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Abstract: In this paper, we place ourselves in the context learning approach and we aim to show that adaptive multi-
agent systems are a relevant solution to its enhancement with local active learning strategy. We use a local
learning approach inspired by constructivism: context learning by adaptive multi-agent systems. We seek to
introduce active learning requests as a mean of internally improving the learning process by detecting and
resolving imprecisions between the learnt knowledge. We propose a strategy of local active learning for
resolving learning inaccuracies. In this article, we evaluate the performance of local active learning. We show
that the addition of active learning requests facilitated by self-observation accelerates and generalizes learning,
intelligently selects learning data, and increases performance on prediction errors.

1 Introduction

Every learning system has advantages and draw-
backs, parts of the environment where it is accu-
rate, where it is efficient, and parts where it is not,
as Wolpert stated in his ”No Free Lunch Theorem”
(Wolpert and Macready, 1997). Therefore, we fo-
cus on meta-learning techniques that could benefit
from the composition of specific learning systems in
distinct parts of the search space as well as in their
borders. Dealing with sociotechnical environments
of ambient systems, an intelligent application to be
designed must handle properties such as openness,
heterogeneity, unpredictability and dynamics (Rus-
sell and Norvig, 2016; Abbas et al., 2018). How-
ever, as sociotechnical environments are impossible
to be specified a priori, these systems must be able to
adapt to their environment by learning from few expe-
riences. They must learn throughout their lives with-
out having any intrinsic knowledge of the tasks they
will have to solve. Such systems are called agnostic
systems (Kearns et al., 1994). To design them, it is es-
sential to generate knowledge through processes and
actions that are purely internal to the system interact-
ing with its environment.

The proposed system enables to generate active
learning requests. To deal with the previous hypothe-
ses, we try to be agnostic regarding the learning tech-
niques by embodying them in agents that cooperate in
order to produce more knowledge. Inspired by con-

structivism of Piaget (Piaget, 1976) and developmen-
tal learning methods applied in robotics, we define
a multi-agent system that uses a local active learn-
ing strategy to enhance the results. Each agent, each
learnt model, is used locally in a small part of the
search space, where it is accurate. They share local
information that is internal to the system to generate
active requests.

This paper presents some steps of this research
goal. In the next section, we provide to the reader
the background information on constructivism, multi-
agent systems and how the context-based meta-
learning pattern uses data to learn from the environ-
ment. This work is intended to scale up with the num-
ber of dimensions of the search space, but to be sim-
pler, we present it as a 2D problem. Moreover, we
use a default regression model to implement the em-
bodied model in each agent but our goal remains to be
independent of the type of the learning technique.

We present in the following section the existing
Context Learning which is the base of our work where
each agent represents a context linked to an action or
answer. Then, we detail the enhancement of the con-
text learning with the Active Context Learning which
enables the system to find in itself and alone which
specific learning situations to request in order to im-
prove its learning. In the experimentations section,
we describe the metrics we use and how the experi-
ments were conducted. Finally, a discussion, related
work and conclusion are presented.



2 Background

Constructivism by schemas implemented with
Multi-Agent Systems is the foundation of the Context
Learning studied in this paper.

Constructivism. The work of Piaget on child
development (Piaget, 1976) has inspired Construc-
tivist Learning. It stated that knowledge construc-
tion cannot be separated from the subject’s environ-
ment and the actions made on it. Called schema,
this unit of knowledge aggregates several perceptions
and several actions (Guerin, 2011). Robotic applica-
tions made use of the work of Drescher (Drescher,
1991) and Holmes (Holmes et al., 2005) to obtain
self-organizing maps (SOM) (Chaput, 2004; Provost
et al., 2006). Recently, it also served as a foundation
on agentified model-based learning (Perotto, 2013).

Multi-Agent Systems. In order to deal with the
complexity of real world situations like in cyber-
physical systems (non-linearity, dynamics, distributed
information, noisy data and unpredictability), it is
important to build software systems which embody
as many states as the real systems do (Ashby,
1956). For this purpose, Multi-Agent Systems (Fer-
ber, 1999), and in particular Adaptive Multi-Agent
Systems (AMAS) (Georgé et al., 2011) provide adap-
tive properties to deal with these unexpected sit-
uations, which is appropriate for learning systems
(Mazac et al., 2014; Guériau et al., 2016). AMAS are
artificial complex systems with fine granularity agents
enabling the emergence expected global properties.
Domains like the control of biological processes, the
optimal control of motors or robotics learning (Boes
et al., 2015) have exhibited such properties.

Context Learning. The AMOEBA system (Ag-
nostic MOdEl Builder by self-Adaptation) (Nigon
et al., 2016) is based on Context Learning. To imple-
ment Piaget’s schema in a n-dimension space, Context
Agents are used to approximate local models. Models
are based on any machine learning technique (neu-
ral networks, linear regression, SVMs, decision trees,
k-means...). The global model can be described as
a hidden function F (Pn) = F (p1, . . . , pi, . . . , pn) =
Om where Om ∈ Rm is a labeled prediction vec-
tor. Perceptions denote the vector of inputs Pn =
[p1, . . . , pn] ∈ Rn and a learning situation is defined
by the vector Ln,m = [Pn,Om]. The goal of the Con-
text Learning System is to give as output a prediction
vector O ′m ∈Rm where O ′m = Om. Each Context Agent
C j

n is in charge of managing the learning model for
the jth pavement in dimension n which represents a
part of the schema. The global function F is approx-
imated by a local function f j

n (p1, . . . , pi, . . . , pn) = o j
m

with o j
m ∈ Rm. The n-dimension space is reduced

to a n-parallelotope for every Context Agent in the
form of validity ranges R j

n = [r j
1, . . . ,r

j
i , . . . ,r

j
n] with

r j
i = [r j

i,start ,r
j
i,end ] for each perception pi (Fig. 1).

This is completed with a confidence c j ∈ Z that en-
able agents to order themselves. A Context Agent is
then defined by its validity ranges, its model and its
confidence C j

n = {R j
n , f j

n ,c j}.
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Figure 1: Parallelotopes validity ranges

3 Context Learning Strategies

The implementation of AMOEBA is based on sev-
eral simple rules and a default learning model (linear
regression) that we briefly present after. In the fol-
lowing, a new local active Context Learning strategy
is proposed which uses negotiation between agents
neighboring the perceptions.

3.1 Former Context Learning Strategy

To define a good prediction, an error margin and an
inaccuracy margin are used. The error margin defines
a threshold above which a prediction is said bad. In
the other case, the inaccuracy margin is used to ad-
dress the precision needs, it is always less than the
error margin. These two margins are calibrated by the
user. In AMOEBA, agents are reactive. Their behav-
ior is organized in execution cycles, which may be
learning cycles or exploitation cycles.

Learning. During a learning cycle, each Context
Agent receives the learning situation including Pn.
Negotiation between them, according to the validity
ranges and confidence, results in the identification of
the Best Context Agent for the current execution cy-
cle. Though cooperative analysis, they individually
realize different adaptations using the labeled predic-
tion (Nigon et al., 2016).

Exploitation. During an exploitation cycle, only
the perceptions Pn are submitted to the system. The
Best Context Agent is designated as the one with the
higher confidence and its prediction serves as the out-



(a) Models to learn (b) Example of im-
precise learning

(c) Example of ideal
learning

Figure 2: Simple learning problem of 2 linear models symbol-
ized by different colors

put of the system. If no Valid Context Agent can be
identified, Closest Context Agent to the perceptions is
designated as the Best Context Agent.

Implemented Model. In this study, each Context
Agent C j

n has a local linear regression model f j
n . In

this case, the prediction vectors and the oracle predic-
tions are a real values O ′1 and O1. A learning situation
is then Ln,1 = [Pn,O1].

Shortcomings. On a simple problem, with two
models distributed in a 2D-space like represented in
Fig. 2a with different colors, the presented learn-
ing rules do not allow the system to converge to an
ideal representation (Fig. 2c), i.e. with the mini-
mum of Context Agents, without any overlap or gaps.
These rules do not protect against imprecise explo-
ration (Fig. 2b). Incompetencies of the agents are
not detected. Conflicts and concurrencies between the
agents are not taken into account. All resolutions are
made independently of the Context Agents neighbors.
Exchanging information on the model between neigh-
bors agents could improve the accuracy.

3.2 A New Local Active Context
Learning Strategy

The Local Active Context Learning is an enhance-
ment of Context Learning using internal informa-
tion to requested specific learning situations. This
mechanism is based on a collaboration inside the
neighborhood of the Context Agents. In this sec-
tion, we present the establishment of Context Agent’s
neighborhood, the detection and the resolution of
learning inaccuracies. The resolutions are opera-
tional regardless of the number of dimensions. How-
ever, to simplify the illustrations, only two dimen-
sions are represented in the figures.

3.2.1 Context Agent Neighborhood

A Context Agent is considered as a neighbor of the
perceptions if its validity ranges intersect a neighbor-
hood area surrounding the current perceptions. The
size of this area results from the precision range
prcRange, a parameter chosen by the user of the learn-
ing mechanism. For a perception pi, there is a default

radius creation for a Context Agent rcreation
i = (pmax

i −
pmin

i ).prcRange with pmax
i and pmin

i the maximum
and minimum experienced values during the learning
phase on the perception pi. From this, it results the
learning precision distance dl pd

i = 0.5 ∗ rcreation
i and

an approximation error distance daed
i = 0.25.rcreation

i .
The neighborhood radius is rN

i = 2.rcreation
i .

3.2.2 Learning Inaccuracies Detection

With the previous definition of the neighborhood, six
types of learning inaccuracies are defined. From the
point of view of Adaptive Multi-Agent Systems, they
are called Non Cooperative Situations (NCS):

Conflict NCS Detection (Fig. 3a). It is an over-
lap between Context Agents that have different mod-
els. For a learning problem with n dimensions, an
overlap between two Contexts Agents is defined by n
non-empty intersections of validity ranges. An over-
lap occurs if the intersections lengths between agents
validity ranges are greater than daed

i . To differentiate
models, a metric has to be defined by the user depend-
ing on the implemented learning models.

Concurrency NCS Detection (Fig. 3b). It is an
overlap between two Context Agents that have similar
models and give similar predictions. The geometry
detection is the same as the Conflict NCS.

Range Ambiguity NCS Detection (Fig. 3c). It is
a difference of model between two adjacent Context
Agents. An ideal Range Ambiguity NCS is defined
by n−1 non-empty intersections and a point intersec-
tion. In a continuous space, for 2 agents to be adjacent
according to the perception pi, the distance between
their boundaries must be less than daed

i .
Overpopulation NCS Detection (Fig. 3d). It is

two adjacent Context Agents that give similar predic-
tions and can merge their common boundary without
altering their other ranges. An ideal Overpopulation
NCS is defined by n− 1 equal ranges and a point in-
tersection. dl pd

i is used here to detect the adjacency.
This NCS triggers an instantaneous fusion.

Incompetence NCS Detection (Fig. 3e). The
Incompetence NCS detects empty areas (red dashed
zones) within the neighborhood of the current percep-
tions and Context Agents. An empty area is detected
if its dimensions in all perceptions pi are greater than
daed

i . As few empty zones as possible are constructed.
Model Ambiguity NCS Detection. Any learning

technique requires data. If the volume or quality of
data is not adequate, this NCS is detected.

Once detected, learning inaccuracies (other than
the Overpopulation NCS) are associated with a cer-
tain priority to be addressed. The order of priority
from highest to lowest is: Model Ambiguity, Con-
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Figure 3: 2D learning inaccuracies with 1D projections.
The diagonal crosses represent the perceptions that are used
to generate active learning situations in order to solve the
learning inaccuracies

flict, Concurrency, Incompetence and Range Ambi-
guity. Each learning inaccuracy leads to a future ac-
tive learning situation that is stored in a priority queue
with the area of the overlap or void if there is one.
Interrogating all Context Agents for learning inaccu-
racies is computationally expensive for large number
of agents. The detection is only performed among all
Context Agents in the neighborhood of the considered
perceptions.

3.2.3 New Learning Rules

Following the introduction of the neighborhood and
the learning inaccuracies, we present here the new
learning rules.

The inaccuracy margin is removed and there is a
dynamic error margin for each Context Agent. This
error allows the agent to self-assess the accuracy of
its model. For learning situations within its validity
ranges, the better its predictions, the lower its error
margin; the worse its predictions, the higher its error
margin. A local error margin is defined as the average
of the dynamic error margins of the Context Agents
neighboring the perceptions.

A good prediction of the Best Context Agent is
when the distance to the learning situation is below

the local error margin. It results in an increase of
its confidence c j and an update of its model with
the learning situation. This way, the Context Agents’
models are regularly updated to be robust to noise.

When the distance to the learning situation is
greater than the local error margin, a Context Agent
defines its prediction as bad. As it moves one of
its ranges to exclude the current perception, it uses
its neighborhood to destroy any overlap with another
Context Agent and it decreases its confidence.

When there isn’t any Valid Context Agent, the Best
Closest Context Agent extends its ranges the cover the
perceptions. If the creation of a new Context Agent
is needed and if there are neighbors, they are used
to initialize the properties of the new agent. If there
aren’t any neighbors, the created agent uses initial-
ization values based on the perception limits of the
search space and on the parameters chosen by the sys-
tem user.

In relation to range extension, there is a limit be-
yond which a range can no longer be extended. The
only way for a Context Agent to grow is then to merge
with another Context Agent which doubles its confi-
dence. This mechanism avoids oscillation behaviors
for range modifications. daed

i is used as the critical
validity range size for Context Agents subtractions.

3.2.4 The Active Strategy

The addition of the neighborhood allows to detect the
learning inaccuracies in the learning process (section
3.1) and to define an active learning strategy that deals
with the neighborhood inconsistencies. The strategy
for solving the neighborhood inaccuracies is based
on the availability of specific active learning situa-
tions. Learning inaccuracies are detected within the
neighborhood at the end of learning cycles. Their as-
sociated priority defines their processing order. Each
learning inaccuracy generates a learning situation
that is requested to the oracle.

Conflict and Concurrency NCS Resolution.
Conflict and concurrency learning inaccuracies gen-
erate learning situations in the overlap centers (fig-
ures 3a and 3b). This causes several Valid Context
Agents. The closest Context Agent to the learning sit-
uation is the Best Context Agent. The other Context
Agents reduce one of their ranges to exclude the cur-
rent perceptions and destroy the overlap while mini-
mizing volume loss.

Range Ambiguity NCS Resolution. An ambigu-
ity learning inaccuracy generates two learning situ-
ations at a distance of daed

i from the borders of each
Context Agent (Fig. 3c). These learning situations
refine the borders.



Incompetence NCS Resolution. Each Incompe-
tence learning inaccuracy generates a learning situ-
ation. It leads to a creation of a new Contest Agent.
The incompetent area is filled with the dimensions of
the learning inaccuracy void area (Fig. 3e).

Model Ambiguity NCS Resolution. In this case,
the linear regression demands a certain quantity of
learning situations to complete the model. As many
learning situations as needed are generated at random
positions within the validity ranges of the requesting
Context Agent (Fig. 3f).

4 Experimentations

In this section, we compare learning without any
NCS detection and resolution with the results taking
into account only one NCS at a time, and then with all
NCS together. Each learning experience is stopped af-
ter 1000 cycles because it is enough to explore the en-
tire space. The learning mechanism receives a learn-
ing situation at each cycle. The metrics are averaged
over 10 learning experiences. The models to be learnt
are two linear models whose spatial distribution is as
shown in Fig. 2a. On average, the duration of an ex-
periment is about 3 seconds with the features1 of the
computer we are using. This work is planned to scale
up with the number of dimensions of the search space,
it is more demonstrative to present it as a 2D problem.

4.1 Metrics

We present here the metrics used during the experi-
ments. For simplicity, we remove the n indices that
symbolize the space dimension.

Generalization. To evaluate the ability of the
mechanism to generalize, we look at the number of
Context Agents nCtxt used to represent the space.

Exploration of the search space. We are inter-
ested in different types of volumes that measure the
exploration of the search space.

• VCtxt = (∑ j VC j −VC f lt −VConc)/Vtotal It is the
normalized volume explored by all the Context
Agents.

• VInac = VC f lt +VConc +VInc It is the volume of
learning inaccuracies.

• VC f lt = (∑( j,k),16 j<k6nCtxt , f j 6= f k VC j∩C k)/Vtotal It
is the normalized volume of conflicts.

• VConc = (∑( j,k),16 j<k6Nctxt , f j≈ f k VC j∩C k)/Vtotal
It is the normalized volume of concurrencies.

1Intel(R) Core(TM) i7-6600U CPU 2.20 GHz 2.81 GHz,
RAM 32 GB

• VInc = 1−VCtxt It is the normalized volume of the
unexplored search space.

Vtotal = ∏i(pmax
i − pmin

i ) is the volume of the
search space with pmin

i and pmax
i the minimum and

maximum perceptions experienced.
Learning Data. We are interested in the number

of learning situations randomly supplied and actively
requested.

• LRdm are randomly generated learning situa-
tions from a uniform distribution in the interval
[−100;100] for each perception pi.

• LA represents all the active learning situations.

• LModel
A , LC f lt

A , LConc
A , L Inc

A and LRge
A are all the dif-

ferent kinds of active learning situations (Model
Ambiguity, Conflict, Concurrency, Incompetence
and Range Ambiguity).

Prediction. To evaluate the proposals of the learn-
ing mechanism, we calculate the normalized predic-
tion error EO according to the oracle predictions:
EO = |O −O ′|/|O|. The prediction metric is calcu-
lated over 250 exploitation random cycles.

4.2 Results

In this section, we present the results obtained by
comparing the resolutions of the different learning in-
accuracies. The metric values we give here are the
averages available on T. 1.

4.2.1 Results without NCS Resolution

When no NCS is taken into account, it is visually no-
ticeable (Fig. 4a) that the volume of learning inac-
curacies is significant (42.28%). 159 Context Agents
cover only 80.23% of the space and there is an error
of 55.4% on the predictions.

4.2.2 Results with NCS Resolution Alone

For each of the following cases, we compare the met-
ric values obtained with the previous case as a refer-
ence.

Conflict NCS. The treatment of conflicts does not
bring any obvious visual difference (blue/green inter-
sections Fig. 4b). 15 active learning situations are re-
quested to reduces the volume of conflicts from 0.7%
to 0.12%.

Concurrency NCS. The treatment of concurren-
cies brings an exploration almost without any over-
lap (blue/blue and green/green intersections Fig. 4c).
136 active learning situations are required to reduce
the volume of concurrency from 21.81% to 1.38%.



(a) None (b) Conflicts (c) Concurrencies (d) Incompetencies

(e) Ambiguities (f) All (g) Dynamic Model
Figure 4: Screen shots of learning experiences after 1000 training cycles with different NCS resolution. Each color is a
different linear model.

Table 1: Metrics of exploration, learning data, generalization and prediction averaged over 10 episodes of 1000 learning cycles
for different NCS resolutions (presented section 4.1). Red values represent worse results than reference case (No NCS), green
values represent better results than the reference case and bold values represent the impacted learning data for each case. The
dynamic column represents an additional experiment made with 1000 more learning cycles on a different disposition of the
models after a classical learning episode with all the NCS

Metrics No NCS Conflicts Concurrencies Incompetences Ambiguities All NCS Dynamic
VCtxt (%) 80.23 ± 1.38 78.4 ± 1.11 73.36 ± 1.96 97.97 ± 0.42 75.71 ± 0.98 97.23 ± 0.58 92.21 ± 4.77
VInac (%) 42.28 ± 1.44 43.39 ± 1.65 28.26 ± 1.94 12.7 ± 2.61 42.94 ± 0.92 3.67 ± 0.57 12.92 ± 5.53
VC f lt (%) 0.7 ± 0.27 0.12 ± 0.08 0.24 ± 0.15 0.82 ± 0.56 0.19 ± 0.18 0.13 ± 0.12 4.9 ± 3.59
VConc (%) 21.81 ± 2.24 21.67 ± 1.89 1.38 ± 0.2 9.85 ± 2.59 18.46 ± 0.91 0.76 ± 0.4 0.23 ± 0.22
VInc (%) 19.77 ± 1.38 21.6 ± 1.11 26.64 ± 1.96 2.03 ± 0.42 24.29 ± 0.98 2.77 ± 0.58 7.79 ± 4.77
LRdm (#) 923 ± 4 908 ± 4 786 ± 6 581 ± 45 792 ± 17 220 ± 55 127 ± 37
LA (#) 77 ± 4 93 ± 4 214 ± 6 419 ± 45 208 ± 17 780 ± 55 874 ± 37
LModel

A (#) 77 ± 4 78 ± 3 78 ± 3 41 ± 9 77 ± 4 43 ± 8 8 ± 4
LC f lt

A (#) 0 ± 0 15 ± 3 0 ± 0 0 ± 0 0 ± 0 15 ± 6 26 ± 9
LConc

A (#) 0 ± 0 0 ± 0 136 ± 4 0 ± 0 0 ± 0 71 ± 11 58 ± 15
L Inc

A (#) 0 ± 0 0 ± 0 0 ± 0 378 ± 50 0 ± 0 415 ± 38 185 ± 31
LRge

A (#) 0 ± 0 0 ± 0 0 ± 0 0 ± 0 132 ± 17 237 ± 34 598 ± 68
nCtxt (#) 159 ± 7 165 ± 6 125 ± 10 53 ± 6 159 ± 7 31 ± 5 59 ± 10
EO (%) 55.4 ± 28.85 51.29 ± 19.51 44.04 ± 19.07 2.68 ± 1.67 53.51 ± 18.82 1.81 ± 3.03 3.02 ± 3.99

Fewer Context Agents (125) cover a smaller part of
the search space 73.36%

Incompetence NCS. Incompetency processing
results in an exploration with almost no gaps (white
areas Fig. 4d). 378 active learning situations allow
to decrease the void volume (2.03%), the concurrency
volume (9.85%), and the Model Ambiguity NCS (41).
53 Context Agents cover 97.97% of the search space
and the prediction error is reduced to 2.68%.

Range Ambiguities NCS. The treatment of ambi-
guities alone gives a similar exploration if not worse
to the case without NCS treatment (Fig. 4e).

4.2.3 Results with All NCS Resolutions

When all NCS are processed during training Fig. 4f,
exploration is close to the expected ideal Fig. 2c. 31
Context Agents cover 97.23% of the space. The vol-
ume of all learning inaccuracies drops from 42.28%
to 3.67%, the lowest of all cases. Prediction error is
the lowest with 1.81%.

4.2.4 Dynamic Model

Fig. 4g experiment tests the ability of the learning
mechanism to reuse its knowledge and to adapt to a



variation. From an experiment of 1000 cycles with
all NCS (Fig. 4f), a second experiment is conducted
with 1000 learning cycles on a new model. T. 1 shows
that the exploration performances are slightly worse
but the quantity of model learning situations LModel

A
is much lower.

4.3 Discussion

When none of the learning inaccuracies are ad-
dressed, the metric results are far from ideal. The
prediction error is very bad, which is explained by
the very large amount of non-exploitable space. Pro-
cessing NCS alone allows to validate the expected be-
haviors but the associated explorations do not con-
verge towards the ideal exploration. When all NCS
are treated, the number of Context Agents and the
prediction error are the lowest of all the encountered
cases, but there are still minute learning inaccuracies.
The number of Context Agents still does not reach
the optimum. To reach it, an additional treatment is
missing that would allow the Context Agents to reor-
ganize their validity ranges, i.e. to split if it allows a
merge. The dynamic experiment shows the capacity
of the learning mechanism to adapt its exploration and
to reuse already known models to accelerate learning.
The learning case that we present here is a simplified
case to validate our approach. Further evaluations will
focus on exploring more complex search spaces with
non-linear models to be learnt which are closer to real
complex systems.

5 Related work

The approach of integrating a local model within
each Context Agent differs from classical regression
and classification approaches. Piecewise learning,
agentified and distributed, online and dynamic, allows
adding internal mechanisms that guide learning by
making it active, independently of the learning tech-
nique. In this section, we present similar methods and
highlight their similarities and differences.

Data Selection. The approach presented in this
paper is comparable to active learning, which con-
sists of deciding which data should be labeled from
a set of unlabeled data (Settles, 2009). It also reminds
semi-supervised learning, which seeks to achieve bet-
ter performance by combining unlabeled and labeled
data (Li et al., 2017). Our work focuses on how multi-
agent systems allow to actively request labeled data
online with a generic approach independent of the
learning models.

Domain, dimension and distribution/locality.
Transfer learning uses related domains or tasks to en-
hance learning (Pan and Yang, 2009). Unsupervised
learning uses only unlabeled data for data aggrega-
tion or dimensional reduction problems (Hastie et al.,
2009). Distributed learning divides the training data
into subsets before processing them (Lin et al., 2017).
We find local learning work for classification based
on generalization, continuity in prediction and scala-
bility (Zantedeschi, 2018). Our approach is intended
for different online learning problems of classification
or regression depending on the implemented mod-
els with fixed dimensions. The dynamic experience
shows that transfer learning is effectuated when Con-
text Agents reorganize themselves to match the new
geography.

Intrinsic Motivation. Beyond inverse reinforce-
ment learning and learning by intention, in the fields
of robotics, intrinsic motivation (Oudeyer et al., 2007;
Bondu and Lemaire, 2007) is a way to guide explo-
ration by focusing on the learning process itself. In-
trinsic motivation is independent of the task, it pro-
motes hierarchical learning of knowledge and the
reuse of skills (Mirolli and Baldassarre, 2013). It
is particularly found in the field of developmental
robotics and focuses on the development of robots
with infantile mental capacities (Cangelosi et al.,
2015). This approach is intended for blank systems
that learn from scratch. In the literature, there are
mostly architectures that use different learning mech-
anisms (Bellas et al., 2010; Vernon et al., 2011). We
take inspiration from this work but we are not yet ex-
perimenting on blank robotic systems.

Among these learning methods, our work falls
within the framework of several learning domains.
Our interest here is in adding internal mechanisms to
our context-based meta-learning approach and not in
comparing with other isolated learning methods that
do not match all of our concerns.

6 Conclusion and Perspectives

As multi-agent systems are well suited to cope
with the constraints of the sociotechnical world, we
have proposed a learning paradigm based on the ex-
tension of the contextual learning pattern. This exten-
sion is based on the use of information shared in the
neighborhood of a learning situation. We proposed a
taxonomy of these situations and a solution based on
agents cooperation. Self-observation of self-adaptive
multi-agent systems allows to detect learning inaccu-
racies in the local models. The local active learning
situations bring improved prediction performance by



anticipating ambiguous situations and solving them.
All the behaviors of the cooperative agents are de-
signed generic in order to be agnostic from the appli-
cation domain, the learning technique and the number
of dimensions. We are currently working in the field
of robotics on multi-articulated robotic arms in order
to learn their inverse kinematics model. Further work
will also focus on the comparison with other learning
techniques.
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