely studied topic, our findings are not completely in
line with some previous results and, to the authors’ knowledge, no CPFE vs.
FFT comparisons have been conducted within this field. In addition, a very
limited number address void growth in polycrystals, and none attempting to
decorrelate the effect of crystallographic orientation and grain neighborhood
as we have done here.

In this work, we study the effect of crystallographic orientation and ap-
plied triaxiality on the growth of intragranular spherical voids. Note that we
focus on the void growth stage of ductile damage, assuming pre-existing voids
that have already nucleated in the interior of crystals/grains, and not consid-
ering the late stage of void coalescence. We employ the DVP-FFT and CPFE
formulations, which both incorporate a combination of crystalline plasticity
and dilatational plasticity and permit explicit representation of intracrys-
talline voids. Such voids would occur, for example, by decohesion or fracture
of second-phase particles in the grain interiors of engineering materials. For
several single crystal orientations and triaxialities, we demonstrate that pre-
dictions of void growth from both formulations agree reasonably well. Based
on this cross-validation, we proceed to employ the more computationally ef-
ficient DVP-FFT to investigate intragranular void growth in polycrystalline
microstructures, wherein every crystal contains a single intragranular void.
We show that whether the loading type is full-stress controlled or longitu-
dinal strain-rate/stress-triaxiality controlled plays a significant role of the
orientation vs. growth rate relationship. In strain-rate controlled conditions,
voids in the hardest [111]-crystals grow the fastest in time, whereas in stress-
controlled conditions, voids in the softest [100]-crystal grow the fastest in
time. The implications of these results are discussed, particularly focusing
on the interplay between orientation, triaxiality, and loading types.

The plan of the paper is as follows: In section 2 we present relevant de-
tails on the basics and modifications of the DVP-FFT and CP-FE to account
for dilatational effects in single crystals and polycrystals with intragranular
cavities, as well as the simulations conducted to probe the effect of lattice
orientation on intragranular void growth. Section 3 presents a comparison
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of void growth in single crystals under axisymmetric tension, with different
crystal orientations aligned with the major tensile axis and different stress
triaxialities, predicted with DVP-FFT and CP-FE, followed by a comprehen-
sive study of orientation effects on intragranular void growth using DVP-FFT
in both single crystals and polycrystals. The implications of these results are
discussed in the same section, particularly focusing on the interplay between
orientation, triaxiality, and loading types. Finally, key takeaways of this
study and outstanding questions are addressed in Section 4.

2. Method and Simulation Procedures

2.1. Single crystal viscoplastic behavior

In the current configuration, the viscoplastic behavior of a single crystal
material point is described by means of the following non-linear, incompress-
ible, rate-sensitive equation relating the Cauchy stress σ and the Eulerian
plastic strain rate ε̇ at point x:

ε̇(x) =
K∑
k=1

mk(x)γ̇k(x) = γ̇0

K∑
k=1

mk(x)

(∣∣mk(x) : σ(x)
∣∣

τ k(x)

)n

sgn
(
mk(x) : σ (x)

)
(1)

with γ̇k(x), τ k(x), and mk(x)=1
2

(
nk(x)⊗bk(x)+bk(x)⊗nk(x)

)
being, re-

spectively, the shear rate, the critical resolved shear stress, and the symmetric
part of the Schmid tensor, associated with each slip system k of the K sys-
tems available, where nk and bk are the normal and Burgers vector direction
of such slip system, γ̇0 is a reference rate, and n is the stress exponent.

If the shear rates γ̇k(x) can be considered constant in a time increment ∆t
such that ∆γk(x) = γ̇k(x)∆t, the critical stresses of the deformation systems
can be explicitly updated due to strain hardening. Here we use an extended
Voce law (Tomé et al. [39]), such that the evolution of the critical stress with
accumulated shear strain in each grain is given by:

τ k(x) = τ k0 + (τ k1 + θk1Γ(x))(1− exp(−Γ(x)
∣∣θk0/τ k1 ∣∣)) (2)

where Γ(x)=
K∑
k=1

γk(x) is the total accumulated shear in the grain, and τ k0 ,

τ k1 , θk0 , and θk1 are the initial threshold stress, the initial hardening rate,
the asymptotic hardening rate, and the back-extrapolated threshold stress,
respectively.
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2.2. DVP-FFT formulation
FFT-based formulations are spectral numerical methods to compute the

local and effective response of heterogeneous materials, solving the govern-
ing equations inside a periodic unit cell that give an equilibrated stress field
constitutively related to a compatible strain field. The heterogeneity of the
unit cell may come from the presence of different isotropic phases, as in the
case of composites, different grain orientations, as in the case of polycrystals,
or a combination of both, i.e. multiphase polycrystalline materials. Porous
polycrystals are a special case of the latter, in which one of the phases is
the void phase, which cannot sustain stress. The starting point to com-
bine crystal plasticity and dilatational effects has been the rigid-viscoplastic
VP-FFT formulation (Lebensohn et al. [5, 6]) for fully-dense polycrystalline
aggregates with single crystals obeying the constitutive equation given in
equation 1. With the addition of voids, the latter incompressible formula-
tion was extended (Lebensohn et al. [34]), resulting in the DVP-FFT model
to compute the instantaneous dilatational viscoplastic behavior of porous
polycrystals. The addition of algorithms to account for void growth based
on the use a Lagrangian grid of material points on top of the Eulerian compu-
tational regular grid where FFTs are performed (Lahellec et al. [38]), allowed
extending DVP-FFT to predict porosity evolution in voided polycrystals, as
well as porous materials with homogenous rigid-viscoplastic isotropic matrix
(Lebensohn et al. [36]). The extension of the latter to consider porosity evo-
lution in single crystals is straightforward, adopting the constitutive equation
(equation 1) for materials points belonging to the single crystal matrix.

We generate the material points by first considering a regularly-spaced
set of 2N1×2N2×2N3 voxels that discretize the unit cell and have single-
crystal rigid-viscoplastic properties (equation 1). These properties can be
homogeneous throughout the entire unit cell (single crystal case) or period-
ically heterogeneous (polycrystal case). Next, we seed the void phase using
certain criteria, as described in section 2.4) by removing the voxels occupied
by the voids from the set of materials points. The points remaining in the
material phase represent a set of material points denoted as {xM}. Next,
every other point of the regular grid along the three directions is identified as
Fourier points, resulting in a N1×N2×N3 computational grid, to be denoted
{x}. This Fourier grid in Cartesian space has a corresponding grid of the
same size in Fourier space {k}. When a strain rate Ė, or a stress Σ, or a
combination of both is applied to the unit cell, the local strain rate field is
a function of the local velocity field, and can be split into its average and a
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fluctuation term:
ε̇ij (v(x)) = Ėij + ˜̇εij (ṽ(x)) (3)

where:
vi(x) = Ėijxj + ṽi(x) = Vi(x) + ṽi(x) (4)

The local constitutive relation between the strain rate and the stress for
Fourier points with single crystal properties is given by equation 1. The
strain rate at these points has no dilatational component. As for the Fourier
points belonging to voids, the stress vanishes. In FFT-based formulations, a
fourth-order tensor Lo is the stiffness of a linear reference medium, and the
polarization field is given as:

φij(x) = σ̃ij(x)− Loijkl ˜̇εkl(x) (5)

such that the stress fluctuation is written as:

σ̃ij(x) = Loijkl ˜̇εkl(x) + φij(x) (6)

Combining equation 6 with the equilibrium condition: σij,j(x)=0 and
˜̇εkl(x)=sym(ṽk,l(x)) gives:

Loijklṽk,lj(x) + φij,j(x) = 0 (7)

The differential equation whose solution is the Green’s function Gkm as-
sociated with the velocity field is then given by:

LoijklGkm,lj (x− x′) + δimδ (x− x′) = 0 (8)

where δim and δ(x) are the Kronecker and Dirac delta functions, respectively.
The convolution integral that gives the velocity field is:

ṽi(x) =

∫
R3

Gik,l (x− x′)φkl (x
′) dx′ (9)

Applying the convolution theorem, the velocity and velocity gradient
fields in Fourier space are given by:

ˆ̃vi (k) = (−ikl) Ĝik (k) φ̂kl (k) (10)

ˆ̃vi,j (k) = Γ̂ijkl (k) φ̂kl (k) (11)
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where the symbol “∧” indicates Fourier transform, and Γijkl=Gik,jl, which,
using the definition of the Green’s function, can be calculated in Fourier
space as (see Lebensohn [5] for details on derivation):

Ĝik (k) = A−1ik (k) , where: Aik (k) = kjklL
o
ijkl, and: Γ̂ijkl (k) = −kjklĜik (k)

(12)
Note that with Γ̂ijkl (k) from equation 12, and the current value of the polar-
ization field in Fourier space, the symmetric part of equation 11 gives the new
guess of the strain-rate fluctuation field, which can then be antitransformed
to obtain the associated new stress fluctuation field by evaluating the local
constitutive equation. These updated guesses for the strain-rate and stress
fluctuation fields can in turn be used in equation 5 to update the polarization
field, and so on and so forth.

From these equations, an iterative procedure based on the augmented
Lagrangian algorithm (Michel et al. [40]) is adapted and adopted for the
case of porous single crystals (this work), and polycrystals (see Lebensohn
et al. [34]). Upon convergence, the stress and strain-rate fluctuation fields
are added to the macroscopic stress and strain-rate tensors, which satisfy the
applied boundary conditions (see Lebensohn et al. [34] for details).

Also upon convergence, the critical stresses of the Fourier points with
single crystal properties can be explicitly updated according to the strain
hardening law using equation 2. The lattice rotation rate field can be also
obtained (see Lebensohn et al. [36] for details). This field, if assumed constant
over the time increment ∆t used to march in time, can be integrated and
used to update the crystallographic orientations associated with the points
in the Fourier grid {x} with single crystal properties. Interpolation between
{x} and the set of material points

{
xM
}

(see Lebensohn et al. [36]) allow
updating the critical stresses and crystallographic orientations of the latter,
resulting in strain-hardening and texture evolution.

Equation 4 and the anti-transformation of equation 10 give the time inte-
gration and interpolation of the velocity field mapped onto the Fourier grid.
Together, they provide the local displacements of the material points, which
scale with ∆t. Under positive triaxialities, porosity will increase and the
aforementioned displacements will be such that the material points will move
away from neighboring voids. This will result in a local incompressible strain,
dependent on the local single crystal plastic anisotropy and microstructure.
The corresponding void growth accommodates the volume change imposed
to the unit cell, which is given by Ėkk∆t. The new positions of the material
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points can be used as input of an algorithm (see Lebensohn et al. [36]) to
reassign void properties to certain Fourier points (i.e. those whose distance
to the nearest material point becomes higher than a threshold), which pre-
viously had material properties. This reassignment determines local void
growth, and contributes to the overall porosity increase. As part of this
algorithm, the time increment ∆t can by controlled, such that the change
in macroscopic porosity f given by ∆f= (1−f) Ėkk∆t (Tvergaard’s formula
[41]) coincides with the average of local porosity changes.

In this work, DVP-FFT simulations for two types of imposed loads are
presented. The first one, used only in section 3.2 to precisely understand the
influence of different loading types, is fully-imposed stress Σ (therefore also
imposing stress triaxiality), which corresponds to the algorithm previously
described. The other type of loading type, used throughout the paper is the
one used by Ling et al. [24], in which the stress triaxiality is imposed (i.e. the
ratio between stress components, but not the magnitude of stress itself) along
with the longitudinal component of the strain-rate. The latter loading type
requires a correction to the stress tensor applied to the unit cell, based on
the consideration of the homogeneity of degree n of the strain-rate response
to a given applied stress, explained as follows. For a porous material with
single crystal or polycrystal matrix, whose local material behavior is given
by equation 1, if Ė(1) is a scalar measure (e.g. longitudinal component) of
the strain rate response to a stress tensor Σ(1) applied to the unit cell, then

the imposed stress can be corrected according to Σ(2)=
(
Ė(2)

/
Ė(1)

)1/n
Σ(1)

to obtain a strain rate response with Ė(2) longitudinal component.

2.3. FEM formulation

The finite element model of the voided single crystal problem consists
of a FE mesh of a periodic unit cell with a void in the center (figure 1)
and a single crystal plasticity subroutine [42, 43] to compute the constitutive
response at the level of the FE integration points, within the framework of
an Abaqus-Implicit solver.

The control of both strain rate and stress triaxiality is achieved in the FE
model by the use of dummy nodes connected by linear springs outside of the
unit cell for the control of boundary conditions (Figure 1.a), as inspired from
the work of Lecarme et al. [44]. The FE mesh of the cuboidal single crystal
unit cell is periodic, in the sense that the node coordinates on each opposite
outer surfaces are related by a translation. Periodic boundary conditions are
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(a) (b)

Figure 1: (a) Finite element setup for strain-rate and stress-triaxiality controlled loading
of the porous unit cells containing a central cavity and composed of Abaqus C3D8 brick
elements. Axial strain rate is imposed by displacement of node N3, while the stress
triaxiality and the axisymmetric stress condition are controlled by the displacements of
node N1 and N2 in equations 18 and 19 (Abaqus nodal MPC). (b) One eighth of the unit
cell highlighting the central cavity (f=0.01).
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applied by coupling the displacement degrees of freedom (DOF) of node pairs
that face each other through the displacement of the master nodes M1, M2

and M3 in Figure 1.
Assuming an axisymmetric stress state with z as the primary loading

direction and using the definitions of the mean (hydrostatic) stress σH and
the Von Mises equivalent stress σeq, the stress triaxiality T= σH

σeq
reduces to:

T =
2σxx + σzz

3(σzz − σxx)
(13)

which can be re-arranged to express σxx as a function of the primary stress
σzz:

σxx = σzz
3T − 1

3T + 2
(14)

The forces exerted on the faces of the unit cell by the springs (with
identical stiffness K) is written:

Fx = K(uN1
x − uM1

x ), Fy = K(uN2
y − uM2

y ), Fz = K(uN3
z − uM3

z ) (15)

The instantaneous area of the faces of the unit cells can be written as a
function of the initial edge length L0 of the unit cell and the displacement of
the master nodes M1, M2, and M3 shown in Figure 1:

Sx = (L0 + uM2
y )(L0 + uM3

z )
Sy = (L0 + uM1

x )(L0 + uM3
z )

Sz = (L0 + uM2
y )(L0 + uM1

x )
(16)

from which the instantaneous (true) stress components can be written as:

σxx = Fx

Sx
, σyy = Fy

Sy
, σzz = Fz

Sz
(17)

To satisfy the stress triaxiality constraint of equation 14, equations 15, 16,
and 17 can be combined and inserted into equation 14 to yield the following
expression of uN1

x :

uN1
x = uM1

x +B
(L0 + uM3

z )(uN3
z − uM3

z )

L0 + uM1
x

(18)

where B stands for 3T−1
3T+2

.
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Moreover, when the axisymmetric stress state condition, σxx=σyy, is sat-
isfied, the following expression of uN2

y results:

uN2
y = uM2

y +
(L0 + uM1

x )(uN1
x − uM1

x )

L0 + uM2
y

(19)

While uN3
z is prescribed to achieve the desired axial strain-rate of the unit

cell, equations 18 and 19 are solved iteratively using an Abaqus Multi-Point
Constraint (nodal MPC), coded as a Fortran user subroutine.

The crystal plasticity constitutive behavior is computed with a user sub-
routine, which is summarized below (see [42, 43] for more details). The stress
developed in the crystals at each integration point is obtained based on the
multiplicative decomposition of the deformation gradient tensor F=R∗U elF p,
where R∗ is the lattice rotation, U el=1+ε is an infinitesimal elastic stretch,
and F p is the result of dislocation slip (plastic deformation). The velocity
gradient tensor L is:

L = Ḟ F−1 ' Ṙ∗R∗T +R∗ (ε̇+Lp)R∗T (20)

where
Lp = Ḟ pF p−1 =

∑
k

(bk ⊗ nk)γ̇k (21)

The slip rate γ̇k on slip system k and the hardening rule for the critical
resolved shear stress τ k are calculated as detailed in section 2.1. The elastic
part of the strain rate ε̇ is related to the elastic stiffness tensor and the time-
derivative of the second Piola-Kirchhof stress computed in the intermediate
configuration. Lattice rotation R∗ is calculated by the time-integration of
the skew-symmetric part of the velocity gradient L (equation 20).

In summary, the FFT-based and FE crystal plasticity formulations at the
material points are similar, but differ by the consideration of a (relatively
small, compared with the viscoplastic part) elastic contribution to the total
deformation in the CP-FE approach, which is neglected in DVP-FFT com-
putations. Moreover, the adopted CP-FE is based on large-strain kinematics
(equations 20 and 21), while DVP-FFT microstructure (including porosity
evolution) is based on the combined use of a Lagrangian set of material points
and an Eulerian computational grid, as described in the previous sub-section.
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2.4. Simulations designed to probe orientation dependence
In this section, we describe the different simulations conducted to deter-

mine the effect of crystal orientation on void growth employing the DVP-FFT
and CP-FE formulations. Three groups of microstructures were employed to
probe the orientation dependence of intracrystalline void growth under ax-
isymmetric tension: one group of single crystal simulations, and two groups
of polycrystalline simulations, shown in Figure 2. All simulations employed
a set of 72 predetermined orientations of the crystal axes with respect to the
tensile axis: 45 orientations originally introduced by Lebensohn et al. [45],
and 27 additional orientations to cover the intermediate regions of orienta-
tion space between the [100], [101], and [111] orientations, shown in Figure
2b. These 27 orientations are not as evenly spaced as the original 45 orienta-
tions, but they cover the missing regions without duplication. These selected
orientations are presented in an inverse pole figure/stereographic triangle
relative to the z-direction, i.e. the axis of the largest principal stress in our
simulations.

The first set of simulations conducted using DVP-FFT and CP-FE con-
sider single crystalline unit cells. CP-FE is used here to compare to DVP-
FFT and verify its results in simple cases. For the majority of simulations
that follow, the DVP-FFT is employed because of its computational efficiency
and that it is a much easier way to discretize and treat complex structures.
In the DVP-FFT simulations, 72 individual voided single crystals were cre-
ated and the corresponding unit cells were discretized with 128×128×128
material points (minus those in the void region), corresponding to a Fourier
grid size of 64 in each direction, with the void at the center of the simulation,
occupying 1% of the volume of the initial crystal. The selected percentage
permitted a sufficient amount of observable voxel points and grid refinement
(i.e., we had spherical voids) without initiating significant void-to-void inter-
action. The difference between the grid employed in this work and that of
a finer one are approximately 3% in axial stress and less than 1% in void
fraction and void fraction growth rate. Each single crystalline unit cell had
an orientation corresponding to one of the 72 orientations described above.
Of the 72 unit cells, four single crystal orientations were compared against
corresponding CP-FE simulations: [100], [101], [111], and [210] orientations.
The CP-FE single crystal unit cells were composed of 16000 Abaqus C3D8
brick elements (eight nodes, eight integration points). Convergence of the
CP-FE results was checked with respect to the number and type of finite
elements used to mesh the unit cell. The chosen orientations also allowed
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a) Single Crystal

Void

Z (primary)

X/Y
(transverse)

Polycrystals

b) Orientations

c) 72-grain random-seed polycrystal d) 108-grain FCC-seed polycrystal

[001]

[111]

[101]

Orientation of z axis
relative to crystal

Taylor factor

2 32.5

Figure 2: Figures of the three 3-dimensional microstructure sets used in the simulations:
(a) a periodic single crystal with a void in the interior, with a primary stress in the Z
direction; (b) the 72 key crystal orientations used in the simulations (as dots), and are
colored with the Taylor Factor of the fully dense material calculated for a n=5; and (c)
and (d) are the two polycrystalline microstructures. Sub-figure (c) is a 2-D slice through
the random 72-grain voronoi tesselation with voids at the seed of each of the Voronoi cells.
Sub-figure (d) shows a 2D slice through the plane of the 108-void system, in which the
voids are placed in an FCC-like array and the grains form the Wigner-Seitz cells around
each void. The center of the grain and the center of the void coincide in this regular grid,
and the grains form dodecahedrons, consistent with a coordination number of 12. In each
case, the boundary conditions are the same as in (a), with the primary axis is in the Z
direction.
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qualitative comparison with previously reported CP-FE simulations by Ling
et al. [24].

Besides voided single crystals, we studied polycrystalline microstructures
with intragranular voids as well, in order to access nearest grain neighborhood
effects. Two sets of polycrystalline microstructures were simulated using
DVP-FFT. Both types were composed of 256×256×256 material points be-
fore removing those from the voids, corresponding to 128×128×128 Fourier
points. The first microstructure was a 72-grain unit cell, with the grains
randomly-generated by periodic Voronoi tessellation. Voids were located at
the seed points of the Voronoi structure, and occupied 1% of that grain’s vol-
ume, i.e. larger grains contained larger voids. 72 random orientations were
assigned to the grains. The same 72-grain partition was used in different re-
alizations to maintain the same morphology, while the orientations assigned
to each grain were randomly reassigned, for a total of 30 realizations.

The second type of polycrystalline microstructures, and the third mi-
crostructure group, was created by placing the center of the voids in an
FCC-type super-lattice (i.e. regular arrangement of grains, not of atoms),
and forming the grains around them, using their Wigner-Seitz cells. This
placement ensured that all voids were at the center of the grains, and that all
voids were identical in shape and size, reducing the variables to the individ-
ual grains orientation and neighborhood. However, because the microstruc-
tures needed to have four (for one FCC unit cell) voids, and power-of-three
numbers of FCC super-cells are convenient, 108 voided grains were created
(4×36). The 72 orientations were randomly assigned to 72 of the 108 grains,
and the remaining 36 grains were randomly assigned 36 random orientations.
As before, these 108 orientations were randomly assigned in 30 separate re-
alizations.

All simulations were stress-triaxiality controlled and of these, most were
additionally strain-rate controlled, while a small group of six simulations were
instead stress-controlled (reasons to be discussed shortly). The applied strain
rate in strain-rate controlled simulations was ε̇peq=1.0 s−1 in the DVP-FFT,
and ε̇p33=1.0 s−1 in the FEA. Each microstructure was simulated using DVP-
FFT at four stress triaxialities: TX=0.6, 1, 2, and 3, with the primary axis
along the z-direction, and axisymmetric stresses in the x and y-directions.
FEM simulations will be presented at two of those four triaxialities: TX=0.6
and 3. Not all of the results will be presented, given that the intermediate
triaxialities were found to represent intermediate states between the lowest
and highest triaxialities.
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A set of single-crystal simulations at the highest and lowest stress triaxial-
ity but with fully-prescribed equivalent stress of σeq=2.5τ0 were additionally
conducted with DVP-FFT. Only the [100], [101], and [111] single crystal
orientations were simulated. These simulations are discussed in section 3.2.

The crystals were able to plastically deform activating the 12 〈110〉 {111}
slip systems associated with FCC slip. The reference slip rate and stress ex-
ponent in equation 1, are γ̇0=1.0 and n=5, respectively. The Voce hardening
parameters from the equation 2 were τ0=1.0 MPa, τ1=3.0 MPa, θ0=8.0 MPa,
and θ1=0.0 MPa. Additionally, in the FEM calculations, isotropic elastic co-
efficients were assumed: C11 = 1346 MPa, C12 = 577 MPa and C44 = 385
MPa, resulting in a Young’s modulus more than 1000 times larger than τ0.

3. Results & Discussion

3.1. Voids in single crystals, comparisons between CP-FE and DVP-FFT

To ascertain that the CP-FE and DVP-FFT models show the same void
growth trends, single crystal simulations were compared for the highest and
lowest triaxialities (TX=0.6 and TX=3). Figure 3 shows the normalized void
volume, V/V0; remote stress, σ33/τ0; and transverse plastic strain, εpT , as a
function of plastic strain in the axial direction, εp33 at the lowest triaxiality.
The stresses and transverse strains are within 10% of each other at strains
above 0.2 for the lower triaxiality simulations. The volume fraction of the
voids, except for voids in the [101]-oriented crystals, differ by less than 10%
at all strains. The voids in the [101]-oriented crystals differ by less than 10%
up to strains of 0.5, and then increase to 25% by 100% axial strain.

The DVP-FFT and CP-FE at the higher triaxiality do not match as
closely, as shown in Figure 4. The trends are consistent for the transverse
strains, at least from the perspective of the ordering of the crystal orienta-
tions. The trends in growth rate, the focus of the current study, are consis-
tent. Figure 4(c-d) shows that the transverse strains calculated by FFT and
FEA differ significantly initially, by 2.5 times, but then eventually converge
at higher plastic strains. At low strains, the transverse strains are going to
be primarily due to the elastic strain contribution in the CP-FE. This large
strain difference is also likely due to the difference in prescribed strain rate,
since the specific strain rate prescribed in each method differs slightly (Ėeq
in the DVP-FFT and Ė33 in the CP-FE). The stress and volume fraction are
within 20% between the corresponding CP-FE and DVP-FFT simulations.
At both triaxialities, the void in the [111]-oriented crystal grows the fastest,
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Figure 3: Figures comparing DVP-FFT (no symbols) and CP-FE (closed symbols) in
single crystals at a low triaxiality (TX=0.6). The figure (a) shows the volume fraction
of the void, (b) axial stress, (c) transverse strains in the x direction, and (d) transverse
strains in the y direction. The (b) stresses and (c, d) transverse strains in the material
(to what extent the DVP-FFT completed) are within 10% of one another at strains above
20%, and the trends for the (a) volume fraction and, by extension, volume fraction rate,
are consistent. At this low triaxiality, the voids in [111] and [101]-oriented crystals grow
at the highest and lowest rate, respectively.
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Figure 4: Figures comparing DVP-FFT (no symbols) and CP-FE (closed symbols) in single
crystals at a high triaxiality (TX=3). The figure (a) shows the volume fraction of the void,
(b) axial stress, (c) in the x direction, and (d) transverse strains in the y direction. The
DVP-FFT calculations complete a fraction of what the CP-FE completes. (a) The volume
fractions are within 20% of each other between simulation types, and stresses differ by
no more than 15% for each crystal orientation. Here, the (c, d) transverse strains differ
significantly, but (a) both algorithms predict that the voids in the [100]-oriented grains
grow the slowest, rather than the [101] grains. Both algorithms predict that the voids in
the [111]-oriented grain grow fastest.
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Figure 5: Figures showing aspect ratios vs the plastic macroscopic axial strain for both
the DVP-FFT (no symbols) and CP-FE (closed symbols) in single crystals at (a) a low
triaxiality (TX=0.6) and (b) a high triaxiality (TX=3). At both triaxialities, the DVP-
FFT aspect ratio algorithm yielded more noise than that of the CP-FE. The aspect ratio of
the voids in the (b) high triaxiality case in the DVP-FFT simulations exhibited significant
noise, but both aspect ratios remain within 10% of the original value during the range
shown.

while the void in the [101]-oriented crystal at the lower triaxiality and in the
[100]-oriented crystal at higher triaxialities grows at the lowest rate. The
DVP-FFT algorithm does not control the total axial strain, so the simula-
tions at higher triaxialities use a much smaller time scale and maximum axial
strain, to control the strain rate most accurately. Figure 3.1 shows the aspect
ratio, AR, as a function of plastic strain in the axial direction, εp33 at the the
lowest and highest triaxialities. The data contain some noise, since the post-
processing aspect-ratio algorithm can encounter problems when the shape of
the voids does not change significantly. At the higher triaxiality, with the
least shape change, the noise is greatest, making comparison between the
models difficult. Nonetheless, we clearly find that the aspect ratio at that
triaxiality are within 20% between the corresponding CP-FE and DVP-FFT
simulations. The Ling et al. [24] CP-FE results indicate the same trends
in the cases of the [100], [101], and [100]-oriented crystals, but the void in
the [210]-oriented crystals grew at a slower rate at both triaxialities reported
[24], although they have a higher exponent (n=15) and the hardening rule
differs. Other CP-FE simulations, such as those by Asim et al. [26] and Chen
et al. [27] also show that soft grains appear to have faster void growth.

In summary, voids in FCC single crystals grow most rapidly in [111]-
oriented crystals under strain-rate controlled conditions. This orientation
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corresponds to plastically hard crystal relative to the loading direction. This
is consistent across DVP-FFT and CP-FE, although slight variations between
the two models exist, due to the fact that the CP-FE relies on a mesh and
large-strain kinematics, while the DVP-FFT uses voxelized microstructures,
as well as lacks the elastic behavior of the CP-FE. Because of the choice of a
void volume fraction to both maximize observation and minimize interaction
between voids, the trends seen here are expected to hold at lower porosity
levels. This important conclusion of this comparison is that DVP-FFT yields
comparable results with CP-FE and we can therefore rely on the more ef-
ficient DVP-FFT to investigate the relationship between crystal orientation
and triaxiality on void growth with reliable statistics in polycrystals.

3.2. Voids in single crystals

The loading type dictate the void growth rate, as seen in figure 6, which
shows the results of DVP-FFT simulations for voided single crystals with
orientations [100], [101], and [111] with two sets of loading types: fully-stress
controlled, and axial strain-rate controlled. In both cases, the stress triax-
iality is controlled. When volume is plotted against strain, the void in the
hard [111]-oriented crystal always grows at the highest rate. This trend was
obtained for all strain-rate controlled simulations, but in the softest [100]-
oriented crystals, porosity always grows the fastest in time with fully-imposed
stress. When stress is fully imposed, the intermediate [101] orientation has
the slowest void growth in time. Thus, depending on the local loading con-
ditions, the apparent speed of void growth may reverse, which may account
for experimental observations that voids are largest in soft grains [46].

Figure 7 shows the inverse pole figure (IPF) with a contour of the initial
void growth rate with respect to strain for each single-crystal orientation
represented in the IPF. Overall, the void growth rate in single crystals varies
smoothly between any two of the three symmetric orientations ([100], [101],
and [111]). The voids in all crystals experience an initial reduction, followed
by an increase, in growth rate as the simulations progress (shown as a sup-
plemental animation in the online version).

The calculations are repeated for a range of triaxialities, although not
all are shown. For all triaxialities tested, the voids in [111]-oriented crystals
grow the fastest with respect to strain. They continue to grow at the fastest
rate for the entire straining period, including the initial reduction in growth
rate. At low triaxialities, voids in [101]-oriented crystals grow the slowest,
while at higher triaxialities, voids in [001]-oriented crystals grow the fastest,
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Figure 6: Volume vs axial strain and volume vs time plots for voids in single crystal voids
in the DVP-FFT simulations at Tx=0.6 and Tx=3 show that loading types can reverse
the order of growth rate in the single crystals. Under stress-controlled loading, the softest
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Figure 7: Initial volume growth rate (taken as the derivative of volume in terms of macro-
scopic axial plastic strain) as a function of orientation for single crystals at stress triaxiality
(a) Tx=0.6 and (b) Tx=3. Each of the 72 points shown in Figure 2b is represented here
by one individual simulation. The voids in the [111]-oriented single crystals grow fastest.
At low triaxialities, the void in the [101]-oriented single crystal grows the slowest, while
at higher triaxialities the void in the [100]-oriented crystal grows the slowest. The arrows
are drawn to indicate the trend of fastest rate change, highlighting this shift between low
and high triaxialities. The indicated trend was not numerically determined.

as is evident in figures 3 and 4. The arrow drawn in figure 7 illustrates the
connection from the crystal orientation with the slowest-growing void to the
orientation with the most rapidly growing void and approximately follows
the path of the steepest gradient.

3.3. Voids in polycrystals

Next, we study void growth in fully voided polycrystals, in which every
crystal has one starting intragranular void. In the 72-grain random structure,
we expect that orientation effects on void growth to be highly variable and
weak, in which much of the strong orientation effects on void growth seen in
the isolated single crystals will be diminished.

In the 72-grain random case, each void has a different size and location
in its parent crystal. In the 108-regular polycrystal, each void is the same
size and centered inside its parent. The chief variable lies in the orientation
of the surrounding grain neighbors. Voids in all neighboring grains will grow
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at different rates and interact with one another. With these many sources
of variation, we expect void growth across the polycrystal to be distributed.
The question, however, concerns whether orientation effects on intragranular
void growth seen in ideal single crystal tests are still preserved in a multiply-
voided polycrystal.

Figure 8 shows IPF contour plots for polycrystals with the random 72-
grain structure and the regular 108-grain structure. The IPFs represent the
average of 30 realizations at the same macrostrain, plotted as a function of
void growth rate with respect to strain vs. the crystal orientation containing
each void. Since in the 72-grain polycrystal, each void is not the same size,
the void volume was first normalized by its starting volume before averaging.
Note that each point represents one of the 72 starting orientations. The
additional randomly-generated orientations that supplemented the 108-grain
polycrystal are not included in these plots to reduce clutter.

The strong correlation between orientation and void growth rate seen in
the single crystals is diminished in the case of polycrystals, although the
growth rate near the [111]-direction still remains consistently the highest for
all triaxialities. At the lower triaxiality, both polycrystalline microstructures
have a few other orientations with exceptionally high growth rates. In the
random 72-grain polycrystals, these orientations are [327]-, [438]-, and [538],
and in the regular 108-grain polycrystal, they are [219]- and [214]. At the
higher triaxialities, the orientations with the highest growth rates are still
exclusively the [111]-oriented crystals.

For both the single crystals and polycrystals, the growth rate varies non-
monotonically with strain in a way that does not depend on its starting
orientation. For voids in all single crystals, the growth rate varied in the same
way, initially decreasing and then increasing with strain. The voids in the
polycrystalline microstructures are not similar. In any individual simulation,
the voids in some grains grow the fastest initially, only to slow down and be
surpassed by other voids in grains with a different orientation.

To compare orientation effects with the single crystal cases, Figure 9
compares the volume of voids in selected starting orientations in the single
crystals and the average volume of the voids in the corresponding crystal
orientations in the polycrystalline microstructures.

The void growth in [111] grains in the polycrystals is, on average, slower
than that of its single crystal counterpart. However, the orientation correlates
more closely to growth at the highest triaxiality than for the lowest triaxiality,
as is indicated in the Figure 8. It is possible that at even higher triaxialities,
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Figure 8: Initial volume growth rate (couched in terms of macroscopic axial plastic strain)
as a function of orientation for polycrystals in the 72-grain polycrystal at a stress triaxiality
of (a) Tx=0.6 and (b) Tx=3, and in the regular 108-grain polycrystal at a triaxiality of
at a stress triaxiality of (c) Tx=0.6 and (d) Tx=3. The figures shown here represent the
average of 30 realizations of polycrystals, plotted as a function of void growth rate vs
containing crystal orientation (relative to the primary stress axis). Each of the 72 points
shown in Figure 2b is represented here by the average of 30 simulations. The results are
noisier than in single crystals, although voids grow consistently faster in grains oriented
near the [111]-direction. The still does not capture the non-monotonic growth rate of the
voids. See online version for animations.
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Figure 9: Volume vs axial strain plot for the corners of the stereographic figures, showing
data analogous to the previous figures, for stress triaxialities (a) Tx=0.6, (b) Tx =1, (c)
Tx =2, and (d) Tx =3. At every triaxiality, the void in a [111]-oriented single crystal grew
the fastest. At low triaxialities, the void in the [101]-single crystal grew the slowest, but
at higher triaxialities, the voids in the [001]-oriented crystals grow the slowest.
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the voids in the [111]-oriented crystals in polycrystals would experience even
greater growth.

In the 72-grain random polycrystals, for TX=3, the voids in both the [111]-
and [001]-oriented grains initially grow at similar rates to their single crystal
counterpart. As the strain increases, the voids in the [001]-oriented grains
in polycrystals appear to grow faster. Conversely, the voids in the [111]-
oriented grains in polycrystals slow down as strain increases. This indicates
that the [111] grains have reached a saturation stress, and that the [001] and
[101] crystals continue to grow and compensate for this saturation. Overall,
voids in [001]-oriented grains loaded with low stress triaxialities appear to
grow faster, on average, in polycrystals than in a single crystal with the same
orientation.

The voids loaded at low stress triaxialities appear to be the least sensitive
to orientation in the 72-grain random polycrystal: the voids in the [111]-
oriented grains grow at a similar average rate as the voids in the [001]-oriented
grain. At high triaxialities, the voids grow faster in the [111] grains. Overall,
the [101]-voids grew the slowest at all triaxialities.

The voids in the [001] grains have the most erratic behavior, having slow
initial growth for TX=1, but more moderate growth at the other triaxialities.
The growth decreases to a minimum for TX=1, and then increases towards
its single crystal behavior for TX=3. On average, these voids grow slower
than their single-crystal (and, by extension, the 72-grain polycrystal). The
voids in [101] grains grow faster in this ordered polycrystal at every triaxiality
compared to the random polycrystal, but converges to the single crystal value
at the highest triaxiality.

Based on observations from Lebensohn et al. [34], it has been proposed
that the relationship between the parent orientation and growth rate seen in
single crystals would reverse in polycrystals. It was seen in that work that
the interconnecting material between two nearby voids experienced an in-
creased plastic strain rate if the material was soft, such as an [001]-oriented
grain. Accordingly, here, we would expect to see that while the voids in
[111]-oriented crystals grow the fastest, the voids in the same orientations
in polycrystal would grow the slowest. This appears to be the case at low
triaxialities (TX=0.6) but not at high triaxialities (TX=3). The results here
demonstrate that despite the interaction between two neighboring growing
voids, at high triaxialities, the hardest crystals (i.e., [111]-oriented ones) con-
tinued to experience the most void growth.

Taken together the results on the fully voided polycrystals show that in-
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tragranular void growth is insensitive to orientations at low triaxiality and
very sensitive to orientations at high triaxiality. The strong propensity for
growth in [111]-oriented crystals is reduced in polycrystals. Particularly
at lower triaxialities, the material behaves more isotropically; that is, void
growth is insensitive to parent orientation. In contrast, void growth correlates
clearly with crystallography at high triaxialities. Like the single crystals, the
parent orientations in the polycrystal that are not near the [111] orientation
show reduced growth rates at higher triaxialities. The only exceptions to this
are when the parent orientations have much lower growth rates than those
of its immediate surrounding orientations.

3.4. Data spread and statistical significance

Figure 10 shows the mean void volume and one standard deviation away
in the [111]- [101]-, and [001]-oriented crystals in Figure 8. The mean of each
void tends to fall within the standard deviation of all three void types. The
range of volume change is wide in polycrystals, bringing into question whether
the number of realizations is sufficiently large to state that this variation is
statistically significant. Yet, to date, to our knowledge, no report in the
literature has completed such a study for polycrystals. Therefore, there is a
need to take a closer look at the statistical significance of the differences in
the obtained distributions and on the effect of grain neighborhood.

To determine the statistical significance of porosity distributions, the two-
tailed p-value is determined for void volume at the same axial plastic strain
between voids in [111]- [101]-, and [001]-oriented crystals, using the mean
and standard deviation from Figure 10. When the p-value is close to unity,
the two distributions are nearly identical. Any differences between the mean
likely originate from rare cases or outliers. The low triaxiality simulation for
the random polycrystal shown in the top left-hand corner in Figure 11 is one
example. This is not the case at high triaxialities, wherein the void in the
hardest crystal continued to experience the most growth.

When the value is close to zero (below the standard 5% threshold), the
populations are statistically distinct from one another and any differences
cannot be attributed to randomness. For instance, the p-value is less than
0.05 between the voids in [111]-oriented grains and both other grain orien-
tations for the high triaxiality case in the regular 108-grain polycrystal. In
other words, the voids in the [111]-oriented grains have void growth patterns
that are distinct from the voids in both [101]- and [001]-oriented grains. The
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Figure 10: These figures show the mean (bold line) and one standard deviation bounds of
void volume as a function of axial strain for the 72-grain polycrystal at a stress triaxiality
of (a) Tx=0.6 and (b) Tx=3, and in the regular 108-grain polycrystal at a triaxiality of at
a stress triaxiality of (c) Tx=0.6 and (d) Tx=3. What is most important to note is that
the mean of the three directions falls within the standard deviation lines in every case.
Note that the [111] case does have the greatest standard deviation in figures (b) and (c).
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orientations of the parent grains are likely the primary cause of the faster
void growth.

The other cases have intermediate p-values, well above the standard 5%
threshold. At the lower triaxiality, and between the voids in [101]- and [001]-
oriented grains at all triaxialities, the differences between the other two void
populations are not statistically distinct. We suspect that in these cases,
the faster void growth in the [101]-oriented grains is due more in part to the
grain neighborhood than to the parent grain orientation.

3.5. Neighborhood effects

The spread in data in Figure 8 poses two important questions: to what
extent is the spread due to neighborhood, and how is void growth affected
by the Taylor Factor of the grains around the main grain that surrounds
each void? To this end, a set of nine microstructures were designed to un-
derstand how longer-range average geometric hardness of the neighborhood
affects the growth of the voids. These microstructures were created from ex-
isting microstructures to cover the possible extremes of the material. Each of
these microstructures changed one of two aspects: either the hardness of the
grain orientation containing a void or the average hardness of all the nearest
neighboring grains of a central grain. These populations will be called inte-
rior grains and neighborhood grains, respectively, and in each case, only the
growth of the void in the interior grain is tracked. Three interior grain ori-
entations were chosen: soft, medium, and hard, shown as brown, green, and
purple dots in Figure 12(b). For the neighborhood microstructures, three
distinct microstructures among the 30 108-grain microstructures were ran-
domly selected. The interior grain of interest was not touching the edges of
the unit cell. The 12 neighbors were reassigned orientations lying in a similar
location in orientation space, equally classified as either hard, med or soft,
different from central grain. Figure 12 shows an example where the interior
grain has a medium-hardness orientation, and the neighborhoods are either
soft, medium, or hard, represented by the brown, orange, and purple grains,
respectively. The other grains outside of this neighborhood retained their
originally assigned orientations.

Figure 13 shows the strain evolution of the void growth in the central
grain of each microstructure. Regardless of neighborhood, the hard interior
grains have the fastest growth rate. For the same interior grain orientation,
we observe that grains with hard neighborhoods grow faster than those with
softer neighborhoods. At low triaxiality, the hardest level of the interior
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a medium interior grain (green), with a (a) soft, (c) medium, and (d) hard neighborhood.
Note that there are 12 nearest neighbors in the 3D microstructure, and the medium orien-
tation of the neighbors is not identical to the medium interior. Corresponding orientations
can be seen in (b), where the additional outlined dots nearby the [100] and [111] orienta-
tion represent the orientations of the neighborhood when the interior grain has the closest
orientation. In this case, the orange is closest to the green interior dot.
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grain has less influence on void growth rate. We observe that both neighbor-
hood and interior grain hardness level affect void growth rates, such that a
medium hard interior grain with a medium neighborhood could grow slower
than a soft interior grain with a hard neighborhood. This result identifies
neighborhood as one source for the weakening influence of orientation on void
growth within a polycrystal. At higher triaxiality, the effect of orientations
can be more easily identified, wherein hard interior grains or hard neighbor-
hoods would tend to increase growth rates. The apparent lack of growth,
seen particularly in the soft grain with a soft neighborhood in Figure 13(b),
is likely due to growth below the resolution of the voxelized Fourier grid.
Faster growing grains are contributing to the macroscopic void growth, and
thus the algorithm does not need to add additional void voxels to the Fourier
grid. In Figure 13(c,d), we show the associated axial stresses versus strain
curves. In all cases, the higher stresses generated in harder grains results in
faster intragranular void growth rates. Neighborhood effects on stress states
are not as influential as the orientation of the interior grain.

Grain neighborhoods likely made a difference in this analysis because
changing 12 of the 108 grains can change the macroscopic stress. However, no
major change in macroscopic stress occurred when the same orientations are
simply reoriented, as in the original cases in section 3.3. However, we reveal
a notable dependence of void growth on parent orientation. This implies
that it is important to account for crystal orientation, particularly when
the material is strongly textured or if stress concentrations tend to develop
preferentially in particular orientations. Grain stress and its neighborhood
Taylor factor are not strongly correlated at any triaxiality, but grain stress
and its own Taylor factor is. Figure 14 shows the initial void growth speed
of the void vs. the initial average grain stress for the original 30 108-grain
simulations conducted, where each dot represents one grain in one of the
30 simulations and is colored by the Taylor factor of the grain. Again, we
observe a correlation between the grain stress and its Taylor Factor at higher
triaxiality, but not at low triaxiality.

The apparent insensitivity of growth rate to parent orientation seen in
the lower triaxiality case was not seen in the single crystals and not seen in
the polycrystal at high triaxiality. This difference points to a strong neigh-
borhood effect. Considering that the orientation plays a smaller role when
approaching hydrostatic loading, this trend is unexpected. One possibility is
that the load in the grains is sufficiently directional, but the neighborhood
behavior approaches an isotropic medium, reducing the neighborhood effect,
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triaxialities of (a)Tx=0.6 and (b) 3. The figures indicate that grain stress correlates with
Taylor Factor, but only at the higher triaxiality is there any appreciable increase in void
growth velocity with grain stress.

and in consequence allowing the anisotropic response of each grain. On the
other hand, when the grain is loaded in nearly uniaxial tension, the anisotropy
of the neighborhood is amplified, which in turn may shield individual grains.

The relevance and novelty of this work, in terms of unraveling the de-
pendence of intragranular void growth with microstructural (e.g. grain ori-
entation and grain neighborhood effects) and mechanical features (e.g. tri-
axiality), should be considered in connection with recent state-of-art in-situ
characterization experiments, as well as a potential guidance for the design
of forthcoming experiments of this kind. In-situ characterization of damage
in engineering alloys, like the void-tracking experiments based on 3-D X-
ray micro-tomography, mentioned in the introduction as motivation for the
present study [1, 2], revealed a significant dispersion of void growth, qualita-
tively consistent with our results. However, a more quantitative comparison
and cross-validation between experiments and predictions would require not
one but two simultaneous in-situ characterization methods to identify void’s
and grain’s spatial locations, as well as grain orientations. Recent multi-
modal experiments with this level of fidelity have been reported in the litera-
ture, but not necessarily for the in-situ characterization of engineering alloys
fabricated using standard processing techniques. For example, Lieberman
et al. [47] pre-characterized ex-situ the local orientation field using 3-D High-
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Energy Diffraction Microscopy (HEDM) in a high-purity copper sample. The
sample was then incipiently spalled and post-characterized in terms of its void
distribution, providing confirmation of damage occurred primarily by voids
forming at grain boundaries. With this data, the post-mortem correlation
between voids, grain orientations and grain boundary types was subsequently
analyzed using FFT-based methods. Pokharel et al. [48] used tomography
and orientation mapping to study a 2-phase metal-metal composite, in which
damage mainly occurs by debonding between phases. Naragani et al. [49]
used similar characterization techniques to study damage/orientation corre-
lations, including at the void coalescence stage, in an additively manufactured
Ni superalloy, in which relatively large voids (with respect to the grain size)
were printed, i.e. pre-seeded in the microstructure. These recent multi-modal
experiments demonstrate that these state-of-the-art techniques are mature
enough to deliver data to contrast with our model results. The predictions
reported in this paper should be provide guidance to experimentalists on
where to look next.

Specifically, we envision that, depending on the loading conditions, the
texture could affect the macroscopic behavior of the material, but at a mi-
croscopic level, the voids behave as if they were in a more isotropic medium.
That is to say, in low-triaxialtiy simulations, we found no strong isotropy
in polycrystals, where single crystal behavior differs more significantly. At
higher triaxialities (and more dynamic loads), the opposite would be thus ex-
pected: macroscopically, the material would behave more isotropically, but
the voids would grow heterogeneously on average, i.e. fastest/slowest in the
hardest-oriented grains for displacement-rate/load controlled experiments,
which could cause different coalescence behavior and thus failure. As there
are no such experiments yet available that directly compared the void growth
rate in polycrystals, our results suggest the design of new experiments in en-
gineering materials to look into the average growth rate of voids of various
orientations, for cross-validation with the model predictions.

4. Conclusions

In this work, using a dilatational visco-plasticity fast Fourier transform-
based model, we investigated crystallographic orientation effects on the growth
of intragranular voids. Without the effects of void nucleation and coalescence,
three sets of simulations with different crystalline microstructures were con-
ducted, and the orientations of the grains in these microstructures were varied
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over the full orientation space. The first type of microstructures were single
crystals, the second type, Voronoi polycrystals where every grain had one
void in its interior, and the third type, another voided polycrystal where the
void centers were the centers of a FCC super-lattice with 12 nearest neigh-
bors, and the grains filled the Wigner-Seitz cells surrounding them. In each
case, the initial void volume fraction per grain is 1%. A set of 72 orienta-
tions were tested for the single crystal, and those same 72 orientations were
applied to 30 random realizations of both of types of polycrystals, so that
the neighborhood (and, in the case of the random polycrystal, the grain mor-
phology) was different in each realization. Each of these microstructures were
simulated at four axisymmetric triaxialities, to determine if triaxiality had
an effect on the void growth. For some select cases, DVP-FFT and CP-FE
models were conducted on nearly the same microstructures. The comparison
demonstrated that DVP-FFT yields comparable results with CP-FE.

The trends are clear in single crystals; the voids in the [111]-oriented
grains, that is in the hardest grain, grow the fastest in strain-rate-controlled
simulations. At lower triaxialities, the void growth rate is slower overall, and
the voids in the [101]-oriented grains grow the slowest. At higher triaxialities,
the void growth is much more rapid, and the slowest growing void is the
void in the [101]-oriented grain. In simulations where the stress was fully
prescribed, the slowest growing voids were the [101]-oriented grains, and the
softest grain had the fastest voids growth. The void growth rate with respect
to strain is identical to the constant-strain-rate simulations.

In polycrystals, not only the grain orientation, but also the nearest grain
neighborhood plays a large role in dictating the void growth, especially at
lower triaxialities. At higher triaxialities, most notably in the regular poly-
crystal, the single crystal trend become more apparent and the voids in the
[111]-oriented grains grow the fastest on average.

In the case of the polycrystals, it was unexpected that the fastest growing
void is the intragranular void in the hardest grain. This outcome contradicted
previous observations for a different configuration (i.e. intergranular poros-
ity) that the voids would grow the fastest in the softest grain, given that
soft single-crystal ligaments between intergranular voids in polycrystals can
deform at higher strain rate under the same stress [34]. The expectation was
that by surrounding the void with a soft material in a heterogeneous poly-
crystal, the soft material would deform plastically the fastest. This would
result in faster void growth, since dilatational plasticity models are predi-
cated on the idea that the deformation of the surrounding material deter-
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mines void growth. The findings of this work suggest that crystal orientation
has a significant influence on the growth of voids it contains. They imply
that crystal orientation needs to be considered in the response of polycrys-
talline materials, particularly those that have texture or in which local stress
concentrations preferentially develop in certain orientations.

This study did not identify any clear trends in the role of the neighbor-
hood in the growth of voids, neither due to void neighborhood hardness nor
hardness disparity, but did suggest that neighborhood can affect the void
growth if it increases or decreases the stress of the grain, particularly at high
triaxialities. In addition, it would appear that the neighborhood plays a
strong role in reducing the expected anisotropic behavior at low triaxialities.
It appears, also, that at higher triaxialities, the neighborhood does not play
as strong a role, because grain stress, Taylor factor, and void growth rate
correlate more strongly. Determining to what extent the neighborhood plays
a role would be an interesting and important study in the future. Given that,
for example, in high-purity metals voids typically form at grain boundaries
and junctions, it is also imperative to study the effect of growth at grain
boundaries and triple junctions, as the neighborhood effects are expected to
play a more complex role.

The polycrystalline results indicate a discrepancy in isotropic behavior
between macroscopic and microscopic properties, pointing to trends that
might be observable in future experiments. In low-triaxiality simulations,
the texture is expected to dominate the macroscopic properties, but not
the void growth rate in randomly-textured samples. At higher triaxialities,
while the sample might behave more isotropically, the voids may grow at
different rates in relation to containing grain’s crystal orientation. New in-
situ experiments on engineering materials may need to track void growth of
intragranular voids and compare the void growth rate at different triaxialities
and with different loading conditions.
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