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aIMS lab., Univ. Bordeaux, Bordeaux INP, CNRS (UMR 5218), 351 Cours de la libération, 33405, Talence, France
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Abstract

The goal pursued by this article, is to evaluate the potential of sliding-mode control and estimation techniques, to address fault
tolerance against a large class of actuator faults, including loss of controllability of the faulty actuator, for autonomous rendezvous
between a chaser spacecraft and a passive spacecraft on a circular orbit. The proposed solution is based on the dual quaternion
formalism, to describe in a single equation, rotational and translational spacecraft dynamics, solar array flexible modes, propellant
sloshing, the most dimensioning space disturbances, and their coupling. Such a modelling formalism enables to propose a six
degree-of-freedom fault tolerant control architecture, which relies on the generalized super-twisting control algorithm nested with
a nonlinear fault estimator. An anti-windup strategy based on polytope algebra is applied to the control algorithm, to prevent
instability due to actuator saturation when faults occur. Asymptotic stability of the proposed fault-tolerant control scheme is
formally proved with respect to a wide variety of faults, providing that the first derivatives of the fault estimation error versus
time and the sliding surface, are bounded. Intensive simulations from a functional engineering simulator that accurately simulates
the rendezvous mission, are presented in the paper, as well as capture-oriented criteria. The presented results demonstrate that
the proposed fault-tolerant solution is able to cover any kind of thruster faults, including total loss of controllability of the faulty
thruster, as well as solar array flexible modes, propellant sloshing, gravity gradient, the second zonal harmonic, atmospheric drag
and magnetic disturbances.

Keywords: Fault-tolerant control, sliding mode control, generalized super twisting algorithm, dual quaternion, in-orbit
autonomous rendezvous.

1. Introduction and Motivations

Development of autonomous strategies for the final approach-
ing phase of an on-orbit rendezvous between two spacecraft,
is a key technology. In this phase, the chaser approaches the
target along a straight line as much as possible, in order to sat-
isfy the strict requirements of docking for the relative position,
velocity, attitude, and angular rate. A trajectory-attitude com-
bined control strategy of six-degrees of freedom (6-DOF) ap-
proaches, is usually used for that purpose [73, 69, 3, 90, 42, 24,
96, 54, 9, 26, 8, 7, 10, 76]. Different model formalisms can be
used to design a 6-DOF rendezvous controller. One can cite
the Cartesian coordinates and Euler angles [87, 60], the quater-
nions [51, 59], the modified Rodrigues parameters [77], the
special Euclidean group [53] and the dual-quaternions (DQs)
[50, 85, 16]. A great advantage of DQ’s formalism, is that it
describes the rotational and translational dynamics in a single
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equation, instead of defining separate equations. DQs offer a
singularity-free, compact and unambiguous form for represent-
ing transforms. Thus, DQs cut down the volume of algebra
[50]. This motivated its application in different fields like im-
age processing [82], robotics [12], navigation [88], computer
graphics [49] and control [20, 83, 85], to mention some.

In this paper, the DQ’s formalism is used to develop a DQ–
based Fault-Tolerant Control (FTC) scheme, able to cover a
large class of faults occurring in the thruster-based propulsion
unit of a spacecraft. The solution belongs to the class of Sliding-
Mode Control (SMC) approaches. More precisely, the FTC
solution relies on the Generalized Super Twisting Algorithm
(GSTA) [61, 4], which is nested by a nonlinear fault estimator
and an original anti-windup strategy. The reference scenario
consists of a chaser’s spacecraft performing a rendezvous with
a passive spacecraft, on a circular orbit around Earth.

There exist plenty of FTC solutions developed by the academic
community that can be applied to in-orbit autonomous rendez-
vous missions, see the recent books [78, 14, 64, 43]. Active
FTC solutions are characterized by the use of fault information
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provided by a fault diagnosis unit, and control redesign based
on this information. Fault information can be obtained from the
procedures of fault detection and fault isolation (FDI). Many
FDI methods are based on residual generator designs, see the
books [63, 13, 81]. The principle consists of a set of residuals
whose structure, time and frequency behaviour are analysed to
determine fault location, magnitude and time occurrence. Gen-
erally speaking, FDI schemes are based on many dynamic fil-
ters and thus lead to some complex FDI schemes, as opposed to
fault estimation (FE) that directly reconstructs the fault shape
[64]. Furthermore, it is straightforward to note that the FE sig-
nals are conveniently available for use in a scheme, to robustly
compensate the fault effects within control loops. This tech-
nique is referred as the FE–based FTC technique and it can be
noted that attention has recently been paid on adaptive [70] and
sliding mode [91] approaches. The reason seems quite evident:
These paradigms offer solutions to both robust fault estimation
and robust control. The FTC technique that is proposed in this
paper belongs to the sliding-mode FE–based FTC category.

It is worth noting that there is no proof of any separation prin-
ciple in many proposed FE–based FTC techniques. Thus, the
coupling between the fault reconstruction and the control units,
is rarely investigated. Furthermore, putting the FE unit and the
controller together, does not guarantee that the overall FTC so-
lution is globally optimal, even if they are tuned optimally sep-
arately. A solution to these problems is studied in [52, 64] by
using adaptive gain for the observer and the adaptive backstep-
ping control technique. This problem is too addressed in [18, 5]
with FDI procedures, using the switching control theory. In
this paper, asymptotic stability is formally proved within the
sliding-mode framework, providing that the first derivatives of
the FE error versus time and the sliding surface, are bounded.

Coming back to sliding mode FE–based FTC solutions and fo-
cussing especially on space applications, one can mention the
works reported in [32, 48, 95] for spacecraft attitude track-
ing subject to actuator faults. Fault tolerance against actuator
faults is ensured using adaptive nonsingular Terminal Sliding
Mode (TSM) control technique. A finite-time extended state
observer that estimates the faults, is integrated into a fast non-
singular TSM controller in [56], and in [55] using the super-
twisting algorithm, to provide a continuous attitude FTC algo-
rithm. Fixed-time sliding mode control is proposed in [45] for
attitude control under actuator saturation and faults. The work
reported in [46] develops a FTC scheme for rendezvous and
docking with a freely tumbling target in the presence of thruster
loss-of-efficiency fault types. In [25], the proposed solution is
based on the backstepping control and integral SMC technique.
The control law is also nested by an adaptive nonlinear fault
estimation observer, which is in charge to estimate the value of
unknown time-varying faults. The principle of integral SMC is
too proposed in [71]. It is shown that the closed-loop system is
capable of tolerating actuator faults, by means of one-parameter
dependent adaptive mechanism. A fast TSM control approach
is proposed in [72]. The solution not only has the capability to
protect the actuator from saturation but also guarantees that at-

titude and angular velocity converge to a neighbourhood of the
origin in finite time. The authors in [27] develop a nonsingular
fixed-time terminal SMC scheme. In this work, the FTC prob-
lem is formulated as a prescribed performance control problem.
It is proved that the attitude of the spacecraft is kept within the
predefined constraint boundaries, even when the actuator satu-
ration is taken into account. An anti-unwinding finite time fault
tolerant sliding mode control solution is also considered in [68].
The solution reported in [23] considers the attitude’s FTC prob-
lem under uncertainties and control saturation, by means of a
fast nonsingular terminal SMC technique and fuzzy logic rules.
As opposed to [57, 58], the proposed solution can handle actu-
ator failures and saturations in a less conservative manner, fol-
lowing the authors’ opinion. In [66] fuzzy logic rules are used,
to estimate (approximate to be more precise) the faults. The
estimates are re-injected into a fractional-order SMC law that
uses a double power exponential reaching law and the backstep-
ping control approach. In a very similar fashion, neural network
and adaptive first-order SMC are used in [89]. The proposed
solution also protects the control law from actuator position
saturation with globally asymptotically attitude tracking. The
work reported in [39] ensures fault tolerance using a nonlinear
integral SMC approach. The solution consists of an adaptive
fault observer and a control gain adaption method, based on
dual-layer gain adaptation scheme. By combining the finite-
time passivity technique into adaptive sliding mode control ap-
proach, a smooth fault-tolerant control algorithm is proposed
in [41] for attitude tracking. Finally, in [29], the authors pro-
pose an integral terminal sliding-mode controller such that the
sliding motion realizes the action of a quaternion-based nonlin-
ear proportional-derivative controller. Adaptive techniques are
used and the resultant adaptive SMC law stabilizes the system
states to a small neighbourhood around the sliding surface, in
finite time.

One can point out the following limitations from the above cur-
rent practice of SMC for FTC. Many FTC solutions are con-
cerned by the attitude control problem. So a 6-DOF structure
has been rarely investigated. The case of a complete loss of
actuators is not covered. Most of the studied fault profiles are
restricted to smooth fault profiles, which comes from the ne-
cessity of providing smooth estimates of the fault. It is also
possible to consider a discontinuous fault profile. But in this
case, the use of the equivalent output injection to reconstruct
the fault, will require the application of a filter, providing only
an asymptotic estimation of the fault. The fault signal, and its
derivatives up to a certain order for certain techniques, is al-
ways assumed to be bounded. Finally, the proposed solutions
have not been evaluated under a high realistic environment. Es-
pecially, none have been evaluated, considering simultaneously
the effect of the solar array flexible modes, propellant slosh-
ing, a realistic navigation unit and the perturbing accelerations
coming from the space environment. This is of prime interest
when considering a 6-DOF FTC solution since these phenom-
ena cause a coupling between translation and rotation motions.
That is probably why SMC techniques have not retained atten-
tion for FTC by the space agencies and industries for real space
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missions1. Indeed, the most popular solution is the constrained
control allocation (CA) technique. This approach is studied in
[22] for the Mars Sample Return mission2 and in [7, 10, 35] for
the e.Deorbit mission3, with validation on industrial test facil-
ities. The principle consists in scheduling the control alloca-
tion algorithm that manages the thruster command signals, so
that the total forces and torques are re-allocated on the healthy
thrusters. This means that the fault tolerance mechanism op-
erates at the thruster management unit, and not really at the
control level. Such a solution requires obviously a (reliable)
fault diagnosis unit, so that the control allocation algorithm is
aware about the faulty thrusters. The interested reader can re-
fer to [33, 22, 37, 65, 34, 35] for the development of model-
based diagnosis solutions applied to real space missions4. This
FTC strategy is used in [15] with a time-varying terminal SMC
approach and in [28] in cooperation with an adaptive integral
SMC technique. However, it is worth noting that the fault di-
agnosis algorithm is neither developed, nor described in these
papers. The CA technique is used too for actuator fault toler-
ance in [40]. The proposed solution relies on an iterative learn-
ing observer in charge of estimating the torque deviation, and
an integral-type sliding mode control law, to produce the three-
axis virtual control signals that are allocated by the CA algo-
rithm.

This paper aims at covering most of the aforementioned lim-
itations. Key ingredients are:

i) A 6-DOF FTC solution is proposed based on the DQ for-
malism, resulting in a singularity-free, compact and un-
ambiguous FTC solution.

ii) The proposed solution is valid for non-bounded faults
(including abrupt and totally uncontrollable actuators),
which is rarely the case for most existing sliding-mode
FTC solutions. However, it should be pointed out that
the first derivatives versus time and the sliding surface of
the fault estimation error, are required to be bounded, in
the l∞-norm sense.

iii) A formal proof of stability of the overall fault-tolerant
scheme is provided. The proof also takes into account the
coupling between the fault estimator and the controller.

iv) An anti-windup strategy based on polytope algebra is con-
sidered, to avoid instability of the FTC loop. This point
becomes especially crucial when dealing with FTC prob-
lems, since abrupt faults cause actuator saturation.

1Following the expertise of D. Henry which is an expert for CNES (French
Space agency) and has many collaborations with ESA and the most famous
space industries in Europe.

2see https://www.esa.int/Science Exploration/Human and Robotic
Exploration/Exploration/Mars sample return

3see https://www.esa.int/Safety Security/Clean Space/ESA s e.
Deorbit debris removal mission reborn as servicing vehicle

4Real missions are the Microscope satellite, the Myriade platform, the Mars
Sample Return and e.Deorbit missions

v) The proposed solution is evaluated under a high-fidelity
functional engineering simulator (FES) that considers the
simultaneous effects of the solar array flexible modes,
propellant sloshing, a realistic navigation unit, Earth grav-
ity, J2, atmospheric drag and magnetic disturbances.

The solution relies, i) on an inner control loop that is based on
a nonlinear estimator in charge of estimating faults, and, ii) an
outer control loop based on the GSTA. This solution is built
upon our previous works presented in [93, 94, 80]. These pa-
pers present control solutions based on the Clohessy-Wiltshire-
Hill relative position model and the Euler angles with first-order
SMC [93, 94] and the super-twisting algorithm [80]. However,
neither fault tolerance, nor control saturation problems and the
DQ formalism, have been considered in our previous works.

The FTC solution proposed in this article uses a high-order
sliding-mode algorithm as a base, leading to a system of differ-
ential equations with discontinuous right-hand side. The cor-
responding solutions will thus be understood in the Filippov
sense [21]. Filippov solutions, which coincide with the classical
solutions when the right-hand side of the differential equation
is continuous, are absolutely continuous by definition (see, for
example, [74] for a comprehensive tutorial on the different al-
ternative solution notions of discontinuous dynamical systems).

The paper is organized as follows: Section 2 gives material
backgrounds. Section 3 explains the considered rendezvous
mission. The main disturbances and modelling considerations
are presented in Section 4, and finally states the problem. Sec-
tion 5 is concerned by the proposed FTC solution. Finally, sec-
tion 6 is dedicated to simulation results.

2. Material background

2.1. Dual-vectors, dual-quaternions and dynamics of a rigid
body

A dual-number is defined as ā = ar + εad where ar and ad

are called the real part and the dual part, respectively. ε is the
so-called dual unit which is defined as ε2 = 0 but ε , 0. A par-
ticular class of a dual-number is the dual-vector (DV), which is
defined as v̄ = vr + εvd with vr and vd, the real and the dual
parts of v̄ respectively, that are both real vectors. The set of
DVs are denoted in this paper V, which is defined according to
V = {v̄ : v̄ = vr + εvd, vr, vd ∈ R}. The notation Vn is used to
refer to the set of DVs of dimension n.
Quaternions are defined as the extension of complex numbers
to hypercomplex numbers [6, 30]. The set of quaternions is
defined by H = {q : q = (s,v)} where s is a scalar and v
is a vector. An alternative definition of the quaternion is q =

q0 + q1i + q2 j + q3k, qi ∈ R, i = 0, 3 so that q0 is the scalar part
and [q1, q2, q3]T is the vector part, and i, j, k satisfy the follow-
ing properties: i2 = j2 = k2 = −1, i = jk = −k j, j = ki = −ik.
Based on the concepts of quaternions and DVs, a Dual Quater-
nion (DQ) q̄ is defined by q̄ = (s̄, v̄) where s̄ is a dual scalar
(i.e. a dual-vector of dimension 1) and v̄, a dual-vector. An al-
ternative of the DQ’s definition is q̄ = qr +εqd, so that it has, as
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elements, two quaternions qr ∈ H and qd ∈ H that represent its
real and dual parts, respectively. In this paper, the set of DQs is
defined by Hd = {q̄ : q̄ = qr + εqd, ε

2 = 0, ε , 0, qr,qd ∈ H}.

The formulation of rigid body dynamics in terms of DQs, has
been investigated by different authors that propose diverse for-
malisms [17, 31, 86, 2, 84, 19, 20]. In this paper, we use the
formalism proposed by [84]. It consists in describing the ro-
tational and translational dynamics by means of the so-called
”dual-inertia operator” M̄ , defined as:

M̄ = m
d
dε

I3 + εJ =

m
d
dε + εJxx εJxy εJxz

εJxy m d
dε + εJyy εJyz

εJxz εJyz m d
dε + εJzz


(1)

m is the mass of the body and J is the inertia of the body about
its center-of-mass, written in the body frame. The operator d

dε
on the dual object ā is defined by d

dε ā = d
dε (ar + εad) = ad and(

d
dε

)2
= 0. I3 is the identity in dimension 3.

2.2. Used operations
Given two DVs v̄1 = v1r + εv1d and v̄2 = v2r + εv2d in V, the
sum, dot and cross products are defined in V, respectively by:

v̄1 + v̄2 = v1r + v2r + ε(v1d + v2d) (2)
v̄1.v̄2 = v1r.v2r + ε(v1r.v2d + v1d.v2r) (3)
v̄1 × v̄2 = v1r × v2r + ε(v1r × v2d + v1d × v2r) (4)

The conjugate of a DQ q̄ = (s̄, v̄) is given by q̄∗ = (s̄,−v̄).
Given two DQs q̄1 = (s̄1, v̄1) and q̄2 = (s̄2, v̄2) in Hd, we define
the following operations:

q̄1 + q̄2 = (s̄1 + s̄2, v̄1 + v̄2) (5)
q̄1 ◦ q̄2 = (s̄1 s̄2 − v̄1.v̄2, s̄1v̄2 + s̄2v̄1 + v̄1 × v̄2) (6)

The operation q̄ ◦ v̄ between a DQ and a DV of dimension 3 is
defined as the operation (6), where the second DQ has its scalar
part fixed to 0. Note that these operations are similar to that of
the standard quaternion.
Given a DV v̄ ∈ V and a dual inertia operator M̄ , the product
M̄ v̄ is defined by [2]

M̄ v̄ = mvd + εJvr (7)

Finally, the inverse of M̄ is given by [2]

M̄−1 = J−1 d
dε

+ ε
1
m

I3 (8)

3. The reference mission and the functional engineering sim-
ulator environment

The considered rendezvous scenario is the same as the one con-
sidered in [93, 94, 80]. The major differences consist of the
thruster configuration matrix that has been specially designed
for fault tolerance purposes and the navigation unit that is con-
sidered with realistic characteristics. Towards this end, and in

order to avoid duplicating materials presented in [93, 94, 80],
the following section focuses on the main characteristics of the
mission.

We consider a chaser spacecraft on which it is attached a solar
array with two flexible modes, and two propellant tanks par-
tially filled, so that the propellant sloshes during chaser’s ma-
noeuvrers. The chaser’s characteristics are listed in Table 2.
With regards to the target, it is supposed to be a passive ob-
ject, i.e. no actuator, no sensor and no telemetry unit. For the
capture mechanism, it is supposed to be a basket. The orbit’s
rendezvous is characterised by the orbital parameters listed in
Table 1. The spacecraft trajectories and attitudes are illustrated
on Fig. 2. The rendezvous scenario consists of:

• chaser’s rotation around its center-of-mass (CoM) to align
the capture mechanism with the target.

• chaser’s translation into the direction of the target to cap-
ture it. During this phase, the attitude is controlled to
keep the capture mechanism aligned with the target.

Orbital parameters: Target Chaser

Semimajor axis (a) 7068km 7068km
Eccentricity (e) 0 0
Inclination (i) 0rad 0rad

Longitude of the
ascending node (Ω) 0rad 0rad

Argument of periapsis (ω) 0rad 0rad
True anomaly (ν: ν̇ = n) ν(0) = 1, 5.10−5rad ν(0) = 0rad

Table 1: Orbit’s characteristics

At the actuator level, a set of 24 thrusters of 2 N equips the
chaser. We shall point out that the configuration of the thrusters
has been designed specially to study fault-tolerant strategies.
Particularly, thrusters are organised in eight groups of three
thrusters so that the configuration provides some degrees of
freedom in terms of attainable forces and torques. Fig. 1 gives
the position and the direction of the thrusters on the chaser
spacecraft. Such a configuration is termed ”a functional redun-
dant configuration” in space industries. From a practical view-
point, it means that the configuration of the thrusters enables
to attain the torques and forces computed by the 6-DOF con-
troller with some uncontrollable actuators, whenever the thrust
they produce when faults occur. This is a prior condition for the
existence of an FTC solution at the software level. In [92], it is
shown that such a property can be addressed in terms of control-
lability analysis, attainable forces/moments domains or reach-
able sets. Note that, the configuration of the thrusters is inspired
by the one used in [7, 10, 35]. Additionally to functional redun-
dancy, this configuration considers plume impingement, con-
tamination of avionics equipment, thruster performance, min-
imum impulse bit effects and actuation period. At the sensor
level, more precisely in terms of available outputs from the nav-
igation unit, it is assumed that the relative position, velocity, and
acceleration between the two spacecraft are available, as well as
the attitude, angular rate, and angular acceleration of the chaser.
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Figure 1: Thruster configuration, geometry of the chaser and CoM

The complete mission is modelled into a so-called functional
engineering simulator (FES) developed in Matlab/Simulink. FES
is a term used in the Space community to describe a software
simulator describing at a functional level the components of a
system (including its operating environment). FES is used to
support the specification, design, verification and operations of
space systems, and can be used across the development life-
cycle, including activities such as system design validation, soft-
ware verification & validation, units and sub-system test ac-
tivities. The SPACELAB5 toolbox provides the necessary set
of FES’s functions. It includes the ephemerides of Earth and
Sun, highly representative models of sensors and actuators, and
Dynamics Kinematics and Environment (DKE) models. The
environment modules (within DKE) contain the environmen-
tal disturbances that may affect the rotational and translational
dynamics of the spacecraft. Both spacecraft have each one
an associated environment module, since the dynamics depend
on specific spacecraft properties. The chaser dynamics con-
sider the flexible modes of the solar array, the modes of the
propellant sloshing and the thruster–based propulsion and sen-
sor/navigation units. Uncertainties are included in the FES as
integrated functions of the SPACELAB toolbox, such as varia-
tion of the mass, center-of-mass and inertia, uncertainties of the
thruster’s minimum impulse bit, thruster’s misalignment and
delay, thrust noise, uncertainties in the frequency modes and
damping factors of the solar arrays and propellant sloshing, un-
certainties in the navigation unit (caused by sensor noise and
misalignment), see Table 2 for the list of considered uncertain-
ties. In terms of environmental disturbances, the two space-
craft are assumed to be affected by the Earth gravity, the second
zonal harmonic J2, the atmospheric drag, and the magnetic dis-
turbances.

4. Chaser and target kinematics and dynamic models

The following sections aim at establishing the models that are
necessary for the derivation of the FTC solution. Such models

5The SPACELAB library is a set of elementary Matlab/Simulink blocks and
functions, developed by ESA (ESTEC center, Netherlands).

are a key ingredient to establish a formal proof of closed-loop
stability, especially under faulty conditions. Towards this end,
the focus is made on establishing the DQ-based model and the
FTC problem formulation. Thus, we consider neither the actu-
ator nor the sensor and navigation models that are implemented
in the FES. We argue that these models allow simulating real-
istic behaviours of these subsystems, e.g. thruster firing logic
(firing frequency, burn resolution, minimum impulse bit), cam-
era resolution, LIDAR noise and misalignment, etc .

4.1. Coordinate frames and notations
To establish the model of relative motion between the chaser
and the target, the following coordinate frames are defined, see
Fig. 2:

i) Earth-centered inertial frame Fi: this frame is a non-
accelerating reference frame, with its origin at the center
of the Earth, its axis vector ~xi is pointing to the vernal
equinox, the axis vector ~zi is pointing to the north and
parallel to the rotation axis of the Earth and the axis vec-
tor ~yi completes the frame.

ii) LVLH frame FLVLH: the origin of the LVLH frame is
at the target CoM, its axis vector ~zLVLH (also called ”R-
bar” in the rendezvous literature) is in the orbital plane,
from the target’s CoM towards the Earth center. Its di-
rection vector ~xLVLH (called ”V-bar” in the rendezvous
literature) is in the direction of the velocity vector of the
target. Its axis vector ~yLVLH (called ”H-bar” in the ren-
dezvous literature) is normal to the orbital plane and in
the opposite direction and parallel to the orbital angular
momentum vector. The LVLH frame is mainly used to
plot the figures and analyse the results, since it offers a
good understanding of the pose of the two spacecraft on
the orbit.

iii) target frame Ft: the center of this frame coincides with
the target’s CoM, and its axes are oriented in such a way
that an attitude angle equal to [0, 0, 0]ᵀ means that Ft co-
incides with FLVLH .

iv) chaser frame Fc: the center of this frame coincides with
the chaser’s CoM and its axes are oriented in such a way
that an attitude angle equal to [0, 0, 0]ᵀ means that the
chaser is aligned with the target along its velocity axis,
so that the capture system is correctly aligned.

The notations r(i), r(t), r(c) refer to a vector r given in the frame
Fi,Ft,Fc, respectively. r(c)

e should be interpreted as a relative
vector error between the chaser and the target, given in Fc. Fi-
nally, ω(c)

c /ω(t)
t denotes the angular velocity of Fc/Ft relative to

Fi, expressed in Fc/Ft.

4.2. Dual-quaternion kinematics and dynamic models
4.2.1. The chaser case
Let q̄c ∈ Hd be the DQ describing the rotation qc ∈ H of the
chaser followed by a translation rc ∈ R3. The kinematics equa-
tion of the chaser is given by [2, 84]

˙̄qc =
1
2

q̄c ◦ ω̄
(c)
c (9)
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Figure 2: The orbit and rendezvous trajectory in the inertial frame (top) and in the LVLH frame, last 40m (bottom). The trajectories are built using
the data presented in section 6.

where ω̄(c)
c ∈ V3 is a DV, called the dual velocity of the chaser,

given in the chaser frame Fc, and defined according to:

ω̄(c)
c = ω(c)

c + ε
(
ṙ(c)

c + ω(c)
c × r

(c)
c

)
(10)

Consider now the dual inertia operator defined by (1), with m,
the chaser’s mass and J , the chaser’s inertia matrix about the
center-of-mass, defined in the chaser frame Fc. The dynamics
equation of the chaser is given by [2, 84]

˙̄ω(c)
c = −M̄−1

(
ω̄(c)

c × M̄ω̄(c)
c

)
+ M̄−1f̄ (c)

c (11)

where f̄ (c)
c = f (c)

c + ετ (c)
c is a DV in V3, called the total dual

force applied to the center-of-mass, f (c)
c ∈ R3 and τ (c)

c ∈ R3

referring to the total force and total torque, respectively.

In this work, it is considered that the total force and total torque
are composed by:

• the force and the torque due to the propulsion unit, de-
noted f (c)

cu ∈ R3 and τ (c)
cu ∈ R3 in the following;

• the force f (c)
S A ∈ R3 and the torque τ (c)

S A ∈ R3 due to the
flexible modes of the solar array;

• the force f (c)
P ∈ R3 and the torque τ (c)

P ∈ R3 due to pro-
pellant sloshing;

• the Earth gravity f (c)
∇
∈ R3;

• the force f (c)
J2 ∈ R3 due to the J2 effect (Earth’s oblate-

ness);

• the force f (c)
atm ∈ R3 due to atmospheric drag;

• a generalized torque disturbance τ (c)
g ∈ R3 that covers the

gravity gradient, the Earth magnetic field and the atmo-
spheric drag;

• the force f (c)
c f ∈ R3 and the torque τ (c)

c f ∈ R3 due to the
occurrence of faults in the propulsion unit.

Regarding the generalized torque disturbance τ (c)
g , each com-

ponent is considered to be a colored noise. With regards to the
Earth gravity, the atmospheric drag and the J2 effect, they are
given by [1, 44, 75] (the following equations are given in the
inertial frame Fi):

f (i)
∇

= −
mµr(i)

c

‖r(i)
c ‖

3
(12)

f (i)
atm = −

1
2
ρ(h)S Cd

(
ṙ(i)

c

)2
(13)

f (i)
J2 = −

3
2

mµJ2Re2

‖r(i)
c ‖

5

D − 5
 z(i)

c

‖r(i)
c ‖

2

I3

 r(i)
c (14)

In these equations, S = 2 m2 is the dimensional cross-sectional
area of the spacecraft and Cd = 2 is the drag coefficient. ρ(h) is
the atmospheric density at the altitude h. J2 = 0.0010826267
and D = diag(1, 1, 3). Re = 6378.137 km is the Earth’s mean
equatorial radius, and r(i)

c =
[
x(i)

c , y
(i)
c , z

(i)
c

]ᵀ
is the position vector

of the chaser expressed in Fi. µ = 3.986 004 4 × 1014 m3/s2 is
the Earth’s gravitational parameter.

The flexible modes of the solar array are modelled according
to [36]

f (c)
S A = −L f ẍa − mS Aγ

(c)
c , f (c)

c = mγ(c)
c

τ (c)
S A = −Lτẍa − JS Aω̇

(c)
c (15)

where γ(c)
c and ω̇(c)

c are derived from (11) and from the follow-
ing second order vector-based equation

ẍa + 2ξω0ẋa + ω2
0xa = −LT

[
γ(c)

c

ω̇(c)
c

]
(16)

with xa ∈ Rns·np , L = [LT
f L

T
τ ]T ,L f ,Lτ ∈ R3×(ns·np), L f =

R(β)BT and Lτ = R(β)BR + S(d)R(β)BT . np is the number
of solar arrays and ns is the number of flexible modes per solar
array. In our application case, np = 1 and ns = 2, see section
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3. ξ, ω0,BT and BR refer to damping factors, frequencies and
participation matrices of flexible modes. mS A and JS A refer to
the mass and the inertia matrix of the solar array, and R(β) is
a rotation matrix in charge to transform BT and BR given in
the solar array frame, into the chaser’s frame. In this work, β
is considered constant since the solar array is considered to be
immobile. d ∈ R3 is the distance vector between the chaser and
solar array frames and S refers to the skew-symmetric matrix
of vectors.

Propellant sloshing is modelled as a 3D-mass spring model as
proposed in [36, 35], i.e.

ẍsi +
lsi

msi

ẋsi +
ksi

msi

xsi = γ(c)
c , xsi ∈ R3, i = 1, 2

f (c)
P = (ms1 + ms2 )γ(c)

c

τ (c)
P =

2∑
i=1

ri × (ksixsi + lsi ẋsi ) (17)

The matrices lsi and ksi , i = 1, 2 define the damping and stiff-
ness coefficients associated to the two tanks, msi is the propel-
lant mass in the i-th tank and r1 = r2 is the distance vector
between the CoM of the chaser and the CoM of the fuel in a
tank.

The numerical value of the main characteristics considered in
this paper are listed in Table 2. Modelling the propulsion unit
and the faults are considered later, see Sections 4.4 and 4.5.

Then, using the DQ’s algebra, it follows

f̄ (c)
c = f̄ (c)

cu
+ f̄ (c)

cd
+ f̄ (c)

c f
(18)

where f̄ (c)
cd = f̄ (c)

S A + f̄ (c)
P + f̄ (c)

∇
+ f̄ (c)

J2 + f̄ (c)
atm + f̄ (c)

g is the dual force
about the disturbances, all terms being a DV defined in V3.

4.2.2. The target case
Similarly to the above developments, the kinematics and dy-
namic models of the target corresponds to (9),(10) and (11),
where the notations ”•c” and ”•(c)” are replaced by ”•t” and
” •(t) ”, respectively. For instance, ˙̄qt = 1

2 q̄t ◦ ω̄
(t)
t refers to the

kinematics equation of the target. Of course, dealing with the
target, the dual forces due to the actuation unit, the solar array
flexible modes and propellant sloshing, do not exist, so that the
total dual force that is applied to the target is concerned by the
disturbances, i.e. f̄ (t)

td = f̄ (t)
∇

+ f̄ (t)
J2

+ f̄ (t)
atm + f̄ (t)

g .

4.3. Dual quaternion based relative coupled dynamics
By virtue of the DQ’s algebra, the motion between the target
and the chaser can be expressed in the chaser frame as the rela-
tive DQ described by

q̄e = q̄∗t ◦ q̄c = qe + ε
1
2

qe ◦ r
(c)
e (19)

where r(c)
e = r(c)

c − q∗t ◦ qc ◦ r
(t)
t ◦ q∗c ◦ qt is the relative position

between the chaser and the target, given in the chaser frame Fc.

Let f̄ (c)
t ∈ V3 be the total dual force affecting the target (see

Section 4.2.2), given in the chaser frame. f̄ (c)
t is deduced from

f̄ (t)
td by means of the following change of coordinates:

f̄ (c)
t = q̄∗e ◦ f̄

(t)
td ◦ q̄e (20)

Then, and similarly to the developments presented in [2, 84],
the relative kinematic and dynamic equations are given by

˙̄qe =
1
2

q̄e ◦ ω̄
(c)
e (21)

˙̄ω(c)
e = − M̄−1

(
ω̄(c)

c × M̄ω̄(c)
c

)
+ M̄−1f̄ (c)

ct

− q̄∗e ◦ ˙̄ω(t)
t ◦ q̄e + ω̄(c)

e × (q̄∗e ◦ ω̄
(t)
t ◦ q̄e) (22)

where f̄ (c)
ct = f̄ (c)

c − f̄
(c)
t .

4.4. Forces and torques allocation on the thrusters
In (22), the control command is given in terms of the dual force
f̄ (c)

cu = f (c)
cu + ετ (c)

cu . To execute a control law practically, one
need to solve the force f (c)

cu and torque τ (c)
cu from f̄ (c)

cu , and then,
to allocate them on the spacecraft, by means of an actuation sys-
tem. As already mentioned, we consider a set of 24 thrusters of
2 N, configured as illustrated in Fig. 1.
With this aim, equation (22) is divided into its real part and dual
part. Since the capture mechanism is a simple basket, the tar-
get’s rotational dynamics can be removed from (22). Then, we
can derive from (22) the two following equations, that describe
the rotational and translational dynamics, respectively:

ω̇(c)
e = −J−1

(
ω(c)

e × Jω
(c)
e

)
+ J−1

(
τ (c)

cu
+ τ (c)

ctd + τ (c)
c f

)
(23)

r̈(c)
e = −ω(c)

e × ṙ
(c)
e − ω

(c)
e × ω

(c)
e × r

(c)
e +

f (c)
cu

m
+
f (c)

ctd

m
+
f (c)

c f

m
(24)

In these equations, ω(c)
e = ω(c)

c , f̄ (c)
ctd ∈ V

3 : f̄ (c)
ctd = f̄ (c)

cd − f̄
(c)
t =

f (c)
ctd + ετ (c)

ctd , f (c)
ctd ∈ R

3 and τ (c)
ctd ∈ R

3 refer to the induced force
and torque due to disturbances affecting both the chaser and
target spacecraft, given in the chaser frame Fc.

Remark 1. Note that the dual quaternion–based model (21)-
(22) is valid to describe the relative kinematics and dynamics
(attitude and position) between two spacecraft, for any in-orbit
rendezvous task. However, the separation of (22) into its real
and dual parts (23) and (24), is restricted to our application
case. As explained, this comes from the assumption about the
particular geometry of the capture mechanism, i.e. it is as-
sumed to be a simple basket. This is a completely different
situation if the capture is made using, e.g. a robotic arm or
a solid contact between a capture probe and a berthing fix-
ture mechanism. For such capture systems, the chaser’s atti-
tude must be synchronized with the target’s one to keep, e.g.
the capture point attainable from the robotic end-effector or the
capture probe aligned with the berthing fixture mechanism. So
the target’s rotational dynamics play an important role in these
cases and Eqs. (23)- (24) are not valid. The authors in [84]
address this issue. The result is extra terms in (23)-(24).
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Subsystem Parameters and numerical values

MCI Mass: m = 300 kg±1%

Inertia: J =

30 1 1
1 40 1
1 1 15

 kg m2±10%

CoM (center-of-mass): [1.5 0.2 0.15]m±20%
Tank 1 Damping coeff: 0.1 ±25%

Frequency of mode 1: 0.4 rad/s±2%
Frequency of mode 2: 0.8 rad/s±2%
Frequency of mode 3: 1 rad/s±2%
Propellant mass: 10 kg

Tank 2 Damping coeff: 0.1 ±25%
Frequency of mode 1: 0.4 rad/s±2%
Frequency of mode 2: 0.8 rad/s±2%
Frequency of mode 3: 1 rad/s±2%
Propellant mass: 20 kg±2%

Solar array Damping coeff: 3e-3 ±25%
Frequency of mode 1: 0.1 rad/s±2%
Frequency of mode 2: 0.5 rad/s±2%
Inertia: JS A =diag(10, 1, 10)kg m2±10%
Mass: mS A = 40 kg±1%
∆CoM chaser - SA: d = [0 2 0]m±2%
Appendage angle: β = 0°

Rotation
participation factor : BR:

36.64 0
0 0.06
0 −37

±20%

Translation
participation factor : BT :

 0 6.8
−0.01 0
6.54 0

±20%

Table 2: Numerical value of the main characteristics of the chaser spacecraft (derived from the Microscope satellite [33], and the spacecraft involved in the ESA’s
Mars Sample Return [37, 34] and e.Deorbit [7, 10, 35] missions.)

Let u(c)
c be the thruster’s firing command signal vector, and R

the thruster configuration matrix. Then[
τ (c)

cu

f (c)
cu

]
=

[
Rτ

R f

]
u(c)

c = Ru(c)
c , R ∈ R6×24 (25)

Reversing (25) is known as a Control Allocation (CA) problem.
It consists in solving the following optimisation problem

u(c)
c = argmin

0≤u(c)
ck ≤umaxk , k=1,24

∥∥∥∥Wv

(
Ru(c)

c − vr

)∥∥∥∥
p

(26)

where vr is the vector of the desired force and torque com-
mands and umaxk is the maximum opening valve value of the
k-th thruster. Here, it is equal to umaxk = 2 N with k = 1, 24.
The nonsingular weighting matrix Wv affects the prioritiza-
tion among force/torque components. The different choice of
the vector p-norm results in minimum flow rate allocation for
p = 1, minimum power allocation for p = 2 and minimum peak
torque/force allocation for p = ∞. Any algorithm that solves
the optimisation problem stated by (26) is called a CA unit,
known too as a thruster management unit. Fig. 4.5 illustrates
the placement of the CA unit in the control’s architecture pro-
posed in this paper. In this article, the nonlinear pseudo-inverse
controller technique [47] with p = ∞, is used as the CA unit.

4.5. Fault-tolerant control problem formulation
With regards to the faults, since they operate at the thruster fir-
ing level, we consider the following generic fault model[

τ (c)
cu

f (c)
cu

]
= Ru(c)

c (t) +Rf f ∈ R24 (27)

where f is the fault vector. Note that f is assumed to be un-
known and not necessarily bounded. Thus, the faulty dual force
f̄ (c)

c f is defined as

f̄ (c)
c f

= f (c)
c f

+ ετ (c)
c f
,

[
τ (c)

c f

f (c)
c f

]
= Rf =

24∑
i=1

[...Ri...] fi (28)

This equation highlights how the faults are correlated to the
torques and forces through the columns of the thruster config-
uration matrix R. So, Rk fk is nothing else than the kth fault
signature on the torques and forces. The indices i = 1, 24 co-
incide with the numbering of thrusters as given in Fig. 1, and
thus with the columns of the matrixR.

f = 0 means that no fault occurs in the thrusters. If the kth
component of f is a sinus of magnitude a0 and frequency ϕO,
then the torque and the force delivered by the thrusters are mod-
ified according to

τ (c)
cu

(t) = Rτu
(c)
c (t) + Rτ,ka0 sin(ϕ0t) (29)

f (c)
cu

(t) = R fu
(c)
c (t) + R f ,ka0 sin(ϕ0t)

where k refers to the kth thruster. Loss-of-effectiveness of the
kth thruster can easily be considered by setting fk(t) = −αu(c)

ck (t),
with 0 < α < 1. More generally, any time function for fk(t)
is suitable, including non bounded functions. However, prac-
tically the thruster’s firing is limited to 2 N in our application
case, so f (t) must be fixed in accordance with the saturation
levels of the thrusters. Thus, with the adequate definition for f ,
one can cover a very large class of fault profile. In particular, f
can take the following form [33],

f (t) = −Ψu(c)
c (t) (30)

with Ψ (t) = diag (ψ1(t), ..., ψ24(t)), where 0 < ψk(t) ≤ 1, k =

1, 24 are unknown. By using such a definition for f , it can be
observed that ψk(t) = 1 − φk(t)/u(c)

c,k(t) with any time-dependent
function φk(t), leads φk(t) to substitute the kth component of
the control signal. Thus, the kth thruster’s firing is exclusively
driven by φk(t), whenever the kth thruster’s control signal. As
a consequence, with φk(t) defined as illustrated on Fig. 3, one
can model stuck-open faults (Fig. 3 left) and stuck-closed faults
(Fig. 3 right). Such faults correspond to a thruster normally
operating and, suddenly goes into its maximum firing (stuck-
open) or goes to a null firing (stuck-closed), at a given rate.
Such faulty cases correspond to the kth thruster being totally
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uncontrollable.

φk(t)

φk(t)
firing

thruster

time fault occurence

2N
firing

thruster

time fault occurence

0N 0N

2N

Figure 3: Stuck-open (left) and stuck-closed (right) fault profiles

Note that the formulation (27) covers both additive and multi-
plicative faults. If f in (27) is considered exogenous as in (29),
then we face additive faults. But, if f takes the form of (30),
then f is endogenous and we face multiplicative faults. With
the adequate parametrization, the proposed fault model allows
to cover the known on-orbit failures occurred in the missions
listed in Table 3.

Spacecraft Cause of the fault

Lewis Excessive thruster firings [62]
Iridium 27 Thruster anomaly depleted operational fuel [67]
Nozomi Thruster valve was stuck partially open [67]
Galaxy 8i Three of four xenon ion thrusters failed [67]
EchoStar VI Propellant leak in a thruster [79]
JCSat-1B Thruster anomaly [11]
Myriade Occurrences of bubbles [65]

Table 3: List of some know on-orbit failures in the thrusters

The control architecture illustrated on Fig. 4.5 is proposed to
solve the FTC problem. It consists of a control signal defined
by:

f̄ (c)
FTC = f̄ (c)

sm −
¯̂f (c) = f (c)

sm − f̂
(c) + ε

(
τ (c)

sm − τ̂
(c)

)
(31)

f (c)
sm and τ (c)

sm are achieved by means of the generalized super
twisting algorithm (GSTA) [61, 4]. f̂ (c) and τ̂ (c) are achieved
using a nonlinear estimator. It provides the estimates of the
real and the dual parts of the disturbances f̄ (c)

ctd and faults f̄ (c)
c f .

Finally, since it is of prime importance to consider physical
limitations of the thrusters, an anti-windup system is joint to
the GSTA-based controller. The external anti-windup principle
[38] is used here.

5. Design of the FTC system

The design of the FTC unit turns out to be the design of the dis-
turbance/fault estimator and the GSTA control law, so that the
chaser tracks an attitude and a relative position reference trajec-
tory (qre f (t), r

(c)
re f (t)), despite the presence of the disturbances

f̄ (c)
ctd and the occurrence of faults f̄ (c)

c f . Furthermore, stability
must be ensured in case of thruster saturations. This is now
addressed in the following sequels.

5.1. The nonlinear fault/disturbance estimator

Following equations (23) and (24), it is required to design two
estimators. The first one operates at the torque level and is in
charge to estimate the disturbance and fault terms τ (c)

ctd and τ (c)
c f .

The second one operates at the force level and is in charge to
estimate the disturbance and fault terms f (c)

ctd and f (c)
c f .

From (23), the following estimate is proposed:

ˆ̇ω(c)
c = Fτ + J−1τ (c)

cu
(32)

Fτ = −J−1
(
ω(c)

c × Jω
(c)
c

)
Then, it is immediate to see that

ω̇(c)
c −

ˆ̇ω(c)
c = J−1

(
τ (c)

ctd + τ (c)
c f

)
(33)

and thus, that an estimate of the disturbances and fault torques
(sum of the two terms τ (c)

ctd and τ (c)
c f ) can be derived directly from

(33).

Similarly, the following estimate can be derived from (24)

ˆ̈r(c)
e = F f +

f (c)
cu

m
(34)

F f = −ω(c)
c × ṙ

(c)
e − ω

(c)
c × ω

(c)
c × r

(c)
e

An estimate of the disturbances and fault forces (sum of the two
terms f (c)

ctd and f (c)
c f ) can be derived directly from the following

equation:

r̈(c)
e −

ˆ̈r(c)
e =

f (c)
ctd

m
+
f (c)

c f

m
(35)

We recall that the navigation unit is assumed to provide ω̇(c)
c , r̈(c)

e
and all variables that enter in Fτ and F f , leading the aforemen-
tioned estimators, to be computationally viable.

5.2. The generalized super twisting algorithm-based controller

It is reasonable to consider that (33) and (35) provide corrupted
estimates for τ (c)

ctd + τ (c)
c f and f (c)

ctd +f (c)
c f . Let us denote τ∆ and f∆

these corruption terms. It follows

τ̂ (c) = J
(
ω̇(c)

c −
ˆ̇ω(c)

c

)
= τ (c)

ctd + τ (c)
c f
− τ∆ (36)

f̂ (c) = m
(
r̈(c)

e −
ˆ̈r(c)

e

)
= f (c)

ctd + f (c)
c f
− f∆ (37)

We recall that τ (c)
ctd and f (c)

ctd include the dynamics of the flexible
appendage and propellant sloshing. Then they are functions of
the system’s state, see Section 4.2.1. Thus, it is assumed that τ∆
and f∆ depend too, on the system’s state.

The following assumption, which guarantees that the forces and
torques computed by the FTC is allocated by the CA unit on the
thrusters, in the l∞-norm sense, is now considered without loss
of generality.

Assumption 2.
∥∥∥∥∥[f (c)T

FTC τ
(c)T

FTC

]T
−

[
f (c)T

cu τ (c)T

cu

]T
∥∥∥∥∥
∞

≤ ε with ε →

0.
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CA

R

estimator
nonlinear

GSTA

navigation
unit

anti
windup

+

guidance

− DKE
chaser

FTC unit

unit

[

qref

r
(c)
ref

]

f̄
(c)
sm

f̄
(c)
FTC u

(c)
c

f̄
(c)
cuˆ̄f (c)

[

q̄e

ω̄
(c)
e

]

Figure 4: The chaser’s GNC setup with implementation of the FTC unit at the control level. CA stands for Control Allocation, GSTA for Generalized Super Twisting
Algorithm and DKE for Dynamics Kinematics and Environment

This property directly follows from the CA’s characteristics de-
scribed in Section 4.4. Then, with (31), (36), (37) and under
assumption 2, it can be verified that (23) and (24) can be rewrit-
ten:

ω̇(c)
c = Fτ + J−1

(
τ (c)

sm + τ∆
)

(38)

r̈(c)
e = F f +

1
m

(
f (c)

sm + f∆
)

(39)

These equations are nothing else than the dynamics to be con-
trolled by the GSTA controller.

The following GSTA is proposed:

τ (c)
sm =J

(
−Fτ −Kτ

[
1
2

[
(qε)sω

(c)
c + (qε)v × ω

(c)
c

]]
−α1τφ1τ(sτ) −α2τ

∫ t

0
φ2τ(sτ(χ))dχ

)
(40)

f (c)
sm = m

(
−F f −K f ṙ

(c)
ε −α1 fφ1 f (s f ) −α2 f

∫ t

0
φ2 f (s f (χ))dχ

)
(41)

In these equations, qε = q∗re f ◦ qc and r(c)
ε = r(c)

re f − r
(c)
e de-

note the chaser’s quaternion tracking error and the relative po-
sition tracking error, respectively. (qε)s and (qε)v denote the
scalar and vector part of the quaternion qε , respectively, see
the notation section if necessary. φ1 j(s j) = bs je

1/2 + β js j and
φ2 j(s j) = 1

2 bs je
0 + 3

2β jbs je
1/2 + β2

j s are diagonal matrix func-
tions, where bs je

q = |s j|
qsign(s j), for j ∈ {τ, f }. K j,αi j,β j ∈

R3, i = 1, 2, j ∈ {τ, f } are diagonal gain matrices to be de-
signed. sτ and s f denote sliding surfaces that are defined ac-
cording to:

sτ = ω(c)
c +Kτ(qε)v (42)

s f = ṙ(c)
ε +K fr

(c)
ε (43)

It should be pointed out that the choice of the GSTA is moti-
vated by the fact that its stability face to (matched) state-dependent
disturbances is formally proved, as opposed to the STA. This is
the case there, see (50)-(53).

Now, let us include the following assumption:

Assumption 3. Let ϕ =

[(
J−1τ∆

)T 1
mf

T
∆

]T
be a vector of

perturbations, that depends on a vector s, a function of qc,ω
(c)
c ,

r(c)
e , ṙ(c)

e (s will be the sliding surface later). It is assumed that
‖∂ϕ/∂t‖∞ ≤ δ1 and ‖∂ϕ/∂s‖∞ ≤ δ2.

This assumption states that the first derivatives of the fault esti-
mation error versus time and the sliding surface, are bounded,
in the l∞-norm sense (maximum magnitude).

The following theorem provides the solution to the design of
K j,αi j,β j ∈ R3, i = 1, 2, j ∈ {τ, f }.

Theorem 4. Under assumption 3, the control law (40)-(43) en-
sures asymptotic stability and trajectory tracking, despite the
presence of the state-dependent perturbations τ∆ and f∆, ifKτ >
0,K f > 0 and if there exists any κ > 0, α1τ,α1 f ,α2τ,α2 f ,βτ
and β f such that:

α1i >
2(1 + κ)δ2

βi
, α2i >

1
4hiκ

(
2δ1

1 + κ

α1i
+
κδ2

βi

)2

+ 2δ1 (44)

hi = 1 −
δ2(1 + κ)
βiα1i

i = 1, 6 (45)

α j = diag
(
α jτ,α j f

)
= diag(α ji) j = 1, 2 i = 1, 6 (46)

β = diag
(
βτ,β f

)
= diag(βi) i = 1, 6 (47)

Proof
- Conditions on α1τ,α1 f ,α2τ,α2 f ,βτ and β f : Consider
the definition of the sliding surface (42). Then, it follows from
(38) that

ṡτ =ω̇(c)
c +Kτ(q̇ε)v = Fτ + J−1

(
τ (c)

sm + τ (c)
∆

)
+Kτ

[
1
2

[
(qε)sω

(c)
c + (qε)v × ω

(c)
c

]]
(48)

Substituting (40) into (48) leads to

ṡτ = −α1τφ1τ(sτ) −α2τ

∫ t

0
φ2τ(sτ(χ))dχ + J−1τ∆ (49)

Now, consider the auxiliary variable zτ = −α2τ
∫ t

0 φ2τ(sτ(χ))dχ+

J−1τ∆. Then, (49) can be rewritten according to the following

10



pair of differential equations:

ṡτ = −α1τφ1τ(sτ) + zτ (50)

żτ = −α2τφ2τ(sτ) + J−1τ̇∆ (51)

Similarly, it can be verified that the following equations can be
derived from (41) and (43):

ṡ f = −α1 fφ1 f (s f ) + z f (52)

ż f = −α2 fφ2 f (s f ) +
1
m
ḟ∆ (53)

with z f = −α2 f
∫ t

0 φ2 f (s f (χ))dχ + 1
mf∆.

It is now fundamental to remind that τ∆ and f∆ depend on both
the rotational and translational states. Then (50)-(53) are cou-
pled, but this coupling is lumped in the perturbation terms τ̇∆
and ḟ∆. For the design of the GSTA’s parameters, it doesn’t
matter the role of these terms if we can guarantee stability, con-
sidering the state-dependent property of τ̇∆ and ḟ∆.

To proceed, let us merge (50)-(53) together according to:

ṡ = −α1φ1(s) + z (54)
ż = −α2φ2(s) + ϕ̇(s) (55)

with s =
[
sT
τ s

T
f

]T
, z =

[
zT
τ z

T
f

]T
, ϕ =

[(
J−1τ∆

)T 1
mf

T
∆

]T
,

α1 = diag
(
α1τ,α1 f

)
and α2 = diag

(
α2τ,α2 f

)
. Noticing that

each matrix and matrix functions that enter in this equation have
a diagonal structure and ϕ̇(s) =

∂ϕ
∂t +

(
∂ϕ
∂s

)
ṡ, it follows under

assumption 3, that direct application of Corollary 1 in [4] leads
to the conditions (44)-(47).

- Conditions on Kτ and K f : Once sτ = 0 is reached,
ω(c)

c = −Kτ(qε)v. Consider the following Lyapunov function:

Vτ = [1 − (qε)s]2 + (qε)
T
v (qε)v (56)

Differentiating Vτ versus time, it follows:

V̇τ = − 2[1 − (qε)s](q̇ε)s + 2(qε)
T
v (q̇ε)v

= − 2[1 − (qε)s][−
1
2

(qε)
T
vω

(c)
c ] + 2(qε)

T
v

1
2

[(qε)sω
(c)
c +

(qε)v × ω
(c)
c ]

= − 2[−
1
2

(qε)
T
vω

(c)
c +

1
2

(qε)s(qε)
T
vω

(c)
c ] + 2(qε)

T
v

1
2

[(qε)sω
(c)
c +

(qε)v × ω
(c)
c ]

= − [(qε)
T
vKτ(qε)v − (qε)s(qε)

T
vKτ(qε)v] − (qε)

T
v (qε)sKτ(qε)v

= − (qε)
T
vKτ(qε)v

(57)

which is strictly definite negative iffKτ > 0.

Similarly, once s f = 0 is reached, ṙ(c)
ε = −K fr

(c)
ε which is

an autonomous linear differential equation and then, stable, iff
K f > 0, which terminates the proof. �

5.3. The anti-windup system

If equations (40) and (41) are directly used as the control law,
saturation caused by the integral term may lead to a severe over-
shoot in the system, or provoke instability of the closed loops.
This point becomes especially crucial when dealing with FTC
problem, since faults may cause actuator saturation. Here, anti-
windup coefficients of the general form eλ∆i , λ < 0 are intro-
duced in (40) and (41) as follows:

τ (c)
sm =J

(
−Fτ −Kτ

[
1
2

[
(qε)sω

(c)
c + (qε)v × ω

(c)
c

]]
−α1τφ1τ(sτ) −α2τdiag(eλ∆τi )

∫ t

0
φ2τ(sτ(χ))dχ

)
(58)

f (c)
sm =m

(
−F f −K f ṙ

(c)
ε −α1 fφ1 f (s f )

−α2 f diag(eλ∆ f i )
∫ t

0
φ2 f (s f (χ))dχ

)
, i = 1, 3 (59)

To explain the role of λ, ∆τi, ∆ f i, i = 1, 3, let us recall that the
thruster configuration consists of 24 thrusters of 2N. Then, the
control vector u(c)

c ranges in a hypercube of dimension 24. The
images of this hypercube through the thruster configuration ma-
trices Rτ and R f (see eq. (25)) are polytopes Πτ and Π f that
can be computed through linear algebra. These polytopes are
nothing else than the torque and force domains, that can be at-
tained by the actuation unit. Thus, saturation occurs if a torque
and/or a force outside ofΠτ andΠ f , is asked to be allocated on
the thrusters, see Fig. 5 that gives an illustration for the torque
case.

Figure 5: The polytopeΠτ (attainable torque domain)

If saturation occurs, which means that τ (c)
FTC and/or f (c)

FTC are
outsideΠτ and/orΠ f , then the nearest attainable torque and/or
force that belongs to Πτ/Π f , is computed, in the least square
optimal sense. To formulate this problem, let us denote τ (c)

0

and f (c)
0 these optimal attainable torque and force. Then, the

problem turns out to solve on-line, the following optimisation
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problems

min
τ (c)

0

∥∥∥τ (c)
FTC − τ

(c)
0

∥∥∥
2 s.t. τ (c)

0 ∈Πτ

min
f (c)

0

∥∥∥f (c)
FTC − f

(c)
0

∥∥∥
2 s.t. f (c)

0 ∈Π f (60)

The terms ∆τi, ∆ f i, i = 1, 3 are then defined according to:

∆τ = τ (c)
FTC − τ

(c)
0 ∆ f = f (c)

FTC − f
(c)
0 (61)

∆τ = vec(∆τi), ∆ f = vec(∆ f i), ∆τi ≥ 0, , ∆ f i ≥ 0 i = 1, 3

Thus, with λ < 0, when ∆τi/∆ f i is large enough for some ”i”,
eλ∆τi/eλ∆ f i is near zero according to the property of the exponen-
tial function, vanishing the integral terms in the GSTA. A con-
trario, provided that the system is not saturated, τ (c)

0 = τ (c)
FTC

and f (c)
0 = f (c)

FTC . Then, the value of eλ∆τi/eλ∆ f i , i = 1, 3 is in-
variant and equal to 1, no matter how the GSTA will react to
faults, the integral terms operate normally.

6. Simulation results

The performances of the proposed FTC architecture are next
assessed using the FES. A path planning algorithm has been
implemented to generate smooth attitude quaternion qre f (t) and
relative position r(c)

re f (t) references. We recall that the rendezvous
trajectory consists of:

i) a chaser’s rotation around its center-of-mass to align the
capture mechanism with the target (we denote it ”align-
ment phase” in the following figures). The time duration
of this phase is 300s.

ii) a chaser’s translation of approximatively 100m along the
y-axis, into the direction of the target to capture it (we
refer to it as the ”forced translation phase”). In this phase,
the attitude is controlled to keep the capture mechanism
aligned with the target . The time duration of this phase
is 1200s.

For each simulation, the initial position of the chaser corre-
sponds to the initial orbital parameters given in Table 1, i.e. the
chaser is approximatively 100m behind the target along the y-
axis. The initial attitude is 30deg along the y-axis, and 0deg
along the x- and z-axis. The initial angular velocity of the
chaser is null along all axis. For each phase, the path plan-
ning algorithm uses a second order spline function of the time
t. Thus, the components of qre f (t) and r(c)

re f (t) are given by the
following function,

h(t) =



h0 if t ≤ ti
h0

2
(

t f −ti
2

)2 t2 − h0 if ti ≤ t ≤ t f−ti
2

−
x0(t+ti−t f )2

2
(

t f −ti
2

)2 if t f−ti
2 ≤ t ≤ t f

0 if t ≥ t f

(62)

where h0 refers to the initial value of h. Note that this algorithm
considers the fact that the final relative position and the final

attitude are equal to 0 (in the adequate frame).

Following Theorem 4, the GSTA (40)-(41) is characterized by
the parameters Kτ,K f , α1τ,α1 f ,α2τ,α2 f ,βτ,β f . These pa-
rameters are tuned in this work, according to the following rea-
soning:
• α1τ,α1 f ,α2τ,α2 f ,βτ,β f : The bounds δ1 and δ2 being
determined according to Assumption 3, α1τ,α1 f ,α2τ,α2 f are
computed following equations (44)- (47), once βτ and β f are
fixed. βτ,β f are related to growing terms 3

2β jbs je
1/2 and β2

j s
in functions φ2 j(s j), j ∈ {τ, f }, that help to counteract the ef-
fects of the state dependent perturbations ϕ =

[
(J−1τ∆)T 1

mf
T
∆

]T .
Thus βτ,β f are determined in this work, by seeking the be-
haviour of each component of ϕ in simulations, which leads
to βτ = β f = diag(1, 1.1, 1).10−4. Of course, these values are
determined approximatively and we cannot expect to obtain an
optimal tuning using this practical approach. The application
of formulas (44)- (47) leads to:

α1τ ≈ diag(0.002145, 0.001898, 0.002487)

α2τ ≈ diag(0.3373, 0.264, 0.4539).10−3

α1 f ≈ diag(0.05056, 0.03464, 0.04609)
α2 f ≈ diag(0.01875, 0.0088, 0.01558)

• Kτ,K f : It can be seen from the second part of the proof
of Theorem 4, that Kτ,K f play the role of dynamic evolution
matrices. So, their eigenvalues have the sense of the dynamics
of the closed-loop. Kτ andK f are thus fixed toKτ = K f = I3,
meaning that it is required a bandwidth of the closed-loop equal
to 1rd/s. By such a choice, the solar array and the propellant
sloshing modes are in the bandwidth of the control. Of course,
the price to pay will be an increase in the control energy con-
sumption.

6.1. The perfect navigation unit case

We first consider two simulations under a perfect navigation
unit, i.e. the measurements provided by the navigation unit are
nothing else than the variables that enter in the disturbance/fault
estimator and the GSTA. The goal is to make the readers clearly
understand the results.

6.1.1. Additive fault type
Let us consider the (simple) case of an additive fault type. The
faulty scenario consists of a sinus signal added to the thruster’s
firing N. 16, from t = 1000s until the simulation’s end. The
magnitude and the frequency of the sinus are fixed to a0 =

0.15N and ϕ0 = 0.01rd/s, see (29). With such a choice, the
anti-windup strategy will not operate, since the control com-
mands will not attain their saturation levels. Fig. 6.a illustrates
the chaser’s attitude, and Fig. 6.b gives the relative position (in
the LVLH frame). The attitude and relative position tracking er-
rors are also plotted, to appreciate the results. The control com-
mands u(c)

c (t) applied to the thrusters, are illustrated in Fig. 7.a.
The plots of the real thruster’s firings applied to the spacecraft,
are given in Fig. 7.b. The total control signal provided by the
overall FTC scheme (dual force f̄ (c)

FTC(t)), the fault/disturbance
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dual force estimate ¯̂f (c)(t) and the dual force f̄ (c)
sm (t) delivered

by the GSTA controllers, are shown in Fig. 8.

The most notable result is probably the fact that the harmonic
component of the fault is visible in the fault/disturbance dual
force estimate ¯̂f (c)(t), see Fig. 8.b. Since f̄ (c)

FTC = f̄ (c)
sm −

¯̂f (c),
this harmonic is also visible in f̄ (c)

FTC(t). Furthermore, due to the
sign, the sine behaviour is in opposite phase between ¯̂f (c) and
f̄ (c)

FTC , see Fig. 8.a and Fig. 8.b. Note that the sine component
is transmitted to all thrusters through the CA unit, see Fig. 7.a.
Such results are clearly reassuring about the functioning of all
sub-elements of the proposed FTC architecture.

In terms of mission performance, during the alignment phase,
the attitude error does not exceed 0.4 deg and the relative po-
sition is less than 2 cm. During the forced translation phase
and at the capture point, these errors are very close to zero.
Furthermore, it can be seen on Fig.7.a that these performances
are obtained without actuator saturation. It can be observed
a periodic behaviour of u(c)

c (t) at frequencies that correspond
to the flexible modes of the solar array and propellant slosh-
ing. This is coherent with the choice of the GSTA parameters
listed previously. In terms of propellant consumption, a total of
1.83kg is used. The impulse per unit weight-on-Earth of the 24
thrusters has been fixed to Isp = 210s. Thus, we argue from the
presented figures that the obtained results are promising, since
the rendezvous and capture performances are met whenever the
fault occurrence, but the price to pay is about the propellant
consumption.

6.1.2. Stuck open fault
Let us now consider the case of a stuck-open fault occurring
in thruster N. 1. In the simulated scenario, the fault occurs at
t = 40s. The time of fault occurrence is chosen to cover both the
acquisition and translation phases. It enables to analyse the be-
haviour of the spacecraft when it rotates simultaneously around
its 3 axis, while performing at the same time a translation in 3
dimensions. Such a manoeuvre enables to evaluate the 6-DOF
capacity of the proposed FTC solution. Note that the stuck open
fault type corresponds to a totally unavailable actuator, which is
a more severe fault than the previous one. The obtained results
are given in Fig. 9 to 11.

As it can be seen, during the rotation phase, the attitude error
does not exceed 0.4 deg and the relative position is less than
5 cm. During the forced translation phase and at the capture
point, these errors are very close to zero. Furthermore, it can
be seen in Fig. 10.a that these performances are obtained with-
out actuator saturation, except during a short time which corre-
sponds to the transient behaviour of the FTC algorithm to ac-
commodate the fault. Thanks to the anti-windup strategy, this
does not cause instability of the FTC scheme. Note that, with-
out the anti-windup scheme, it has been observed an instability
of the FTC law. These results are not presented in this article,
since they do not really provide useful information. In terms of
propellant consumption, a total of 6.62kg is used. Thus, again,

we argue from the presented figures that the obtained results are
promising, since the rendezvous and capture performances are
satisfied, despite a totally uncontrollable thruster, but there is a
price to pay in terms of propellant consumption.

6.2. Navigation unit in the loop

We now investigate the performance of the FTC scheme, by
analysing the same faulty situation, considering the navigation
unit in the loop. Fig. 12 to 14 show the results. Of course,
navigation errors and measurement noises affect especially the
control signals, say dramatically, which is a well-known short-
coming of sliding mode techniques, see Fig. 13 and 14. How-
ever, despite this phenomenon, the capture performances are
satisfactory, since during the last 10 meters, the attitude error
does not exceed 0.05 deg and the relative position is less than
1 cm along the three axes. The total propellant consumption is
estimated to 9.5kg, which is coherent with the behaviour of the
control signals. However, the capture mission is a success.

6.3. Simulation campaign with the FES

The proposed FTC solution is finally evaluated through a sim-
ulation campaign using the FES, see Fig. 15 to 17. A total of
48 faulty scenes were tested. The fault type is chosen randomly
between additive sinus faults, loss-of-effectiveness, stuck-open
and stuck-closed faults. We recall that the cases of stuck-open
and stuck-closed faults correspond respectively, to a positive
and negative drift that substitutes the control signals at the ac-
tuator level, see Fig. 3. For the additive sinus fault type, a sinus
is added to the thruster’s command. Loss-of-effectiveness cor-
responds simply to a gain variation. The key ingredient of the
considered scenes is that faults occur at the thruster firing level.
The simulations are performed so that all the 24 thrusters are
covered twice. However, all fault occurrences have been fixed
to t = 40s. We recall that the challenges of the considered sce-
narios, are:
• stuck-open and stuck-closed faults have abrupt profiles and
correspond to totally uncontrollable actuators, after some very
short transient time. Thus, the fault profile is not continuous,
which contradicts the assumptions made in most sliding-mode
control techniques. However, the first derivatives versus time
and the sliding surface of the fault estimation error, are required
to be bounded, in the l∞-norm sense, see Assumption 3.
• the faults may cause actuator saturation, which may provoke
instability of the closed-loops due to the presence of the integral
term in (40)-(41). Thanks to the antiwindup solution (58)-(59),
this problem is solved.
• the considered fault patterns correspond to the known on-orbit
failures occurred in some real missions, see Table 3.

The performance are evaluated using the following mission-
oriented criteria:
• Dealing with relative position and velocity, it is required to
maintain the relative position inside the so-called rendezvous
corridor, during the complete forced translation phase, see Fig.
16.a At the capture point, the position misalignment must be
less than 20 cm along the X and Y axes, see Fig. 15.a, and
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Figure 6: Perfect navigation and sine additive fault in THR 16: a) Attitude of the chaser - b) Relative position

Figure 7: Perfect navigation and sine additive fault in THR 16: a) thruster commands u(c)
c - b) real thruster’s firing

Figure 8: Perfect navigation and sine additive fault in THR 16: a) dual force f̄ (c)
FTC - b) dual force estimate ¯̂f (c) - c) GSTA dual force f̄ (c)

sm
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Figure 9: Perfect navigation and stuck-open fault in THR 1: a) Attitude of the chaser - b) Relative position

Figure 10: Perfect navigation and stuck-open fault in THR 1: a) thruster commands u(c)
c - b) real thruster’s firing
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Figure 11: Perfect navigation and stuck-open fault in THR 1: a) dual force f̄ (c)
FTC - b) dual force estimate ¯̂f (c) - c) GSTA dual force f̄ (c)

sm

Figure 12: Navigation in the loop and stuck-open fault in THR 1: a) Attitude of the chaser - b) Relative position
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Figure 13: Navigation in the loop and stuck-open fault in THR 1: a) thruster commands u(c)
c - b) real thruster’s firing

Figure 14: Navigation in the loop and stuck-open fault in THR 1: a) dual force f̄ (c)
FTC - b) dual force estimate ¯̂f (c) - c) GSTA dual force f̄ (c)

sm
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the lateral X and Y velocities must be less than 1 cm/s nomi-
nally, the worst case being fixed to 4 cm/s, see Fig. 15.b top. In
terms of the longitudinal X-axis, the velocity must be less than
1 cm/s, see Fig. 15.b bottom.
• With regards to attitude performance, it is required after the
alignment phase, to maintain the attitude to less than 1 deg along
the three axes (pitch φ(t), yaw θ(t), roll ψ(t)) during the forced
translation, see Fig. 16.b, so that the capture mechanism is cor-
rectly aligned with the target. At the capture point, the attitude
misalignment must be less than 1 deg, see Fig. 17.a, and the
angular rate must be less than 0.05 deg/s along the three axis,
see Fig. 17.b.

These mission-oriented criteria enable to quantity the worst case
of mission performance loss due to the faults. Particularly, it
can be concluded from 15.b that the worst-cases correspond to
stuck-closed faults that occur in thrusters 2, 4, 14 and 16. How-
ever, even for these cases, the capture performances are met.

6.4. Comparison with a FDI–based FTC solution
The obtained results are now compared with the FDI–based
FTC solution proposed in [35]. This approach is retained since
it has been validated under the GMV Space and Airbus De-
fence and Space demonstrator of the ESA’s e.Deorbit mission.
The method is based on:
• for fault diagnosis: a bank of nonlinear unknown input ob-
servers (NL-UIO) designed under a L2-gain robustness con-
straint;
• for fault tolerance: control re-allocation technique.
The proposed strategy works as follows: as soon as the faulty
thruster is isolated by the NL-UIO–based FDI unit, it is turned
off using a dedicated pipe valve and the forces and torques
computed by the controller are re-allocated among the healthy
thrusters. For that purpose, the CA algorithm (26) is further
constrained so that 0 ≤ u(c)

c j ≤ 0, where j denotes the thrusters
that have been identified to be faulty. In terms of control, the
GSTA is used without the fault estimator (32) and (34). The
anti-windup strategy (58)-(59) is kept in place.

The major difference with respect to the method proposed in
this paper, is that the NL-UIO / CA FTC scheme operates at
the thruster level, and not at the forces/torques level. The con-
sequence is that the FDI unit is able to determine which subset
of thrusters is faulty. This is a great advantage, see [22, 35] for
more details. The solution unfortunately exhibits sensitiveness
to false alarms, and then requires high robustness against espe-
cially the propellant sloshing and solar array flexible modes. A
wrong decision from the FDI unit leads the CA unit i) to con-
demn a healthy thruster, and, ii) to think that the faulty thruster
is still available for control. However, when the FDI unit suc-
ceeds, the FDI–based FTC approach prevents propellant con-
sumption as opposed to the FE–based FTC solution proposed
in this paper.
Fig.18 illustrates the results when the FDI–based FTC unit op-
erates in spite of the FE–based FTC solution. The faulty sce-
nario corresponds to the scenario considered in Section 6.1.2.

Fig. 18.a-18.c illustrate the behaviour of the chaser’s attitude,
the relative position (in the LVLH frame) and the real thruster
firing. Fig.18.d gives the propellant mass consumption for both
the FTC solutions. As it can be seen, both FTC solutions lead to
the same performance in terms of rendezvous and capture crite-
ria. However, the FDI–based FTC solution exhibits less propel-
lant consumption (a total of 1.82kg is used) than the FE–based
FTC solution (6.62kg). The price to pay is about the complexity
of the FDI unit that relies on 16 NL-UIOs of order 7, whereas
the FE–based FTC scheme consists of the fault estimator (32)
and (34).

7. Conclusions

This paper demonstrates that the generalized super-twisting al-
gorithm combined with a nonlinear fault estimator, can suc-
cessfully solve the problem of fault tolerance against thruster
faults, for in-orbit autonomous rendezvous between a chaser
spacecraft and a passive spacecraft. It is also demonstrated
that an anti-windup strategy is required jointly with the fault-
tolerant control unit to prevent instability due to actuator satu-
ration when faults occur. The evaluation of mission-oriented
criteria over 48 simulations under different faulty situations,
demonstrates that the proposed solution accommodates a large
class of actuator faults, including loss of controllability of the
faulty actuator, despite the presence of uncertainties and dis-
turbances. The advantage of the proposed solution concerning
solutions that use fault detection and isolation procedures, con-
sists of its insensitivity to false alarms and the reduced com-
plexity required by the fault diagnosis algorithm. The price to
pay is a high propellant consumption.
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