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Abstract

The simultaneous charging process of multiple electric vehicles (EVs) may cause violations of power distribution grids’ oper-
ational constraints, such as voltage levels outside statutory limits, line currents above lines’ ampacities, and congestion at the
substation transformer. This paper investigates the impact on a medium voltage distribution grid of i) uncoordinated charging,
ii) coordinated grid-aware charging, and iii) coordinated grid-aware charging of EVs with reactive power support for voltage
regulation. In all these cases, the EVs’ charging policy is determined with an optimal power flow (OPF) problem, where suitable
sets of constraints are modeled to reproduce each specific case. Results are investigated for the 14-bus CIGRE MV benchmark
network. The proposed methods are useful for grid operators to identify suitable control strategies for EV charging.

1 Introduction

In 2017, 27% of the total greenhouse gas emissions in EU-28
are due to the transport sector [1]. In this context, electric vehi-
cles (EVs) play a crucial role in decarbonizing road transport.
With the increasing trend in the number of EV owners, the EV
charging demand is also increasing, impacting the power sec-
tor. Simultaneously charging a large number of EVs determine
a substantial increase of the peak demand in distribution grids
and may cause substation power transformers’ overloads, line
currents above the cable ampacities, and voltage levels outside
the allowed margins, requiring distribution system operators
(DSOs) to undertake expensive grid reinforcements (e.g., [2]).
In order to alleviate the impact of uncoordinated charging of
many EVs, smart charging of EVs has widely been proposed
in the existing literature to distribute the charging demand of
EVs over a longer time horizon, achieving effective congestion
management (e.g., [3, 4]).

This paper investigates the impact of different charging
strategies for EVs on medium-voltage (MV) distribution grids
and on recharging times performance. Three charging strate-
gies are considered: uncoordinated charging (where each EV
seeks to minimize its own recharging time, regardless of grid
condition and others), grid-aware coordinated charging (where
EVs are charged considering the constraints of the distribution
grid), and grid-aware coordinated charging with reactive power
support, where the spare capacity of the chargers is controlled
to provide voltage regulation to the MV grid. The charging
strategies are formulated by leveraging an optimal power flow
(OPF) problem with linearized grid models from the literature

[4]. The OPF has a common baseline structure, where the con-
straints are adapted to represent the three strategies described
above. This stands as the main contribution of this paper.

The paper is organized as follows. Section 2 states the prob-
lem and introduces the models. The OPF model for the recharg-
ing strategies is described in Section 3. Section 4 describes the
case study. Results are presented and discussed in Section 5.
Finally, Section 6 summarizes conclusions.

2 Problem statement and models

2.1 Problem statement

We consider a power distribution grid (such as the one in
Fig. 1) interfacing loads (e.g., commercial and residential),
possibly distributed generation, and EVs chargers. Distribu-
tion grids are designed to host prescribed levels of power
demand. Larger demand levels might determine violations of
their operational requirements. Operational requirements that
distribution grid operators (DSOs) need to ensure are voltage
levels inside statutory limits, line currents below cable ampac-
ities, and power flow at the substation within the transformer
rating. This paper investigates how these constraints can be
embedded and enforced in the decision-making problem of
EVs’ charging.

2.2 Power grid model

The nodes of the network are referred with the index n =
1, . . . , N , where N is the total number of nodes. The index
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Fig. 1 Topology of the CIGRE European MV distribution
network benchmark for residential system [5].

t = 1, . . . , T refers to the time interval, where T is the total
number of samples. The time horizon 1, . . . , T refers to the
recharging horizon for the EVs. In the rest of this paper, we will
refer to overnight charging, although the formulation is gen-
eral and can be applied to other cases. Time dynamics need to
be considered to model both time-variant power demand, and
because the EVs’ charging process is inherently time depen-
dant due to the state-of-charge constraints of the EVs. The
active and reactive power nodal injections at node n and time
interval t is:

Ptn = P (net)
tn + P (EV nodal)

tn (1a)

Qtn = Q(net)
tn +Q(EV nodal)

tn (1b)

for all nodes of the grid, where P (net)
tn is the net demand

(i.e., power demand minus local renewable generation) and
P (EV nodal)

tn is the total power demand of EVs. The former is
an input of the problem, whereas the latter depends on the
charging policy and is computed as described next.

Voltage levels at the nodes of the grid and the current values
in the lines (voltage magnitudes, and line current magnitudes)
depend on the grid topology, cables’ parameters, voltage at the
slack node, and nodal injections. They are modelled with load
flow equations, that we generically denote in the following with
functions fn for the voltage magnitude and hl for line current
magnitudes:

vtn = fn (Pt1, . . . , PtN , Qt1, . . . , QtN , v0, Y ) (2)

itl = hl (Pt1, . . . , PtN , Qt1, . . . , QtN , v0, Y ) , (3)

where Y is the admittance matrix of the grid (built using the
grid topology information and cable parameters), and v0 is the
voltage at the slack bus.

Load flow equations are nonlinear and their inclusion in
optimization problems determines nonconvex formulations.
To increase tractability, we linearize (2) and (3) using the
method proposed in [6] based on sensitivity coefficients, whose
performance has been investigated in [7], and as done in [8].

2.3 Modelling the charging of EVs

Let v = 1, . . . , V denote the index of a vehicle, where V is the
total number of vehicles. The charging power of a vehicle v is
limited by the rated power of the converter, denoted by S

(EV)

v

(in kVA). Assuming the capability of the charger is independent
from the voltage of the AC grid and of the DC bus, the apparent
power limit of the charger is (for all t and v):(

P (EV)
tv

)2

+
(
Q(EV)

tv

)2

≤
(
S

(EV)

v

)2

(4a)

P (EV)
tv ≥ 0 (4b)

where Q(EV)
tv is the reactive power of the charger. Eq. (4b)

reflects the fact that the vehicle can charge only, as opposed
to vehicle-to-grid (V2G, implemented by bidirectional charg-
ers), where EVs can possibly discharge to support the grid.
Eq. (4) characterizes the "capability curve" of controlled recti-
fiers implemented in EV chargers. In this case, the capability
curve extends to 2 quadrants of the P-Q plane, correspond-
ing to non-negative active power and positive/negative reactive
power.

The EV charging process is modelled accounting for the
state-of-charge (SOC) of the vehicle. The index v = 1, . . . , V
denotes the index of the EVs, where V is the total number of
vehicles. The SOC of vehicle v is modelled by propagating a
initial state-of-charge value, SOC0v, and as a function of the
non-negative charging power P (EV)

tv (in kW) and charging effi-
ciency η. Self-discharge is not modelled as for li-ion batteries
is typically small. The SOC model is:

SOCtv = SOCt−1v + η
TS

Ev

P (EV)
tv , P (EV)

tv ≥ 0 (5)

for t = 1, . . . , T , where Ts is the sampling time (in hours), and
Ev is the nominal energy capacity of the EV’s battery (kWh).

The link between the nodal injections of EVs, P (EV nodal)
tn ,

Q(EV nodal)
tn in (1), and the charging of the single vehicles P (EV)

tv

is given by the locations where the EVs charge. The charging
location of EV v is encoded in the sequence of binary variables
b1v, b2v, . . . , bNv, that contains one 1 in the node where the EV
charges, and N-1 0’s at all other nodes.

Ultimately, the nodal EV injections are given by:

P (EV nodal)
tn =

V∑
v=1

bnvP
(EV)
tv (6)

for all n. The matrix of N × V binary variables bnv can be
interpreted as the map reporting the recharging spots of all EVs.
It is an input to the problem.
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3 Methods

Three charging policies of EVs are considered: uncoordinated
charging of multiple EVs, grid-aware coordinated charging,
and grid-aware coordinated charging with reactive power sup-
port from the chargers. Their formulations are described next.
For exemplifying the context, we consider a scenario where
the EVs recharge overnight to achieve a target SOC level (e.g.,
a full recharge) necessary to meet the driving demand start-
ing from an initial SOC value. The initial SOC is given by the
state at which the EVs arrive at their parking (and charging)
location. Both the initial SOC level and the target SOC level
are inputs to the problem. They are respectively denoted by
SOC0v and SOC?

v. The main step and input data required for
the formulation are illustrated in Fig. 2.

3.1 Uncoordinated charging

All EVs charge with the sole objective of minimizing the
respective recharging time, independently from the state of the
grid and of other EVs. Based on this requirement, we can then
formulate a decision-making problem where the EVs’ charging
power is such that all vehicles reach as quick as possible the
respective target state-of-charge level, SOC?

v. In this case, the
chargers, modelled with (4), supply only active power since,
not only reactive power is not conducive to recharge the vehi-
cles, but it would also limit the capability of the charger. The
decision-making problem is:

arg min
P

(EV)
11 ,...,P

(EV)
TV
∈R+

{
T∑

t=1

V∑
v=1

(SOCtv − SOC∗v)
2

}
(7a)

subject to

SOCtv = SOCt−1v + η
TS

Ev

P (EV)
tv for all t and v (7b)

0 ≤ SOCtv ≤ 100%, for all t and v (7c)

0 ≤ P (EV)
tv ≤ S

(EV)

v for all t and v (7d)

It is worth noting that this problem does not have any coupling
constraint between one vehicle and another. Solving problem
(7) or solving V independent optimization problems (one per
vehicle) would lead to the same solution.

3.2 Coordinated charging

The charging process of all EVs is scheduled so that their
charging demand does not determine violations of the grid
constraints on nodal voltage magnitudes and line currents.
The power flow at the substation transformer, also an impor-
tant operational constraint, is not specifically considered here
because it is never activated in the considered case study. Grid
constraints are modelled in problem (7) with the linearized
grid models discussed in Section 2. Quantities v, v denote the
admissible voltage magnitude and il the line ampacity. The

problem formulation is:

arg min
P

(EV)
11 ,...,P

(EV)
TV
∈R+

{
T∑

t=1

V∑
v=1

(SOCtv − SOC∗v)
2

}
(8a)

subject to:

SOC constraints (7b), (7c) for all t and v (8b)

0 ≤ P (EV)
tv ≤ S

(EV)

v for all t and v (8c)

Nodal injections (1a), (1b), and (6) for all t and n (8d)

Linearized grid models (2)-(3) for all t, n and l (8e)

v ≤ vtn ≤ v for all t and n (8f)

itl ≤ il for all t and l (8g)

Compared to (7), problem (8) features coupling constraints,
given by the grid model, which requires the information on
all nodal injections. This formulation requires gathering all the
vehicles’ information and the grid in a single (centralized) opti-
mization problem. Centralized formulations of this kind can be
used to derive signals to incentive or disincentivize the charge
of EVs and achieve a form of indirect control (e.g., [9]).

3.3 Coordinated charging with reactive power support

We extend problem (8) by allowing chargers to inject/absorb
reactive power with the the objective of controlling the voltage
of the MV grid (where the reactance of the lines’ longitudi-
nal components may be dominant over the resistance and so
reactive power control can be an effective way to provide volt-
age regulation). The vector of 2× V × T decision variables is
denoted by:

x =
[
P (EV)

11 , . . . , P (EV)
TV , Q(EV)

11 , . . . , Q(EV)
TV

]
. (9)

The decision-making problem for both EV chargers’ active
and reactive power is:

arg min
x

{
T∑

t=1

V∑
v=1

(
SOCtv

(
P (EV)

tv

)
− SOC∗v

)2

}
(10a)

subject to

SOC constraints (7b), (7c) for all t and v (10b)(
P (EV)

tv

)2

+
(
Q(EV)

tv

)2

≤
(
S

(EV)

v

)2

for all t and v (10c)

P (EV)
tv ≥ 0 for all t and v (10d)

Nodal injections (1a), (1b), and (6) for all t and n (10e)

Linearized grid models (2)-(3) for all t, n and l (10f)

Grid constraints (8f)-(8g) for all t, n and l (10g)
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Fig. 2. Workflow problem formulation using OPF.

4 Case study

We consider the European version of the CIGRE benchmark
grid for MV systems from [5]. Its topology is shown in Fig. 1.
The LV grids connected at the various nodes of the MV
network are modeled in terms of their aggregated contribu-
tions. No violations of grid constraints are assumed in the LV
grids. The MV grid is modelled with a single-phase equiva-
lent assuming a balanced grid with transposed conductors. The
nominal power, the power factor, and the number of parked
EVs per node are reported in Table 1. Input information related
to EVs are discussed in the next paragraph. The time-varying
active power demand is modeled with the load coincidence
factor model defined in [5]. The reactive power demand is mod-
eled as the product between the active power and the tangent
of arc-cosine of the power factor in Table 1. Line ampacities
are chosen based on the conductor diameter. Statutory voltage
levels are 1 ± 3%. Computing sensitivity coefficients for the
linear grid models requires nominal active and reactive nodal
injections to compute the linearization, for which we use the
nodal power injections of the net demand from the CIGRE
specifications.

Table 1 Nodal nominal demand per node and number of EVs

Node Apparent Power Power factor Number of EVs
[kVA]

1 15’300 0.98 0
2 0 0 0
3 285 0.97 68
4 445 0.97 106
5 750 0.97 178
6 565 0.97 134
7 0 0 0
8 605 0.97 144
9 0 0 0
10 490 0.97 116
11 340 0.97 81
12 15’300 0.98 0
13 0 0 0
14 215 0.97 51

The numbers of EVs per node reported in Table 1 are esti-
mated assuming approx. 1.4 EVs per household in average.∗

∗Except for nodes 1 and 12, which have no EVs to reduce the number of opti-

mization variables. This approximation is deemed reasonable because these

The work in [10] considers 1.3 EVs per household in aver-
age, in-line with our estimate. The number of household per
node is estimated as the ratio between the nominal power of
each residential node and the contractual power of a household
(6 kVA). In total for the whole grid (that, excluding nodes 2
and 12, refers to a total rated power of 30 MVA), we consider
878 EVs. The work in [11] considers 2’340 EVs for a 5 MVA
MV residential grid, denoting that more intense loading situ-
ations due to EVs may exist. The SOC at arrival are sampled
from statistical distributions estimated from data [12, 13]. The
arrival time is assumed 16h for all vehicles. The energy capac-
ity of the EV battery is 16 kWh for all EVs, also from [13]. The
rated power of the chargers is 3.6 kVA, and their efficiency is
0.9 and power factor 1.

5 Results and Discussions

Three cases are considered:

• Case 1: uncoordinated charging (problem (7)),
• Case 2: grid-aware coordinated charging (problem (8)), and
• Case 3: coordinated charging with reactive power to support

voltage regulation (problem (10)).

Fig. 3 shows the nodal voltage magnitudes in the three cases.
Case 1 shows under-voltage conditions in evening hours.
Under-voltages are due to evening peak power demand in
combination with the start of the overnight charging process
of the EVs. They appear at all nodes, except for those near
the grid connection point. In Case 2, voltage levels at the
voltage-critical nodes hit the lower bound at time 16:00 and
remain there until 22:00, without, however, any under-voltage
problems. This is thanks to enforcing in the decision-making
problem the grid model and grid constraints. The line current
constraints (not shown here for a reason of space) are respected.
Case 3, features similar results as Case 2. This is to expect as
both Case 2 and Case 3 implement grid constraints.

The average SOC level across the population of EVs is
shown in 1. Case 1 achieves the fastest recharging time, at
the price, however, of violating voltage constraints, as just
discussed. This performance is to be expected because the
charging power is bounded by the rated power of the chargers
only, in (7d). Case 2 scores the slowest charging times. Case 3
improves the charging times of Case 2 thanks to using reactive
power to improve the voltage levels, ultimately enabling more
EVs to recharge.

Fig. 5 shows the results of a (linear) load flow for Case 3
where the contribution of reactive power is set to zero after that
the optimization is solved. As visible, voltage constraints are
violated, demonstrating that reactive power is here fundamental
to improve voltage levels.

nodes are near upper grid’s connection, so less critical for grid constraints

violations.
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(c) Case 3
Fig. 3 Nodal voltage magnitudes over the EVs charging hori-
zon. The dashed lines are the voltage limits. The shaded bands
denote different quantile intervals across the nodes.
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Fig. 4. Average SOC across the EVs population.
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Fig. 5 Nodal voltage magnitudes in Case 3 after setting reac-
tive power injections to zero.

6 Conclusions

This work investigated the problem of uncoordinated and coor-
dinated charging of EVs in an MV grid, including reactive
power support to improve voltage levels. It was shown that the
uncoordinated charging of 878 EVs in the afternoon/evening
period is conducive to violate the grid’s voltage constraints.
Grid-aware coordinated charging managed to solve the prob-
lem, at the price of deferring by a few hours the achievement
of all vehicles’ recharging objective. Using the spare capacity

of the 2-quadrant controlled rectifiers of the chargers to provide
reactive power contributed to improving the voltage levels, ulti-
mately allowing more chargers to operate and shortening the
overall charging times.
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