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Abstract:  

This article analyzes the electronic factors governing bond length alternation (BLA) in linear 

polyenes. The impact of the various effects is illustrated on small all-trans polyenes, namely 

butadiene, hexatriene and octatetraene prototype molecules. It is well-known that self-consistent-

field single determinant treatments overestimate the bond-length alternation and the paper aims to 

identify physical effects of correlation which correct this defect. The question is addressed using an 

orthogonal valence-bond type formalism in which the wave function is expressed in terms of 

strongly localized bonding and antibonding molecular orbitals. This paper shows that dynamic 

polarization effects of π orbitals accounted for in the full-π complete active space wave-function 

significantly reduce bond alternation. These effects are brought by single excitations applied on the 

inter-bond charge transfer determinants. The dynamic polarization of σ bonds, of either CC or CH 

character, is analyzed afterwards by either enlarging the active space or by adding the 1hole-

1particle excitations. It is shown that these effects also decrease the BLA and increase the 

coefficients of the charge transfer determinants. Moreover, the relation with dynamic polarization of 

ligand to metal and metal to ligand charge transfer (LMCT and MLCT respectively) components in 

magnetic transition metal compounds is discussed. 
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I) Introduction 

 

The bond-length alternation (BLA) in linear polyenes is a well-known phenomenon, a rather 

basic problem in Quantum Chemistry, and it has been studied using a wide variety of theoretical 

methods.[1–7]. The understanding of the electronic factors that govern its magnitude still deserves 

attention. The simplest description of these π-electron systems consists in double bonds connected 

by single bonds, according to the Lewis qualitative picture.[8] It is known that the contrast between 

short and long bonds decreases with the polyene size: while the CC bond is very short in ethylene, 

the assumed double bonds are significantly longer in larger polyenes.[9] 

The most natural and routinely used theoretical entrance to the problem starts from the Self 

Consistent Field (SCF) optimization of a Slater determinant. Linear polyenes cannot be considered 

as highly correlated systems, they have a large gap at the Fermi level, especially the small polyenes 

studied hereafter. Starting from the SCF solution seems therefore a relevant strategy. However the 

SCF approximation systematically overestimates the BLA[10]. Electron correlation has therefore an 

important effect on a property of the weakly-correlated ground state. Indeed Complete Active Space 

Self Consistent Field (CASSCF) calculations involving all π electrons in all π valence Molecular 

Orbitals (MOs) predicts a reduced value of the BLA.[5] Using a strongly-localized Bond MO 

formulation, reference [5] attributed the decrease of the BLA from SCF to CASSCF to a decrease of 

the effective energy of the charge – transfer (CT) components. The present paper follows a similar 

strategy but proceeds to both analytical derivations, exhibits the role of σ bond electrons and 

analyses of the coefficients of the wave function at various levels of treatment. It will be shown that 

the decrease of BLA obtained when using multi-determinantal methods must be attributed to an 

increased electron delocalization between the electron pairs located on double bonds and a decrease 

of the effective energy of inter-bond charge-transfer components of the wave function.  

The BLA is indeed governed by the magnitude of the charge transfer coefficients between adjacent 

double bonds, but these coefficients are strongly affected by dynamic polarization, involving both  

and bonds. The dynamic polarization is brought by single excitations on the inter-bond CT 

determinants. We will show how these excitations stabilize the effective energies of the CT 

determinants. The single determinant SCF method treats part of the inter-bond delocalization owing 

to the molecular orbital optimization but it underestimates its magnitude as this correlation effect is 

missing. The dynamic polarization is indeed a correlation effect, it takes into account the fluctuation 

of the electric field, a phenomenon which cannot be taken into account in SCF treatments, since 
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mean-field methods only capture static polarization. In the SCF solution the delocalization is ruled 

by the Brillouin’s theorem, which kills the interaction between the reference and the singly-excited 

determinants. As shown on different problems, the way to correct the delocalization of SCF MOs is 

complex, requiring to introduce 2hole-1particle or 1hole-2particle excitations. [11] Our strategy 

differs from the standard one which starts from the SCF solution and then introduces double 

excitations. We start from a Lewis-type reference function free from any inter-bond delocalization.  

To build this function we determine strongly localized (on the double bonds) bonding and 

antibonding MOs from unitary transformations of the canonical CASSCF ones. The Lewis type-

reference belongs to the  active space. We then treat delocalization and correlation on an equal 

footing, by using a method proposed by one of us and coworkers in the context of a semi-empirical 

Hamiltonian, namely the Perturbative Configuration Interaction from Localized Orbitals (PCILO) 

method.[12–14]. One may note that this method is here employed in the ab initio context, as already 

done for the evaluation of the cyclic-delocalization energy (or aromatic contribution to the energy 

of benzene [15] and in reference [5].  

The aims of this article are i) to show the origin of the error of the single determinant SCF 

procedure, ii) to understand the mechanisms responsible for the improvement of the valence full-π 

CASSCF method, iii) to highlight the role of dynamic polarization taking place in the inter-bond 

charge transfer components and finally iv) to construe the distinct effects of  and  electrons. 

Analytical derivations and numerical calculations respectively presented in sections 2 and 3 are here 

joined to demonstrate the role of dynamic polarization on the BLA structural impact. The smallest 

all-trans polyenes butadiene, hexatriene and octatetraene have been chosen to numerically illustrate 

this demonstration. 
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II) Analytical development 

 

A) Motivating features 

Let us present abruptly, in Table 1, the impact of electron correlation on the BLA of the studied 

polyenes. The BLA is here defined as the difference between the long and short bond lengths (see 

section IIIA for computational details). The results reported have been obtained at different levels 

of treatments, namely SCF, CASSCF of the π electrons in the π valence MOs (Full- valence CAS), 

and post CAS treatment introducing the 1hole-1particle excitations on the top of this CAS. 

 

Table 1: optimal BLA (in Å) of the three studied polyenes at SCF, Full- valence CASSCF and 

CASSCF + Single excitations. 

Molecule SCF Full-π valence 

CASSCF 

CASSCF+1hole-

1particle 

Butadiene 0.147 0.114 0.099 

Hexatriene 0.140 0.108 0.093 

Octatetraene 0.137 0.105 0.089 

 0.018 0.021 0.027 

 

One sees that the correlation reduces the BLA value by about 35%. This is the phenomenon we 

want to address in the present work. 

B) Strongly-Localized approach 

For a sake of simplicity, we shall restrict the following presentation to the simplest system of four 

orbitals housing four electrons, i.e. butadiene. Since the key delocalization process takes place in 

the π electronic system, the CAS(4,4)SCF calculation involving the four  electrons in the four 

valence  MOs provides an appropriate ground-state wave function and an optimal mono-electronic 

valence space. The space spanned by the 4 optimized active MOs and the CASSCF function are 

of course invariant under unitary transforms among the space of active MOs. Using the DoLo 

procedure,[16, 17] strongly-localized bond-MOs (SLMOs), noted 1 (between atoms A and B), 2 

(between atoms C and D), and their antibonding counterparts 1* and 2* have been generated. They 

are linear combinations of the atom-supported orthogonal orbitals (OAOs) noted a, b, c, d, 
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respectively centered on atoms A, B, C and D. The SLMOs are related to the OAOs by the 

following relations 

2/)(2

2/)(1

dc

ba




;  (1) 

 which are bonding, and their antibonding counterparts 

2/)(*2

2/)(*1

dc

ba




.  (2) 

Such orbitals are depicted in Figure 1. This strategy provides a Lewis-type zero-order function as 

recently discussed in reference.[5, 15] It is worth noting that these SLMOs are different from the 

single determinant SCF localized ones which exhibit large delocalization tails from one bond to the 

other. Orthogonalization tails of SLMOs on atoms belonging to the next bond are of weak 

amplitude.  

 

Figure 1: π bonding and antibonding SLMOs, determined from the set of CAS(4,4)SCF MOs for 

butadiene.  
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The Lewis picture corresponds to a strongly-localized closed-shell determinant that will be used as 

reference:  

IIii Ii  .0 ,  (3) 

where the i’s are the doubly occupied σ MOs and the I’s are π SLMOs. One should note that thanks 

to the mixing between bonding and antibonding active orbitals, the SLMOs are much more 

localized than the SCF MOs, which are obtained by rotation between the SCF occupied MOs and 

the SCF unoccupied MOs separately. A Fock operator can be defined in this set of MOs  

II

i I

ii KJKJhF    220   (4) 

 where h is the mono-electronic operator, J and K are respectively the Coulomb and exchange 

operators. The energy of the reference is:  

.000  HE   (5) 

where H is the Born Oppenheimer Hamiltonian.  

 

C) First-order interacting space and first-order wave function 

The CAS function can be expressed as a linear combination of the reference and excited 

determinants |K>, obtained from 0  by different excitations. 

 


0000 K KCKC   (6) 

Due to the bi-electronic character of the Hamiltonian, only singly and doubly excited determinants 

have to be considered in the expression of the total energy, provided that the coefficients are exact. 

From the eigen-equation relative to 0  the energy writes: 

000 /)0( CCKHEE KK 
 .  (7) 

Among the various contributions to the energy, the π delocalization energy may be defined, 

according to eq. (7) as  

0***,
/)0( CCHE JIJIJIdeocl     (8) 
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The on-bond single excitations have a negligible effect since the bonds are nonpolar. If the bond 

MO I is defined on the two OAOs a and b, 

.02/)(*110   bbaa FFH   (9) 

The singly-excited determinants that play an important role are the inter-bond charge-transfer 

determinants, such as: 

0**  

 IJJI aa ,  (10) 

that interacts with the reference through 

**0 IJJI FH  
 

 (11) 

In larger polyenes this hopping integral between SLMOs is very small except between adjacent 

MOs. The delocalization energy will be given by:  

****0

*,

)( JIIJJIJI

JI

deloc CFCHE   .   (12) 

The matrix element is fixed, and correlation effects change the coefficients of the CT determinants. 

At the first-order of the Möller-Plesset perturbation theory the coefficients of these CT determinants 

are: 

)/()/( *****00*0* JJIIIJJIJIJIJI FFFHHHC   . (13) 

In full generality the Möller-Plesset second-order delocalization energy is given by  

 
*,

**

2

*

)2( )/(
JI

JJIIIJ

MP

deloc FFFE . (14) 

Eq (14) suggests that the delocalization energy (in absolute value) increases when the BLA 

decreases, since this geometry variation, shortening the BC bond and lengthening the AB and CD 

bonds, increases the numerator and decreases the denominator. If one uses an Epstein Nesbet zero-

order Hamiltonian the denominator introduces an important hole-particle attraction integral JIJ*  

(and a negligible inter-bond exchange integral KIJ*  ), 

)/()( ***

2

*

*,

)2(

IJJJIIIJ

JiI

EN

deloc JFFFE    (15) 

The most important double excitations are: 
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i) intra-bond double excitations ** IIII  , contributing by  

 


 

I IIII

II
IIII

I

IIbondIntra
FF

K
CKE

**

2

*
***

2
,  (16) 

where *IIK  is an exchange integral, 2/)(* abaaII JJK  , if a and b are the two OAOs spanning the 

bond I. This excitation tends to lengthen the double bonds as the magnitude of the numerator 

increases while that of the denominator decreases with the distance between the centers. In this 

sense these excitations may contribute to reduce the BLA and their impact has to be numerically 

checked. 

ii) inter-bond double excitations ** JIIJ   may have important amplitudes if I and J are on 

neighbor bonds. They involve 3 types of determinants, namely 

- ** JIJI  , which contribute by 
**

*)*,(2
JIJI

CJJII


 

where the bi-electronic integral is a dipole-dipole interaction *)*,( JJII  

- ** IJJI   is a crossed excitation and involves a very weak interaction *)*,( JIIJ with the 

reference,  

- ** JIIJ   (same spin excitations) which interacts with the reference through 

*)*,(*)*,( JIIJJJII    

The sum of these contributions may be called inter-bond correlation. The total energy involving 

only the  energy corrections may be written as: 

bondInterbondIntradeloc EEEE   .0   (17) 

It is relevant to identify the physical content of the SCF single determinant wave function 

''.'

0 IIii Ii  ,  (18) 

where the localized MOs I’ have delocalization tails from one bond to the other, contrarily to the 

Lewis reference. Due to the single-determinant constraint of the HF-SCF method, the energy 

minimization of this function only proceeds through orbitals delocalization in order to satisfy the 

Brillouin’s theorem.[18, 19] This delocalization cancels the interactions between the SCF 

determinant and its singly-excited determinants. If one starts from the strongly localized function 
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0  to go to the SCF function  
'

0  the energy stabilization can be assimilated to the perturbative 

contribution of the inter-bond CT determinants (Eq. 14 and 15). As it will be shown in the 

following, doubly excited determinants will stabilize these charge transfer components and 

qualitatively change their contribution to the correlated wave function.  

 

D) Dynamic polarization of CT components. 

 

It is important to consider the interaction between a CT determinant *JI and the determinant 

obtained from it by a single excitation *lk  , ** JIkl aa 

  . Hereafter the orbitals k and l may be 

indifferently of π or of σ symmetry. *JI defines a new Fock operator F
IJ*

, which differs from 

the Fock operator of the reference by the following relation 

*0

*

JI

IJ JJFF   

if one neglects the less important exchange operators. F
IJ*

 takes into account the modification of the 

electric field created by the *JI   excitation.  

kFlHaa IJ

JIJIkl

*

*** * 


. 

A special attention may be paid to the excitations giving the largest interaction. If one works with 

localized bond MOs and their antibonding counterpart, the matrix element kFl 0* is zero if the k 

and l MOs are not of the same σ/π symmetry. The important corrections concern the bonding to 

antibonding excitations on the same bond, since the kk* distribution defines a strong on-bond 

dipole. Then the matrix element 

kJJkHaa JIJIJIkk **** *  


 

represents the interaction between the transition dipole kk* and the dipole J*J*-II. From the 

determinant ** JIkk aa 

   one may return to *JI , with the same interaction,  

***** kJJkaaH JIJIkkJI  



  

and one gets a 3
rd

-order correction to the coefficient of this determinant  

)1(

*

******

******)3(

*
))((

JI

kkJJkkIIJJII

JIJIkkJIkkJI

JI C
FFFFFF

HaaaaH
C 















  

One may sum the contributions from the various MOs k and write 
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)1(

*

*******

2

*

,

)3(

*
))((

*
JI

kkJJkkIIIJJJII

JI

JIk

JI C
FFFFJFF

kJJk
C 







  . 

One may write the 3
rd

-order corrected coefficient of the CT determinant as  

)1(

*

*******

2

*

,

)31(

* )
))((

*
1( JI

kkJJkkIIIJJJII

JI

JIk

JI C
FFFFJFF

kJJk
C 









   

or, replacing 1+d by (1-d)
-1

 

)1(

*

1

*******

2

*

,

)31(

* )
))((

*
1( JI

kkJJkkIIIJJJII

JI

JIk

JI C
FFFFJFF

kJJk
C 











  . 

An elementary algebraic derivation leads to the modified expression of the CT coefficient 











k kkJJkkII

JI

IJJJII

IJ
JI

FFFF

kJJk
JFF

F
C

)(

*

****

2

*

***

*)31(

*  

This is more than a mathematical approximation, one may demonstrate that it is the result of a 

converging series of contributions consisting in back and forth movements from the CT determinant 

to the polarizing doubly excited determinants. One finally sees that the contribution of the dynamic 

polarization contribution results in the decrease of the effective energies of the CT determinants, 

and more precisely as an increase of the hole-particle attraction: 







k kkJJkkII

JI

IJ

eff

IJ
FFFF

kJJk
JJ

)(

*

****

2

*

** . 

These analytical derivations can receive a graphical representation in terms of Feynman diagrams 

(see Figure 2).  
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Figure 2 : Diagrammatic representation of the effect of the single excitations on the effective energy 

of CT determinants. 

 

 

III) Numerical results at SCF, CASSCF and post-CAS levels and discussion 

 

A) Computational details 

In a first subsection, we will focus on butadiene for which we will present a detailed analysis of the 

results. In a second subsection, our interpretation will be extended to hexatriene and octatetraene 

larger polyenes. Ideal planar geometries have been considered, the CH bond length being 1.085 Å 

and all angles between close C–C–C and C–C–H atoms have been kept equal to 120°. In hexatriene 

and octatetraene all short (long) bond lengths are kept identical. Ground state energies and wave 

functions as functions of BLA have been calculated imposing the constraint that the sum of the 

short and long bond lengths takes the reasonable value of (2*1.4 Å), i.e. l(C=C) + l(C-C) = 2.8 Å. 

The BLA is defined as the difference between long and short bond lengths which vary 

symmetrically around 1.4 Å. Using non-linear regression (cubic spline) of the energy curves, the 

optimal BLA, i.e. the BLA at the energy minimum, has been determined at different levels of 

correlation. The corresponding wave functions have then been analyzed at these precise points to 

provide insights on the factors governing the BLA. For the largest molecules the various levels of 

correlation that have been studied are: i) strongly localized Lewis determinant (built from unitary 

transformations of the active  CASSCF orbitals), ii) single reference SCF 
'

0 , iii) CASSCF 
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(involving all  electrons in all  orbitals) and iv) CAS+S in which all singly excited determinants 

on the top of the CAS have been added to the configuration interaction. In the simplest case of 

butadiene, we have also studied the Lewis ( 0 ) reference plus double excitations ( 0 + D) and 

plus single and double ones ( 0 + SD) remaining in the  active space, the CAS(4,4)+SD and the 

CAS(10,10) where all valence  and  orbitals located on the carbon-carbon bonds and their 

electrons have been added to the active space, and finally the CAS(10,10)+S. Calculations have 

been performed using the MOLCAS 7.8[20–22] and CASDI[23, 24] codes. Relativistic Correlation 

Consistent Atomic Natural Orbitals (ANO-RCC[25]) basis sets were used for all atoms; for C a 

(14s9p4d) set is contracted to [3s2p1d] and for H a (8s4p) set is contracted to [2s1p]. 

 

B) Butadiene 

1. Dramatic impact of correlation on BLA 

Table S1 reports the ground state energies for different BLA computed using strongly localized 

MOs for the reference 0 (Lewis), 0 +D, 0 +SD, 0' (SCF), 0' +SD, the CAS(4,4)SCF, 

CAS(4,4)+S, CAS(4,4)+SD, CAS(10,10)SCF and CAS(10,10)+S levels. Table 2 reports the BLA 

(in Å) at the minimum of energy of these various levels of calculations. The Lewis function 0

exhibits a very strong BLA (0.200 Å). The SCF function incorporates the delocalization through 

MO mixings (essentially due to interactions between the reference and the singly excited 

determinants) inducing a reduction of the BLA to 0.147 Å. If one adds only the double excitations 

to the Lewis reference 0 , labelled 0 +D in Table 2, the BLA is reduced (0.171 Å), which shows 

that the intra-bond  double excitations on the Lewis function are partly responsible for the BLA 

reduction.  Moreover, adding the Singles to this space ( 0 +SD) the BLA is submitted to a major 

reduction and falls to 0.133 Å.  

The CAS(4,4)SCF energy is minimal (-155.084717 a.u.) for a significantly smaller BLA of 0.114 

Å. When adding the 1h-1p excitations to the CAS, i.e. at the CAS+S level, the minimal energy is 

E= -155.169375 a.u. and the BLA is further decreased to 0.099 Å. The BLA obtained by adding 

single and double excitations (CAS+SD) is in between (0.109 Å). However, this last value may 

suffer from size-consistency defect as the norm of the CAS components of the wave function is 

reduced to 0.86 instead of 0.95 for the CAS+S. Indeed, the Davidson correction applied to the 

CAS+SD results decreases the BLA to 0.103 Å. 
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Augmenting the active space to the CC valence MOs, CAS(10,10), gives a further reduction of the 

BLA (0.097 Å), with a minimal energy of -155.162200 a.u.  Adding the single excitations on the 

top of this wave-function leads to a additional reduction of the BLA (0.084 Å). The role of the  

bonds will be analysed in section 3. 

 

Table 2: Butadiene: optimized BLA (in Å) obtained at different levels of calculations (see text) and 

ground state energy +155 a.u. at the minimum. 

Level of 

calculation 0  0 +D 0 +SD 0 ’ (SCF) 0 ’+SD 

Optimal BLA 

(energy) 

0.200 

(+.006004) 

0.171 

(-.047527) 

0.133 

(-.078481) 

0.147 

(-.030711) 

0.131 

(-0.547608) 

Level of 

calculation 
CAS(4,4) CAS(4,4)+S CAS(4,4)+SD CAS(10,10) CAS(10,10)+S 

Optimal BLA 

(energy) 

0.114 

(-.084717) 

0.099 

(-.169375) 

0.109 

(-.575264) 

0.097 

(-.162200) 

0.084 

(-.279843) 

 

 

2. Physics in the π valence space: 

 

a) Leading contributions 

Table 3 reports the coefficients in intermediate normalization, i.e. divided by C0, of the largest (or 

having a qualitative role in the researched factors) determinants in the various calculated wave 

functions i.e.: i) the coefficient of the 4 inter-bond charge transfer singly excited determinants such 

that      
 , noted CCT,  ii) the coefficient of intra-bond doubly excited determinant such that 

          
   

     and noted CINTRA, iii) the coefficients of the inter-bond doubly excited determinant 

noted CINTER. Among these determinants, we could distinguish those resulting from excitations 

such as           
   

    , i.e. keeping the same spin on the double bond from those involving different 

spins such that           
   

    . Table 3 only reports the largest coefficients CINTER that have the 

same spins on each double bond. One may note that as for a sake of comparison with further 

calculations we have also reported the values obtained for the optimal BLA (0.099 Å) obtained at 

the CAS(4,4)+S level. Detailed analyses reported hereafter have been performed for this value of 

the BLA.  

 



14 

Table 3: Butadiene: coefficients of the most important determinants (see text) for different BLA (in 

Å) at different levels of calculations. The last column refers to a CASSCF involving the 2 π bonds 

and the 3 CC σ bonds. 

 

 CAS(4,4)SCF CAS(4,4)+S CAS(4,4)+SD CAS(10,10)SCF  

BLA 

CCT/C0 

  

   
  

CINTRA

/C0 

       

   
   

     

CINTER

/C0  

       

   
   

     

CCT/C0 

  

   
  

CINTRA

/C0 

       

   
   

     

CINTER/

C0  

       

   
   

     

CCT/C0 

  

   
  

CINTRA/

C0 

       

   
   

     

CINTER/

C0  

       

   
   

     

CCT/C0 

  

   
  

CINTRA/

C0 

       

   
   

     

CINTER/

C0  

       

   
   

     

.16 .1382 .2071 .0525 .1591 .1691 .0550 .1483 .1768 .0508 .1415 .1737 .0484 

.14 .1426 .2107 .0568 .1639 .1718 .0589 .1528 .1797 .0545 .1460 .1766 .0520 

.12 .1472 .2145 .0614 .1689 .1745 .0631 .1574 .1827 .0585 .1505 .1795 .0560 

.10 .1519 .2183 .0662 .1740 .1773 .0676 .1622 .1857 .0627 .1552 .1825 .0602 

.099 .1522 .2185 .0666 .1742 .1774 .0678 .1624 .1859 .0629 .1555 .1827 .0604 

.08 .1569 .2222 .0718 .1792 .1801 .0723 .1673 .1889 .0681 .1601 .1856 .0648 

   

A first observation concerns the evolution of these coefficients as a function of the BLA. As 

expected from equations 12, 13 and 16, all coefficients increase when the BLA decreases.  

It is worth analyzing the coefficients of the determinants in the CAS(4,4) calculations. The largest 

excited coefficients (Table 3) are those of intra-bond double excitations, followed by those of the 

CT components. One may notice that the sensitivity to the BLA is larger for the CT components 

than for the intra-bond double excitations. Going from BLA=0.16 to 0.08 Å, the CT coefficients 

increase by 13% while those of the double excitations only increase by 7%. 

The coefficients of the inter-bond double excitations are reported in Tables 3 and S2.  From the 

analysis of the interactions with the reference, reported in section II, one might expect that the 

largest coefficient would concern the determinant 
*2*121 

 obtained from the reference through the 

          
   

     excitation since it interacts with the reference through a strong dipole-dipole interaction 

(π1π1*,π2π2*). Oppositely the determinants 
*1*221 

 obtained from the reference through the 

          
   

     excitations only interact with the reference through the very small (π1π2*,π2π1*) integral, 

interaction between two weak product (or overlap) distributions. Surprisingly the largest coefficient 

concerns the           
   

     excitations. The reason is that these determinants may also be obtained 
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from the reference through the products of two CT single excitations π1π2* of α spin and π2π1* 

of β spin. The second-order contribution to the coefficient of this determinant, involving the 

sequence 
*1*221*12*210 )(

  or ,  is larger than the first-order one. The 2nd-order 

coefficient of 
*1*221 

  can be evaluated as 

)3(*

11*12

)3(*

11*12 )(/)(2/2   EFCEFCC CTCTInter . since the doubly excited 

determinant consists in the product of two intra-bond triplets. Comparatively one should remember 

that )(/ *

21*12   EFCCT  so that the coefficient of the doubly excited determinant may be 

estimated to be )3(*

11

*

21

2
)(/)(   EECCT

. Now one should remember that the excitation 

energy to the π intra-bond to π* triplet state is about 4eV, while the inter-bond CT excitation is 

close to 9 eV, which results in a significant enhancement of the coefficient of 
*1*221 

 . And 

consistently the variation of the amplitude of these excitations when decreasing the BLA is 

approximately the square of the variation of CT coefficients (31% for the variation of the CINTER/C0  

when going from 0.16 to 0.08 Å BLA and 27% for the variation of the square of the CT coefficients 

for the CAS(4,4)+S ).  

 

b) Interpretation: role of dynamic polarization on inter-bond CT components in the π valence 

space 

Our purpose is to understand which are the doubly excited determinants responsible for the increase 

of the coefficients of the inter-bond CT determinants (πiπj* CT). The coefficients of the intra-

bond doubly-excited determinants are indeed large, but their interactions with the ππ* CT imply 

weak inter-bond overlap distributions, for instance 

0*)11*,1*2(22*1*1.221*2. coreHcore .  (17) 

The largest interactions with the CT determinants involve the doubly excited determinants which 

are obtained by an intra-bond single excitation on the top of the CT determinant, such as 

*221*2.core  obtained by a π2π2*excitation on 221*2.core . This determinant is doubly excited 

with respect to 0 and interacts with it, but the interaction 

*)22*,12(*221*2. 0 Hcore    (18) 
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implies the negligible 12* distribution. On the contrary the interaction between the doubly-excited 

determinant and the CT determinant is large, since it consists in the interaction between a transition 

dipole and a dipole 

*22*221*2.221*2.. 1*2 JJcoreHcore  .  (19) 

The operator J2* - J1 represents the deviation of the electric field created by the CT distribution 

(AB)
+
 (CD)

-
 from the mean field. In the integral *22 1*2 JJ   the first operator does not 

contribute, due to local symmetry reasons, since the distribution 22* is antisymmetric with respect 

to the center of this bond, while J2* is symmetric. One may develop the other integral in terms of 

atomic bi-electronic integrals and one obtains  

4/)(*22 1 adbc JJJ  ,  (20) 

which is a positive and large quantity. The physical role of this excited determinant is to polarize 

the π2 bond between atoms C and D in the direction of the hole created on bond AB by the charge 

transfer excitation from AB to CD. This interaction increases the charge on atom C and decreases 

that on D.  

Of course the π bond 1 between atoms A and B is also subject to a polarization effect in the CT 

state, the process passes through the interaction between the CT determinant and a 

π1π1*excitation on 221*2.core , leading to the determinant 22*1*2.core . The interaction is 

*1122*1*2.221*2. 1*2 JJcoreHcore  ,  (21) 

the same operator J2* - J1 is now acting on the 11* dipolar distribution. The contribution passes 

through the J2* operator, and 

4/)(*11 *2 adbc JJJ  ,  (22) 

the same quantity as for the polarization of the CD bond. Now the singly occupied π orbital of the 

AB bond is polarized towards the atom A by the field created by the negatively charged CD bond. 

One may write the mixing between the 12* CT determinant 221*2.core and the doubly excited 
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determinant 22*1*2.core as a relaxation of the MO 1 in the CT determinant, leading to 

22"1*2.core , with 

*1
*11

1"1

*1*211

*2





E

J
,  (23) 

the denominator being an excitation energy from the reference to the doubly excited determinant. 

The numerator being negative, the mixing coefficient between 1 and 1* is positive, and thanks to 

our definition of 1* the coefficient of I” is increased on A and decreased on B. In the 12* CT 

component the electron remaining on bond 1 is polarized in direction of atom A, far from the 

negatively charged CD bond. This is of course a dynamic process, impossible to be kept in a static 

treatment. These mechanisms fall as special cases in our general development about dynamic 

polarization of CT components, they dress the energy of the 12* CT determinant by the 

excitations kk*= *11  and by kk*= 22*. 

 

3. Polarization of σ bond electrons 

Dynamic polarization of CT components also concerns the σ bonds, their electrons also feel the 

fluctuation of the electric field created by the delocalization of the π electrons. Indeed, one can see 

in Table 3 that the CAS+S increases the coefficient of the inter-bond CT determinants by 14%. As a 

consequence, the off-diagonal density matrix elements between orbitals b and c are increased, 

resulting in an enhancement of the π bond index of the assumed single bond and therefore in a 

reduction of the BLA. In contrary the coefficients of the intra-bond doubly excited determinants 

decrease. This increase of the CT coefficients decreases when the BLA is reduced. 

In a second approach one enlarges the active space of CASSCF treatment to the three CC bonding 

MOs and their valence antibonding counterparts. This iterative procedure starts from the localized 

orbitals, the resulting additional active MOs are strongly localized on bond AB for σ1 and σ1*, on 

bond CD for σ2 and σ2*, and on bond BC for σc and σc*. The optimal BLA for the CAS(10,10)SCF 

in Table 2, is 0.097 Å, i.e. very close to that of the CAS(4,4)+S. This enlarged CASSCF treatment 

only runs on processes involving valence CC sigma MOs, while the CAS(4,4)+S and CAS(4,4)+SD 

consider all inactive MOs, including the CH bond MOs which run on semi-active double 
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excitations, and in CAS(4,4)+SD on inactive double excitations which are not considered in the 

CAS(4,4)+S treatment. 

In order to analyze the effect of the different  orbitals, calculations with either frozen CH(+ 

core)or CC MOs have been performed. According to the results presented in Table 4, the impact of 

CH(+ core) MOs is very limited. Table S2 that shows the variation of the most important 

coefficients for BLA=0.099 confirms this result.    

 

Table 4: Butadiene: optimal BLA value in Å for different sets of kept MOs (all the others were 

frozen or deleted) and different level of excitations, using CAS(4/4)SCF MO. In all cases, the active 

space contains the 4  orbitals. Numbers in italic below the BLA are the difference to the BLA 

obtained at the CAS(4,4)SCF level. 

CI 

CAS(4,4) 

SCF 

 

CC and CC* only CH and CH* only All Valence MOs Non Valence * All MOs 

+S +SD +SDT +S +SD +SDT +S +SD +SDT +S +SD +S 

BLA (Å) 

BLA(Å) 

0.114 

0.000 

0.103 

-0.011 

0.097 

-0.017 

0.096 

-0.018 

0.113 

-0.001 

0.115 

+0.001 

0.115 

+0.001 

0.104 

-0.010 

0.102 

-0.012 

0.099 

-0.015 

0.110 

-0.004 

0.114 

0.000 

0.099 

-0.015 

 

As the CCare responsible for the main effects of the dynamic polarization of the  electrons, a 

further analysis will consist in introducing these MOs in the active space, which leads to a 

CAS(10,10)SCF. Among the various excitations, we will distinguish the single and double 

excitations by proceeding through different calculations. Starting from the CAS(10,10)SCF MOs, 

strongly localized  and  MOs will be generated through unitary transforms. Then CAS(4,4)+1h-

1p and CAS(4,4)+2h-2p calculations will be performed. Comparisons between the coefficients of 

the most important determinants can be performed from the results appearing in Table 5. The main 

conclusions are the following: 

- The largest coefficients out of the minimal CAS are the intra-bond closed shell excitations, 

(σi σi*)
2
 (lines 5 and 6), and the double excitations coupling transition dipoles in both the 

σ and π systems in the same double bond (σi σi*).(πi πi*) (line 7, 9 and 10). They all tend 

to stretch the double bonds. 

- Since our σ bond MOs are now strongly localized, the inter-bond σ CT determinants have 

important coefficients, (0.036, line 8). 
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- The doubly excited determinants which are obtained by an intra-bond single (σi σi*) 

excitation on the top of the π CT determinants, responsible for the dynamic polarization of 

these π CT determinants (lines 13 and 15) have important coefficients; the largest one, 

0.015, concerns the single excitation on the central σ bond, σc σc*, acting on π CT 

determinant, and obtained from the reference by the (σc σc*).(πi πj*). This is an expected 

result since the central CC bond is in the very middle of the (AB)
+
 (CD)

-
 dipole. 

- Interestingly, one may notice the occurrence of determinants (line 19) which introduce the 

response of the π electrons to the fluctuation of the σ population, introduced by the σ CT 

components between adjacent bonds. The corresponding determinants are obtained from the 

reference by (σi σj*).(πk πk*).  

 

 

One should remember that CAS(4,4)+S and CAS(4,4)+SD involve more excitations than the 

CAS extended to the CC bonds, they introduce excitations to non-valence MOs and include the 

dynamic polarization of the CH bonds, which might be of the same order of magnitude as that 

of the CC bonds. In order to estimate the relative contributions of the CH versus CC bonds to 

the dynamic polarization, we have frozen the CH bonding and antibonding MOs as well as the 

core orbitals in the post-CAS treatments. As one can see in Table S2, the ratio CCT/C0 increases 

from 0.152 to 0.166 at the CAS(4,4)+S when the “CH+Core” are frozen, while it raises to 0.174 

when all the occupied MOs are allowed to contribute to the polarization. The most relevant 

information concerns the value of the BLA calculated at different levels and reported in Table 4. 

One sees that starting from the CASSCF (4,4) which gives a value of 0.114 for the BLA, adding 

the Singles of the CH only lets this value untouched (0.113) while adding only the CC reduces 

this value to 0.103. Treating simultaneously all valence MOS does not change this value. 

One may wonder whether the correlation implying non-valence MOs may affect the BLA. 

Actually in the 12* CT determinant, the CD bond 2 is negatively charged and a relaxation of 

its MOs toward diffuse MOs might also contribute to the stabilization of this ionic component. 

We have performed a CAS+S calculation restricting the Singles to those involving non-valence 

MOs (Table 4). The impact on the BLA is negligible, so that we may conclude that most of the 

dynamic polarization takes place in the valence space. 
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Table 5: Butadiene (BLA 0.099 Å): largest coefficients of the singly and doubly excited 

determinants from the reference 0 and within the CAS(10,10)SCF. This CAS involves π and σCC 

valence active MOs. π 1 and σ1 are relative to the AB bond, π2 and σ2 are relative to the CD bond, σc  

is the BC central bond. Columns 2 and 3 concern truncated CIs, limited to the CAS(4,4) and 1 hole-

1 particle or 2 holes-2 particles excitations within the active MOs of the CAS(10,10)SCF. 

 

Coefficients  

(divided by C0, 

except C0)            

CAS(4,4)+S  

inside σ/σ* CC 

CAS(4,4)+SD 

inside σ/σ* CC 
CAS(10,10)SCF 

  Energy in a.u. -155.124328 -155.160551 -155.162198 

 0  0.906 0.900 0.899 

  excitations 
1             

    
  -0.182 -0.183 -0.183 

2 π1→π2* 0.157 0.155 0.155 

3             
    

  -0.061 -0.061 -0.060 

4        
   

  -0.047 -0.046 -0.046 

  excitations and mixed excitations 
5         

   
     - -0.074 -0.076 

6         
   

     - -0.058 -0.059 

7         
      

  0.057 0.056 0.057 

8      
  -0.036 -0.036 -0.037 

9        
   

  0.035 0.031 0.032 

10           
   

     0.022 0.025 0.025 

11           
   

     -0.021 -0.021 -0.021 

12           
   

     -0.015 -0.016 -0.017 

13        
   

  0.015 0.015 0.015 

14             
   

     - -0.015 -0.015 

15           
   

     0.014 0.013 0.014 

16         
   

     - 0.014 0.014 

17         
    

  - -0.011 -0.010 

 1 c  1*c*  - 0.008 0.009 

19        
   

  0.009 0.009 0.009 

20      
  -0.009 -0.008 -0.009 

 

 

III.2 Hexatriene and Octatetraene 

The same methodology has been used on the next linear polyenes, hexatriene and octatetraene in 

their all-trans conformation. Tables S3 and S4 report the ground state energies for different BLA 

computed using strongly localized MOs SCF, CAS(Full )SCF and CAS(Full ))+S levels of 

calculations. The optimal BLA and most important coefficients obtained at different levels of 
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calculations for hexatriene appear in Tables 6 and 7, those for octatetraene in Tables 8 and 9. For 

hexatriene the calculated optimal BLA values are 0.140 Å at the SCF level, 0.108 Å at the 

CAS(6,6)SCF level and reach the weakest BLA value, (BLA=0.093 Å) when one adds the 1h-1p 

excitations on the CAS(6,6). For octatetraene the corresponding values are 0.137 Å at the SCF 

level, 0.104 Å at the CAS(8,8)SCF level, and 0.089Å when on adds the 1hole-1p excitations. The 

BLA decreases when the polyene length increases at all levels of treatments. While a variation of 

~.01 Å is obtained at the various levels of calculations presented in Table 1 between butadiene and 

octatetraene, the relative variation (difference of BLA/ mean values of BLA) is stronger at the 

CAS(full π)+S level (0.018 at SCF, 0.021 at CAS(Full ) and 0.027 at CAS(full π)+S).  

.For the same bond alternation and the same level of treatment the coefficients of the CT excitations 

between adjacent double bonds, reported in tables 7 and 9 are almost constant, and very close or 

identical to those obtained for butadiene, with the same increase by the addition of the 1hole-

1particle excitations. The coefficients of the central to external bond excitations and those of the 

external to central bonds are almost identical, the side effects are very weak. The long-range charge 

transfers, 13* in both hexatriene and octatetraene, and 14* in octatetraene are more strongly 

affected by addition of the dynamic polarization. Going from CAS to CAS+S increases the 

coefficients of the CT between adjacent bonds by 20%, between second-neighbor bonds by 30 % 

and those relative to 3
rd

-neighbor bonds by 47%. Two factors may explain these trends. The first 

one may be the strength of the dipole associated to the CT, for instance 14* CT component 

implies the strong dipolar operator J4* - J1. Another factor contributes to this increase, namely the 

fact that the long range CT are not essentially obtained by a direct jump from one bond to a remote 

bond, but by propagation of the hole or the particle, in processes such 12*  -> 13* -> 14*  

(particle propagation) or 34*  -> 24* -> 14*  (hole propagation). At each of these steps a 

dynamic polarization takes place and in the 3
rd

-order contribution to the 14* coefficient each 

denominator is lowered by the dynamic polarization, so that the amplitude of the effect is more and 

more pronounced. 

 

Table 6 : Hexatriene: optimal BLA value in Å for different MO frosts and different levels of 

calculations, using CAS(6/6)SCF MOs. Numbers in italic below the BLA are the difference to the 

BLA obtained at the CAS(6,6)SCF level. 

 

CI CAS(6/6) 
CC and CC* only CH and CH* only All Valence MO Non Valence * All MO 

+S +SD +SDT +S +SD +S +SD +S +SD +S 
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BLA (Å) 

BLA(Å) 
0.108 

0.099 

-0.009 

0.095 

-0.013 

0.095 

-0.013 

0.106 

-0.002 

0.108 

+0.000 

0.099 

-0.009 

0.099 

-0.009 

0.102 

-0.006 

0.106 

-0.002 
0.093 

-0.015 
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Table 7: Hexatriene: ground state coefficients of the most important determinants for CAS(6,6)SCF 

and CAS(6,6)+S calculations for the optimal BLA (=0.092 Å) obtained at the CAS(6,6)+S level. c 

is the  bond between the C and D atoms. 

 

CAS(6,6)SCF CAS(6,6)+S 

CCT/C0 

  
   

  

CCT/C0 

  
   

  

CINTRA

/C0 

       

   
   

     

CINTRA

/C0 

       
   

   
     

CINTER

/C0  

       

   
   

     

CCT/C0 

  
   

  

CCT/C0 

  
   

  

CINTRA

/C0 

       

   
   

     

CINTRA

/C0 

       
   

   
     

CINTER

/C0  

       

   
   

     

CI 

/C0 

       
   

        

0.153 0.159 0.220 0.220 0.071 0.175 0.182 0.180 0.177 0.071 0.015 

 

 

Table 8: Octatetraene: optimal BLA value in Å obtained at different levels of calculations, using 

CAS(8/8)SCF MOs. 

 

BLA (Å) SCF CAS(8,8)SCF CAS(8,8)+S 

Optimal BLA 0.137 0.105 0.089 

 

 

Table 9: Octatetraene: ground state coefficients of the most important determinants for 

CAS(8,8)SCF and CAS(8,8)+S calculations for the geometry of the minimum energy of the 

octatetraene model at the CAS(8,8)+S level (BLA=0.089). 

 

CAS(8,8)SCF CAS(8,8)+S 

CCT/C0 

     
  

CCT/C0 

     
  

CCT/C0 

     
    

CCT/C0 

     
  

CINTRA/C0 

       

   
   

     

CINTER/C0  

       

   
   

     

CCT/C0 

     
  

CCT/C0 

     
  

CCT/C0 

     
  

CCT/C0 

     
  

CINTRA/C0 

       

   
   

     

CINTER/C0  

       

   
   

     

.154 .161 .043 .015 .220 .072 .175 .183 .057 .022 .181 .073 
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IV) Conclusion 

 

This work illustrates limits of mean-field calculations and identifies their drawbacks on the 

paradigmatic problem of BLA of linear polyenes. In the single determinant SCF treatment a single 

set of doubly occupied MOs is optimized. A VB-type reading of this wave function is possible but 

i) the combinations of the VB components are fixed by the MO delocalization ii) important 

correlation effects are missing, for instance the preference for neutrality or for the intra-atomic 

Hund’s rule satisfaction.[26] In a valence CASSCF function, the function is spanned on all possible 

Orthogonal Valence Bond components, introducing much flexibility. Nevertheless, we must not 

forget two limitations of this practice, (beyond the neglect of the short-range electron-electron 

avoidance, i.e. of the Coulomb cusp): 

- The CASSCF uses a unique set of valence MOs to describe the various components of the 

CAS function, while each of these components would require MOs appropriate to its 

associated electric field. This remark has led to the so-called Breathing Orbital Valence 

Bond (BOVB) method,[27] which optimizes specifically the valence orbitals of each VB 

component. In their ground state the linear polyenes are not highly correlated and the single-

determinant SCF function should be a good entrance in the wave-function building, a 

CASSCF description does not seem to be required.  As shown in the present work, the full- 

valence CASSCF treatment incorporates part of the component-specific relaxation of the 

valence MOs, the 1hole-1particle excitations on the top of the leading configurations which 

remain in the CAS introduce the largest part of dynamic polarization effects. 

- As the active space is limited to a subset of electrons and MOs, the numerous inactive 

electrons remain treated in a mean field approximation. Their dynamic response to the 

fluctuation of the field created by the active electrons should be considered, and this can be 

done at a reasonable computational cost by performing a CAS+1hole-1particle CI. Enlarging 

the CAS to its maximum tractable size is not the best solution, since in principle dynamic 

polarization concerns all the inactive electrons. Those of all CC and CH bonds react to the 

fluctuation of the electric field of the π electrons. It is certainly preferable to start from a 

moderate-size active space and to add the full response of the inactive electrons at a rather 

low-cost treatment than to enlarge the CAS.  
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It is interesting to note the relation of this typical organic chemistry problem with an apparently 

totally different coordination chemistry one. In transition-metal binuclear magnetic complexes 

where two unpaired electrons occupy two atom-centered 3d type orbitals, it seems reasonable to 

treat the singlet-triplet gap starting from a CASSCF of 2 electrons in 2 orbitals and then to add the 

configurations which, according to a perturbative expansion, may contribute to the energy gap. The 

classes of excitations involving either 2h-1p or 1h-2p happen to play an unexpected important 

role.[28] It has been shown that they contribute to an increase of the delocalization between the 

metals and the ligands by revising the spatial extent of the magnetic orbitals.[11] The effect passes 

through the dynamic polarization of the LMCT determinants, which is already true in mono-

radicals, such as CuCl2.[29]  and it is observed as well in organic radicals such as phenyl or 

diradicals as xylylenes.[30] 

The mean-field approximation underlying MOs descriptions faces severe limitations and must 

frequently be overcome by accessing correlated treatments. Understanding multi-configurational 

wave functions sometimes requires tedious analyzes but produces an intelligibility of the physical 

factors governing a property. In our opinion, it is much easier to understand the correlation effects 

using localized MOs or atom-supported orbitals, as is done in Valence-Bond treatments, than using 

delocalized symmetry-adapted MOs.[26] Understanding qualitatively the physics taking place in the 

valence space, inside a limited CAS and beyond, is not only intellectually satisfying, but it also 

opens the route to the conception of computational tools which remain close to the minimum level 

of treatment of the key physical effects. Quantum chemistry as a science is not limited to furnishing 

numbers, it must in principle provide explanations, identify physical effects, predict trends, possibly 

laws[31]  and produce methods. It is in this spirit that Fernand Spiegelman has practiced this 

discipline throughout his career. The recognition of the essentially local character of the electronic 

interactions which we exploited here is certainly at the basis of his fruitful developments of the 

DFTB method.[32, 33] 

Acknowledgements: The authors are deeply grateful to Fernand Spiegelman for his scientific 

openness, generous support, stimulating discussions and for his valuable friendship.   
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