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Abstract

Virtual screening is an essential part of the modern drug design pipeline, which
significantly accelerates the discovery of new drug candidates. Structure-based virtual
screening involves ligand conformational sampling, which is often followed by re-scoring
of docking poses. A great variety of scoring functions have been designed for this pur-
pose. The advent of structural and affinity databases and the progress in machine-
learning methods have recently boosted scoring function performance. Nonetheless,
the most successful scoring functions are typically designed for specific tasks or sys-
tems. All-purpose scoring functions still perform poorly on the virtual screening tests,
compared to precision with which they are able to predict co-crystal binding poses.
Another limitation is the low interpretability of the heuristics being used.

We analyzed scoring functions’ performance in the CASF benchmarks and dis-
covered that the vast majority of them have a strong bias towards predicting larger
binding interfaces. This motivated us to develop a physical model with additional
entropic terms with the aim of penalizing such a preference. We parameterized the
new model using affinity and structural data, solving a classification problem followed
by regression. The new model, called Convex-PLR, demonstrated high-quality re-
sults on multiple tests and a substantial improvement over its predecessor Convex-PL.
Convex-PLR can be used for molecular docking together with VinaCPL, our version
of AutoDock Vina, with Convex-PL integrated as a scoring function. Convex-PLR,
Convex-PL, and VinaCPL are available at https://team.inria.fr/nano-d/convex-pl/.

Abbreviations

CASF - Comparative Assessment of Scoring Functions,
RMSD - Root Mean Squared Deviation,
SVM - Support Vector Machines,
PDB - Protein Data Bank,
SAS - Solvent-Accessible Surface,
SASA - Solvent-Accessible Surface Area.

Introduction

Rigorous estimation of the binding free energy requires exhaustive sampling in a certain
thermodynamical ensemble. However, this approach is computationally prohibitive for vir-
tual screening applications. Therefore, multiple attempts have been made to approximate
the binding free energy by minimizing or totally excluding the sampling step. This resulted
in a considerable number of scoring functions,1–31 which, in general, aim to approximate the
free energy change upon binding. The binding Gibbs free energy can be written as32,33

∆G = 〈UPL〉 − 〈UP 〉 − 〈UL〉+ 〈W PL〉 − 〈W P 〉 − 〈WL〉 − T∆Sconfig, (1)

where the P superscript refers to the interactions with the protein, L - with the ligand, 〈U〉
and 〈W 〉 are the averaged potential and solvation energies, respectively, and ∆Sconfig is the
entropy change related to protein and ligand motions upon complex formation. However,
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many of the approaches would make very crude approximations of the entropic term and
interactions with the solvent in the above equation. This causes the known flaw of many
knowledge-based scoring functions preventing them from being used in screening tests. More
precisely, many of them have a strong bias toward bigger and tighter protein-ligand interfaces.
Conformations of a ligand inside a binding pocket that have a higher number of interactions
with the protein, even weak ones, will often be preferred over the native ligand pose. However,
in reality, some parts of the binding site and the ligand exposed to the solvent could be more
favorable compared to the corresponding protein-ligand contacts.

The preference of larger interfaces can be illustrated by the publicly available results of
scoring functions evaluation on the virtual screening test of CASF-201334 and CASF-201635

benchmarks shown in Figure 1 (a). Here one can see that the majority of the assessed scoring
functions prefer binding with non-native ligands (decoys) with, on average, up to twice bigger
buried solvent-accessible surface area (SASA) values than a native ligand has. Figure 1 (b)
shows that, in fact, for some scoring functions this trend is even stronger if the total number
of atoms is used instead of the SASA, buried upon binding. Notably, AutoDock Vina9 and
AutoDock Vina-based ∆VinaRF20

22 scoring functions do not suffer from this bias that much.
This can be explained by the way AutoDock Vina scales its binding energies by the number
of ligand’s rotatable bonds. GlideScore-XP7 also does not express any considerable bias
toward the overall ligand molecule size neither. This is probably owing to its solvation term
and the correct penalization of contacts between polar and hydrophobic groups.

Many other empirical5,6,9,26,37 and some knowledge-based8,15,38 scoring functions circum-
vent these problems by including additional entropic and solvation terms in their expres-
sions. A classical approximation of ligand conformational entropy is the number of torsions
or atoms involved in rotatable bonds.5,6,9,15,38,39 More rigorous estimations may include sam-
pling of the ligand conformational space.26,40 Some scoring functions also include rigid-body
contributions approximated with a logarithm of the ligand mass,5,15 even though this ap-
proximation, as well as the involvement of the mass-dependent rigid-body entropy itself, is
arguable.33,41,42 Basic implicit representations of solvation include interaction terms propor-
tional to the SASA,22,38,43 or solvent-accessible volume difference upon binding.44–47 Some
algorithms utilize SASA in more sophisticated ways, such as calibration using the octanol-
water partition coefficients alongside with separate hydrogen bonds description aiming at a
better hydrophobic effects representation,48,49 or integrating the surface curvature factor of
the molecules over the solvent-accessible surface area.50 Another way to compute solvation
energy change with an implicit solvent model is to use the 3D-RISM,51 Poisson-Boltzmann,
and generalized Born methods.32,52–54 They are, in general, much more computationally de-
manding, although some approximate solutions are applied in virtual screening.55 Explicit
solvent representation for molecular docking purposes26 requires either high-quality X-ray
structures with the hydration shell resolved or the hydration shell sampling performed by ded-
icated algorithms and molecular dynamics-based pipelines.56–59 Although these approaches
look quite intuitive and generally improve the docking quality, they are mainly used to pre-
dict the water sites for individual targets, which may require manual intervention, making it
hard to apply them on a larger scale. However, this problem can be solved using statistical
potentials for water molecules prediction.60,61

Despite the variety of possible estimations of entropic and solvation terms, Figure 1
implies that some of these strategies are yet not sufficient. In particular, our knowledge-based
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Figure 1: (a)-(b) The purple line represents the average values of buried SASAs and numbers
of atoms computed for ligands that natively bind target proteins and should have been
predicted as the most affine binders[1]. The green boxes correspond to decoys that were top-
ranked by scoring functions assessed on the virtual screening test from the CASF benchmarks
2013 and 2016. The scoring functions are sorted by the ability to predict the highest affinity
binder in the 5% of the top-ranked decoys. (c) Histograms of average ligand buried SASA and
number of atoms computed for the native ”truly binding” ligands (purple) and decoy poses,
top-ranked by Convex-PL (green) in the virtual screening tests from the CASF-2013 and
CASF-2016 benchmarks. SASA values were computed with PyMOL’s36 get area() function
with dot solvent set to 3.
[1] Or be among the most affine binders in several cases when the target protein was known
to bind ligands with higher affinity but without co-crystal structure.

scoring function called Convex-PL16 demonstrated excellent results in the pose prediction
tests but turned out to perform rather average in virtual screening exercises, as illustrated in
Figure1 (c). Indeed, we can see that SASAs of about half of the ligands predicted to be the
best binders are considerably higher than those of the true binders. This clearly indicates a
bias of Convex-PL towards larger binding interfaces. The current work revisits the derivation

4



of empirical scoring functions and presents a reworked Convex-PL model. Firstly, we re-
trained it on a more diverse structural dataset containing cofactors and modified residues to
improve the support of interactions between ligands and molecules other than standard amino
acids. Then, motivated by the general thermodynamics principles, we augmented Convex-PL
with several physics-based terms that aim to penalize the bias of large interfaces. While the
inclusion of the entropic terms in most cases had a clear enhancing effect, the incorporation of
solvation terms turned out to be more challenging and, for Convex-PL, lead to controversial
results. Throughout the manuscript, we will keep referring to the initial version of Convex-
PL as to Convex-PL, the newer version, trained with the regression model, will be called
Convex-PLR. Convex-PLR does not require any specific preparation and parametrization
of input structures. It is designed for relatively small molecules of less than 100 heavy
atoms. Although we support ligand-cofactor interactions, the representation of metals is
still limited. Currently, Fe has the most trustworthy representation driven by its presence in
a considerable amount of heme cofactors. Although the dataset also included Zn, Mg, and
other metals, we are not fully confident in them.

Model

Following the protein-ligand binding free energy derivation in the canonical ensemble sug-
gested in Gilson et al. 33 , the standard binding free energy of a protein A and a ligand molecule
B in a solvent can be written as

∆Go
AB = −RT ln(

Co

8π2

σAσB
σAB

ZN,ABZN,0
ZN,AZN,B

) + P o∆V, (2)

where Co and P o are the standard concentration and pressure, σA, σB, σAB are the sym-
metry numbers of each molecule, ZN,AB, ZN,A, ZN,B are the configurational integrals of the
protein-ligand complex, ligand, and protein in a solvent, respectively, ZN,0 is a configura-
tional integral of this solvent containing N atoms, and ∆V is a solute volume change upon
binding. The integration in the partition functions is taken over the internal coordinates rA,
rB, rS of the receptor, ligand and solvent, respectively, and six external coordinates ζB of
the ligand molecule B that are defined relative to the protein molecule A.

Our general aim is to approximate the configurational integrals ratios using only a single
conformation of the protein-ligand complex instead of rigorously sampling the conforma-
tional ensemble. Firstly, we suppose that the ratio

ZN,AB

ZN,0
of the complex and the solvent

configurational integrals can be approximated with the original Convex-PL knowledge-based
potential,16 which can be represented as a dot product between a structure vector x and a
scoring vector w,

EConvex−PL =

M1∑
k

M2∑
l

(xkl ·wkl) . (3)

In this equation, the Convex-PL potential is considered to be a sum of pairwise interactions
between the protein and the ligand atoms of M1 and M2 atom types, correspondingly. The
structure vector x consists of number density functions extracted from the structures of
protein-ligand complexes, and the scoring vector w contains weights for each contribution
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that are optimized by solving a classification convex optimization problem on a training
dataset. The Convex-PL derivation is described in more detail in the corresponding paper.16

It is important to note, however, that the given form of the Convex-PL function implicitly
contains some additional interactions, especially the hydrophobic ones associated with the
solvent entropy change.

The ligand configurational integral ratio can be rewritten as follows:

ZN,B
ZN,0

=

∫
e−β(U(rB)+U(rB ,rS)+U(rS))drBdrS∫

e−βU(rS)drS
=

∫
e−βU(rB)e−βWBdrB, (4)

where U(rB), U(rS), U(rB, rS) are the potential energy of the ligand, solvent, and the
interactions between the ligand and solvent, respectively, and the integration is taken over
all internal coordinates of the ligand B and solvent S. Also, W (B) is the ligand solvation
energy expressed as

W (B) =

∫
e−β(U(rB ,rS)+U(rS))drS∫

e−βU(rS)drS
. (5)

We assume that for sufficiently small ligands, whose initial local geometries were minimized
by some conformer generator, we can neglect the intra-ligand interactions, U(rB) = 0, over
the sampled ligand conformations drB. We also presume that in this case, WB is almost
constant in the sampled volume. Thus, we obtain the following expression,

ln
ZN,B
ZN,0

= −βWB − ln

∫
drB. (6)

We approximate the first term with a set of descriptors containing solvent-accessible surface
areas of atoms, and grid-based descriptors representing the displaced solvent volume that are
described in more detail in the section below. The second term corresponds to the volume
of the ligand conformational space, which we approximate with the logarithm of the number
of ligand conformational states that can be adopted by rotations about rotatable bonds,

ln

∫
drB ≡ Sconf,B ≈ ln(

# bondsB∏
i

wi). (7)

Here, the product is taken over the ligand rotatable bonds, and the weights wi = 4 − bi
are computed using ith bond order bi. We only consider those bonds, for which the buried
solvent-accessible surface area of at least one atom is greater than zero. The conformational
symmetry is partially taken into account by not counting bonds with the terminal atoms.

A similar procedure can be carried out for the receptor configurational integral, resulting
in

ln
ZN,A
ZN,0

= −βWA − ln

∫
drA. (8)

Following Gilson et al. 33 , we can split the integration coordinates drA to the interface
pocket and rigid parts of the protein and neglect the integral over the rigid one. In gen-
eral, the interface pocket integral can then be taken over the rotameric states of the pocket
residues,40,41,62,63 however, we decided to approximate it with the volumes of hemispheres

6



that a single residue can adopt by rotations around its Cα–Cβ bond. The proportion of
pocket residue’s bonds with allowed rotations in the unbound state can be estimated by the
fraction of its solvent-accessible surface area si,unbound in the unbound state, and the total
surface area of the same residue, if it is extracted from the receptor, si,total. Thus, we obtain

ln

∫
drA ≡ Sconf,A ≈

#residues∑
i

si,unbound
si,single

ln(νi), (9)

where the sum is taken over all the residues at the protein-ligand interface, and νi are
constant rotational volumes, precomputed for each amino acid. Neglecting the displaced
volume, constants, and some of the symmetry effects, we get our final equation,

∆Go
AB ≈ EConvex−PL −WA −WB − Sconf,A − Sconf,B (10)

Interactions with the solvent

As we have mentioned above, Convex-PL implicitly counts some interactions with the solvent
in the corresponding pairwise potentials. To account for the potentially underestimated
interactions in theWA, andWB terms, we collected two types of descriptors. The first one was
the buried solvent-accessible surface areas of atoms of different types that we computed using
the POWERSASA library64,65 with a 1.4 Å probe atom radius. The second one is described
in more detail in SI. It was based on statistics collected for the distance distributions between
the grid points that represented solvent, and the atoms of the complex, protein, and ligand
of different types.

After model training and ablation studies, it turned out that our solvent contributions do
not have a significant effect. When we considerably regularize them, solvent contributions
provide a subtle improvement on the CASF benchmarks, but almost no changes on other
tests – and thus can be neglected. Alternatively, without a considerable regularization,
weights of the solvent contributions trained to predict binding affinities started spoiling the
virtual screening performance. This effect can be, in principle, circumvented by multi-task
learning,19,24,30 but we decided to use a model without additional solvent terms, assuming
that a portion of desolvation effects is implicitly included in the Convex-PL’s statistics.

Regression model with entropic contributions

Convex-PL was initially trained to discriminate native and non-native ligand poses by solving
an optimization problem, in which native and non-native poses within each protein-ligand
complex are compared to each other to minimize the prediction loss. Comparing poses of
different complexes to each other would be meaningless since the ’native’ and ’non-native’
class labels are relevant inside each complex only. This method is very efficient for recon-
structing a scoring function for pose prediction. Its design, however, limits the ability to
predict the absolute binding affinities. Nonetheless, we can circumvent this problem using
regression towards available affinity data. Therefore, we combined the binding constants,
the Convex-PL energy, and flexibility descriptors in a regression model, which lead to a
considerable improvement of the CASF benchmark screening test results. We have tried
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solving both linear and non-linear kernel and ensemble regression problems with inclusion
and exclusion of solvent features, and settled upon the linear ridge regression model. It is
easily regularizable, fast to train, and interpretable. Table S5 of SI lists the resulting feature
weights.

Training data

We were using two separate datasets for the classification and regression parts of the model.
Complexes used in the two CASF benchmarks were excluded from both datasets.

The original Convex-PL potential is trained on PDBBind 2016. It uses a 10 Å cutoff for
the pairwise interactions between its 42 ligand, and 23 protein atom types. In the reworked
Convex-PLR model, we use another version of the original potential, Convex-PLcof , with a
5.2 Å cutoff, 39 ligand and 33 protein atom types listed in Tables S1, S2 of SI. Truncation
of the cutoff radius alone already decreases the virtual screening test bias towards bigger
ligands by reducing the variance and the total number of pairwise interactions. We also
augmented the training decoys generation procedure by adding decoys with hydrogen atoms
randomly substituted by heavy atoms.

To obtain Convex-PLcof , we collected a dataset consisting of PDBBind 2019,66 Binding
MOAD 2020,67 and a set of complexes from PDB that contained cofactors or modified
residues. The latter were chosen based on the PDBe-KB68 annotations, with the exclusion
of some potential solvents and buffers provided by VHELIBS.69 We chose to use biological
assembly submissions as the representatives of the complexes to be consistent with PDBBind
and BindingMOAD, although in some cases of binding at the protein-protein interfaces
such an approach can result in wrong binding site configurations. Finally, we filtered out
complexes with small molecules having low occupancy, RSCC values, and extreme bond
length outliers. RSCC values and geometry outliers were taken from the PDB validation
reports. This procedure resulted in 29,763 protein-ligand pairs that were used for training.
The dataset creation pipeline is described in more detail in Table S3 of SI and is available
at https://github.com/chmnk/pl_binding. Some rare ligand-cofactor atom type pairs,
however, are not present in the training set. In such cases, we set these interactions to zero
and output a warning.

We then trained Convex-PLR on a subset of the PDBBind 2019 general dataset. The
subset was chosen to contain complexes with Convex-PLcof scores that do not correlate
sufficiently with the affinities. To do this, we built a simple regression model and removed
complexes with scores at a 0.5 threshold distance from the trend line. We have also excluded
complexes satisfying a number of criteria listed in Table S4 of SI. The total size of the
regression training subset was equal to 12,019 complexes.

Model assessment and discussion

CASF Benchmarks 2013 and 2016

We firstly assessed the performance of the obtained scoring functions using the two state-of-
the art Comparative Assessment of Scoring Functions (CASF) benchmarks, versions 201370
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and 2016.71 CASF-2013 benchmark consists of 195 complexes, formed by 65 proteins, each
binding to 3 different ligands. To assess the abilities of a scoring function, it suggests four
tests. The ”docking” test aims at the best near-native pose prediction. The ”scoring” test
evaluates the abilities of a scoring function to predict relative binding affinities by computing
the correlation coefficient between the modeled and experimentally obtained binding con-
stants on a set of 195 complexes. In the ”ranking” test, for each protein, the most affine
ligand should be found among three candidates. In the ”screening” test, the goal is to find
the true binders of a protein among a large number of ”alien” ligands, whose binding affinity
to the target protein is unknown.

CASF-2016 benchmark consists of 285 complexes, formed by 57 proteins, each binding
to 5 different ligands. The four provided tests are similar to those from the CASF-2013
benchmark except the ”ranking” test, where ligand ranking is evaluated by a comparison of
average correlation coefficients between experimental and predicted affinities computed for
every five complexes of each cluster. CASF-2013 and CASF-2016 contain evaluation results
of 20 and 34 scoring functions, respectively.

Figures 2 and 3 summarize the results of Convex-PLR performing on these tests. More
details can be found in Tables S6-S8 of the SI. Overall, Convex-PLR demonstrates good
results, although it does not outperform some of the recently released scoring functions.

Scoring and ranking

Convex-PLR obtains scores with rather high correlation to the experimental binding con-
stants, which are plotted in Figure 4. Below we discuss several outliers present in the two
benchmarks.

The binding site of the 3kwa complex includes a zinc atom. Although we included some
metals into the cofactor-containing dataset, this example may indicate that interactions
with zinc are still not fully supported. The binding site of the 4dew complex is located
on an interface between the two monomers. This assembly was constructed by applying a
crystallographic symmetry operator to the monomeric asymmetric subunit. This resulted in
unnaturally small distances (up to 2.5 Å) between the heavy atoms of the ligand aromatic
ring and the lysine amino group of the reconstructed monomer, and, in the underestimation
of the binding constant. The 1hfs complex consists of a large molecule that binds at the
interface of two protein monomers. Similarly to the 4dew example, one of these monomers is
not present in the asymmetric unit, so the excessively favourable score produced by Convex-
PLR can be explained by a possibility of an artefact of the binding interface reconstruction.
In the case of 2pq9, we could not find a good explanation of the particularly high score
predicted by Convex-PLR.

Both CASF-2013 and 2016 ranking test performance did not improve much upon supple-
menting Convex-PL with additional descriptors and even dropped in some cases. However,
seven of fifteen clusters of the CASF-2016 benchmark, in which Convex-PLR made predic-
tions with average Spearman correlation coefficients less or equal than 0.3, were on average
wrongly predicted by the majority of other scoring functions assessed in the benchmark.
Below we would like to discuss the reasons for the poor performance of Convex-PLR on two
clusters.

The 2zcq complex of the 2zcq cluster contains the magnesium ions interacting with the
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Figure 2: CASF-2013 benchmark results. (a) The success rate of finding a native or near-
native pose within 2 Å RMSD in 1 (blue), 2 (green), and 3 (yellow) top-ranked predictions.
(b) Pearson’s correlation between predicted scores and experimental logKa constants. (c)
The success rate of the correct ranking of all the three ligands binding the target protein
(blue), and ranking the best complex as the top one (green). (d) Enrichment factors com-
puted considering 1% (blue), 5% (green), and 10% (yellow) of the top-ranked compounds.
We should note here that Vinardo’s performance was not reported in the corresponding pa-
per17. (e) The success rate of identifying the highest-affinity binder among the 1% (blue),
5% (green), or 10% (yellow) top-ranked ligands. We have added our results of KORP-PLw,29

and the evaluations of Vinardo,17 MT-Net,19 and AGL-Score,25 found in literature. Not all
the test metrics were reported for these scoring functions, resulting in partially empty bars.

ligand, and it seems that we are overlooking the electrostatic interactions between the two
magnesium ions and a phosphonosulfonate ligand headgroup.72 Three other proteins of the
cluster (4ea2, 2zcr, and 2zy1) are ranked correctly. Notably, all versions of Convex-PL and
other top-performing scoring functions overscore the binding affinity of the 3acw complex,
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Figure 3: CASF-2016 benchmark results. (a) The success rate of finding a near-native
pose within 2 Å RMSD in 1 (blue), 2 (green), and 3 (yellow) top-ranked predictions. Native
poses are excluded. (b) Pearson’s correlation with confidence values between predicted scores
and experimental logKa. (c) Spearman’s correlation with confidence values computed for
scores obtained for every five complexes of the 57 clusters. (d) Enrichment factors computed
considering 1% (blue), 5% (green), and 10% (yellow) of the top-ranked compounds. (e)
The success rate of identifying the highest-affinity binder among the 1% (blue), 5% (green),
or 10% (yellow) top-ranked ligands. We have added our results of KORP-PLw,29 and the
evaluations of ∆V inaXGB,26 found in literature. Not all the test metrics were reported for
this scoring function, resulting in partially empty bars.
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Figure 4: Convex-PLR scores, obtained for the CASF benchmarks, versus experimental
binding constants. PDB codes of the outliers and challenging complexes discussed in the
text are highlighted in orange.

which we can hardly interpret.
An interesting case where both Convex-PLR and the top-ranked scoring functions, includ-

ing ∆VinaRF20, show near-zero correlation is the 4rfm cluster consisting of the 4rfm, 4qd6,
3qgy, 4m0y, and 4m0z PDB structures corresponding to the interleukin-2 inducible T-cell
kinase (ITK) inhibitors. Here, most of the scoring functions, including Convex-PL, disfavor
the 4qd6 ligand, although its experimental binding affinity is high and should be ranked
second. It seems that the structures of the complexes from the benchmark correspond to
those marked as a biological assembly in the Protein Data Bank. However, the biological
assembly deposited for 4qd6, along with the published analysis of its interactions with the
ligand,73 does not include or describe the beta-sheet, which seems to be a part of domain
swapping and is present in the original crystallographic structure. Conversely, the protein
part that was involved in domain swapping as a beta-sheet in 4qd6 adopts another confor-
mation in 4rfm, 3qgy, 4m0y, and 4m0z. In these complexes, it stops participating in domain
swapping and forms a beta-sheet inside the main protein chain. As a result, interactions
that contribute to the ligand-binding in 4rfm, 3qgy, and 4m0y are lost in 4qd6, because of
the incomplete protein structure, leading to lower affinity predictions. The binding affinity
score predicted with Convex-PLR for the 4qd6 ligand in a complex with the two protein
chains instead of one turned out to be closer to the experimental constant. The original
4m0z and 4m0y structures contain ligands that bind to the two sites of ITK,74 one of which
was chosen per each protein for the benchmark creation. For some reason, Convex-PLR and
other scoring functions overestimate the affinity of the ligand binding to the allosteric site
of the 4m0z structure. We have also noticed that the binding affinity provided in the bench-
mark for 4m0y corresponds to the allosteric pocket binding,74 while the ligand chosen for
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the benchmark binds the ATP pocket. The correct choice of the 4m0y affinity also increases
the ranking and scoring test performance of Convex-PLR, as well as of several other scoring
functions. This case particularly illustrates the vulnerability of binding energy prediction
models to the interpretation of data in various steps of data collection and processing. These
include uncertain information in the papers with multiple binding constants coming from
different experiments, unreliable biological assembly information, incorrect interpretation of
electron density of small molecules, etc.

Docking and screening tests

Convex-PL performance on the docking test of the CASF-2013 benchmark was discussed
in detail before.16 Convex-PLR keeps and improves its high performance in both CASF
benchmarks.

CASF benchmarks suggest an evaluation of the virtual screening performance in terms
of enrichment factors. They show how better is the scoring function-based prediction of the
true binders compared to random picking and can be defined as follows:

EFx% = NTBx%

NTBtotal×x%
,

where NTBx% is the number of true binders found in the top-x% of the configurations
with the highest scores. NTBtotal refers to the total number of true binders for a protein.
Improvement of the screening power was the central goal of modifications we applied to
Convex-PL, and on these tests, we can clearly see the importance of model re-training
and additional descriptors. In the enrichment prediction on CASF-2013, Convex-PLR is
ranked second after the multi-task MT-NET. In CASF-2016 enrichment prediction, it is
outperformed by KORP-PLw and ∆V inaXGB. Overall, the inclusion of additional descriptors
and a smaller value of pairwise interactions cutoff value finally allowed us to overcome the
bias towards bigger ligands and tighter interfaces, as it is shown in Figure 5.
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Figure 5: Histograms of average ligand buried SASA and number of atoms computed for the
native ”truly binding” ligands and decoy poses, top-ranked by different Convex-PL versions
in the virtual screening tests from the CASF-2013 and CASF-2016 benchmarks.
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D3R

In addition to the CASF benchmark, we evaluated pose and affinity predictions on a dataset
collected from user submissions in the D3R Grand Challenges 2,75 3,76 and 4.77 The deriva-
tion of this test can be found elsewhere.29

Figure 6 demonstrates the high performance of Convex-PLR in both pose and affinity
prediction parts of the Grand Challenge 2 test. In the Grand Challenge 3 exercise, both
Convex-PLR and Convex-PLcof outperform their predecessor in pose prediction. During the
D3R Grand Challenge 3 timeframe, only a few protocols that did not use visual inspection
and ligand-based approaches were successful,76 meaning that this particular case could be
a challenge for many scoring functions. Convex-PL tended to prefer incorrect poses that
were buried deeper in the binding pocket and had tighter binding interfaces. Convex-PLR

and Convex-PLcof partially overcome this problem. However, their ability to top-score the
correct near-native pose is still lower than that of KORP-PLw. In the affinity prediction
exercise of Grand Challenge 3, additional penalization introduced in Convex-PLR seems to
worsen the correlations in comparison with Convex-PLcof . Finally, in Grand Challenge 4 the
model without entropic contributions and original Convex-PL turned out to perform better
in pose prediction.

DUD

To additionally measure the virtual screening performance of Convex-PLR, we assessed it
using the Directory of Useful Decoys (DUD)78 dataset specifically designed for virtual screen-
ing benchmarking. It contains 40 targets with a total of 2,950 active compounds. For each
active compound, the dataset provides 36 decoys with similar physics, but various chemi-
cal topology. In this test, we assessed Convex-PLR, Convex-PLcof , and Convex-PL scoring
functions together with a few other ones, namely, KORP-PLw, AutoDock Vina, and Smina79

with Vinardo chosen as the scoring function.

Docking protocol and results

For each of the DUD targets, we ran docking simulations using VinaCPL, an in-house mod-
ified version of AutoDock Vina with the original Convex-PL potential as a scoring function.
Since Convex-PL is pairwise and distance-dependent, it could be naturally mapped to the
AutoDock Vina pairwise interaction grids. In more detail, we updated Vina’s atom types to
the 42 ligand and 23 protein types and replaced the AutoDock Vina scoring function with
Convex-PL. We additionally penalized intra-ligand clashes using the values of the Convex-
PL protein-ligand potential mapped to the ligand-ligand atom types. Our modifications
of AutoDock Vina also increased the num saved min internal parameter and skipped the
RMSD-based clustering, so that more conformations could be generated for further re-scoring
dependent on the provided num modes command-line argument.

We then re-scored the obtained docking poses with Convex-PLR, Convex-PLcof , and
KORP-PLw. We also performed the rescoring with the original Convex-PL to obtain the
scores that do not include intra-ligand clashes. The final score of each compound was ob-
tained by averaging the scores of the top-10 Convex-PLR predictions. We have already
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Figure 6: D3R pose prediction and scoring results. Success rates of finding a pose within
2 Å RMSD from the native conformation among the 1%, 5%, and 10% of top-ranked poses
are shown in blue, green, and yellow, respectively. Scoring power is represented by the
Spearman’s correlation coefficient between the predicted and experimental binding constants.
These success rates are computed with respect to the actual number of ligands, for which
the poses with the desired RMSD values were present in the user submissions. More detailed
results can be found in Tables S9-S14 of SI.
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successfully applied earlier versions of this protocol in the D3R Grand Challenges 280 and
4.81

AutoDock Vina, Smina, and VinaCPL were launched with the exhaustiveness parameter
set to 10, other parameters except for the number of output conformations in the case of
VinaCPL were left to their defaults. We have tested several ways to define the docking
binding boxes. We achieved the best virtual screening results for all three protocols with
the binding box determined with the following procedure: (i) Target co-crystal ligand di-
mensions, namely the co-crystal box, were measured. (ii) Dimensions of the input ligand
3D conformation provided in the dataset, namely the ligand box, were measured. (iii) The
input ligand box was aligned with the co-crystal box. (iv) Finally, for each dimension, the
maximum size of the two boxes was chosen and multiplied by an arbitrarily chosen factor of
1.6. Notably, virtual screening results of both Vina and Vinardo achieved with such a box
outperformed those reported previously.17

Figure 7, Table 1, and the Tables S16-S17 of SI summarize virtual screening powers
evaluated by measuring the ROC AUC, enrichment factors, and BEDROCα=20. Here, both
Convex-PLR and Convex-PLcof considerably improve the Convex-PL performance and out-
perform both Vina and Vinardo in early enrichment metrics. However, their results are still
worse than those of KORP-PLw. In more discriminative enrichment metrics, Convex-PLR,
with its entropic terms, is surprisingly outperformed by Convex-PLcof . On DUD, where
decoy molecules were specifically generated and do not have such considerable size difference
from actives as in some CASF targets, the benefit introduced by an entropic term can have
a smaller contribution. In five targets that contain cofactors, both new versions of Convex-
PL outperform KORP-PLw, which does not have cofactor support. However, in four other
cofactor-containing targets, Convex-PLR and Convex-PLcof demonstrated rather low results.
This could be explained by the fact that VinaCPL, which we used for docking, does not have
the cofactor support yet.

Table 1: Average ROC AUC scores, 5%, 1%, 0.5% enrichment factor, and BEDROC82,83

values computed for the DUD dataset. Per-target evaluation results can be found in Ta-
bles S16-S17 of SI. Cofactor-containing targets are listed in Table S15.

Scoring function ROC AUC EF5% EF1% EF0.5% BEDROCα=20

Convex-PLR 0.68 5.12 10.21 12.27 0.28
Convex-PLcof 0.64 4.95 11.07 14.01 0.30
AutoDock Vina 0.64 4.45 7.99 9.2 0.24
Vinardo 0.65 4.9 9.02 10.18 0.27
Convex-PL 0.58 3.0 4.51 5.38 0.17
KORP-PLw 0.76 7.9 14.05 16.54 0.42

LIT-PCBA

Known drawbacks of DUD include the unproved inactivity of all the decoys and the biases of
decoy generation. Therefore, we have also evaluated Convex-PLR on the LIT-PCBA virtual
screening benchmark84 that contains 15 targets with 9,954 active and 2,767,111 inactive
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Figure 7: Box plots representing the ROC AUC, and 5%, 1%, 0.5% enrichment factors
computed for the DUD dataset with AutoDock Vina, Vinardo, Convex-PLR, Convex-PLcof ,
Convex-PL, and KORP-PLw.

compounds found in biological assay databases. Here we compare only AutoDock Vina and
Convex-PLR.

We used the same docking protocols as in the case of DUD. 3D ligand conformers
were generated using RDKit’s EmbedMolecule with ETKDGv3 parametrization.83,85 Prior
to docking, we removed duplicating ligands having different PubChem substance IDs but
encoded with the same SMILES strings. We also used only a part of the target represen-
tative proteins listed in Table S18, selected from their binding pocket alignment and visual
analysis. For each ligand, we took the top-scored predictions among the chosen protein
representatives.

Table 2: Average ROC AUC scores, 5%, 1%, 0.5% enrichment factor, and BEDROC82,83

values computed for the LIT-PCBA dataset. Per-target evaluation results can be found in
Table S19 of SI.

Scoring function ROC AUC EF5% EF1% EF0.5% BEDROCα=20

AutoDock Vina 0.562 0.086 1.572 2.23 1.47
Convex-PLR 0.6 0.111 2.159 3.70 4.18
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Figure 8: ROC AUC, and 1%, 0.5% enrichment factors computed for the LIT-PCBA dataset
with AutoDock Vina, and Convex-PLR.

Figure 8 and Table 2 demonstrate that Convex-PLR outperforms AutoDock Vina in this
benchmark. However, their ROC AUC values and enrichment factors are, in general, rather
low. Docking to 7 and 5 targets for Vina and Convex-PLR, respectively, resulted in zero 0.5%
enrichment. We suppose that such poor results can be partially related to the benchmark
composition. For example, the kat2a target contains very different representatives with
binding pockets located on two different domains, while the adrb2 representatives contain
proteins that were specifically mutated for covalent binding. Similarly, the aldh1, idh1, and
mtorc1 targets have two binding pockets, vdr has a mutation in a binding site. Although,
in principle, labeled inactive compounds are much more valuable than decoys, it is not clear
whether all of the hundred thousands of actives and inactives were properly validated against
the particular targets, as a considerable portion of the benchmark is based on cell-based
assays.

Technical details

Convex-PLR is written in C++ and is available as a standalone binary. It takes about 16
milliseconds on a single core of Linux Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz to score
a protein-ligand complex from the CASF-2013 core set containing a single ligand pose of 25
heavy atoms on average. Convex-PLcof is about 1.5 times faster, as it does not require the
SASA computation.

Conclusion

This paper presents Convex-PLR – a reworked Convex-PL protein-ligand potential, derived
from thermodynamical considerations. Our model incorporates conformational entropic
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terms for the ligand and the binding pocket sidechain flexibility. For the solvation con-
tributions, we have developed two models, either computing atom-mesh interactions, or
approximating the solvation energy with SASA. To our surprise, the weights of these contri-
butions turned out to be negligibly small after the training, and we removed them from the
final model. We also developed a novel docking protocol by incorporating the Convex-PL
scoring function inside Autodock Vina with a subsequent rescoring of the docking poses with
Convex-PLR. We successfully validated Convex-PLR on CASF 2013 and 2016 benchmarks,
on a dataset derived from the D3R Challenges, and on DUD and LIT-PCBA virtual screen-
ing tests, where it was ranked top-2 – top-3 in the majority of the CASF tests, top-2 in
DUD, D3R, and outperformed AutoDock Vina in LIT-PCBA.
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(69) Cereto-Massagué, A., Ojeda, M. J., Joosten, R. P., Valls, C., Mulero, M., Salvado, M. J.,
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