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Introduction

Marine ecosystems are manifesting multi-level responses to oceanographic changes related to global warming, from a suspected shift in phytoplankton communities [START_REF] Montes-Hugo | Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula[END_REF][START_REF] Barton | Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities[END_REF]) to top-predator population-size variations [START_REF] Bost | Large-scale climatic anomalies affect marine predator foraging behaviour and demography[END_REF][START_REF] Sydeman | Climate change and marine vertebrates[END_REF]. However, assessment of the biological consequences of a changing ocean is hampered by a scarcity of information on the intermediate or mid-trophic levels (MTLs) [START_REF] Hidalgo | Developing the knowledge base needed to sustainably manage mesopelagic resources[END_REF]. The crucial MTLs linking phytoplankton to upper marine predators are composed of zooplankton and micronekton (e.g. mesopelagic fishes and squids, euphausiids, siphonophores) [START_REF] Handegard | Toward a Global Ocean Ecosystem Mid-trophic Automatic Acoustic Sampler (MAAS)[END_REF][START_REF] Escobar-Flores | Predicting distribution and relative abundance of mid-trophic level organisms using oceanographic parameters and acoustic backscatter[END_REF] presenting a wide range of body structures (e.g. crustaceans with a chitinous exoskeleton, bony or gelatinous organisms), sizes (from a few millimetres for euphausiid larvae to a meter for some siphonophores) and behaviours (e.g. planktonic or nektonic) [START_REF] Sutton | Vertical ecology of the pelagic ocean: classical patterns and new perspectives: vertical ecology of the pelagic ocean[END_REF][START_REF] St | A Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community[END_REF][START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF]. The mesopelagic biome, comprising a third of the globalocean volume, is one of the largest but least-known marine habitats [START_REF] Reygondeau | Global biogeochemical provinces of the mesopelagic zone[END_REF], and considerable uncertainties remain regarding the total biomass of mesopelagic fishes.

Estimates of this biomass range from 2 to 20 gigatons [START_REF] Irigoien | Large mesopelagic fishes biomass and trophic efficiency in the open ocean[END_REF][START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF], the latter being some 100 times the annual catch of all existing fisheries ( Anderson et al. 2019, Hidalgo and[START_REF] Hidalgo | Developing the knowledge base needed to sustainably manage mesopelagic resources[END_REF]. The resulting scantiness of information on the structure and turnover of mesopelagic food webs hinders accurate predictions about the consequences of environmental changes or industrial fishing on this biome, and on the numerous higher-level predators that it supports.

Information about the distribution and composition of MTLs is also critical for improved estimates of carbon export fluxes. The Southern Ocean (SO) in particular plays a crucial role in carbon sequestration, accounting for approximately 40% of global anthropogenic CO2 uptake (DeVries 2014). The biological carbon pump operating in the SO remains only partially explained due to the difficulty in monitoring its biotic environment, although recent programmes such as KEOPS or CROZEX have proposed, in some parts of the SO, a quantification of biological processes leading to carbon export [START_REF] Blain | Effect of natural iron fertilization on carbon sequestration in the Southern Ocean[END_REF][START_REF] Pollard | Southern Ocean deep-water carbon export enhanced by natural iron fertilization[END_REF][START_REF] Salter | Diatom resting spore ecology drives enhanced carbon export from a naturally iron-fertilized bloom in the Southern Ocean[END_REF][START_REF] Le Moigne | What causes the inverse relationship between primary production and export efficiency in the Southern Ocean?[END_REF]. The biological carbon pump begins with primary production performed by phytoplankton, which represents the main source of organic carbon exported to mesopelagic layers [START_REF] Buesseler | Revisiting Carbon Flux Through the Ocean's Twilight Zone[END_REF]. Gravitational sinking of phytoplankton as individual cells and aggregates is responsible for a significant portion of carbon export in the SO (Leblanc et al. this issue, Laurenceau-Cornec et al. 2015a). However, alternative biological mechanisms transporting the carbon trapped by phytoplankton to deep waters are still poorly understood as they are likely to rely mainly on the behaviour of MTLs.

Of particular note with regard to MTL behaviour is the phenomenon of diel vertical migration (DVM), which is performed by a large majority of MTL organisms, from small zooplanktonic organisms to mesopelagic fish [START_REF] Hays | A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations[END_REF][START_REF] Sims | Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a benthic shark[END_REF][START_REF] Watanabe | Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific[END_REF], and is found across all oceans [START_REF] Behrenfeld | Global satellite-observed daily vertical migrations of ocean animals[END_REF]. Representing the largest daily migration observed in the biosphere [START_REF] Brierley | Diel vertical migration[END_REF], and presenting differences in migration patterns depending on both the species and its life stage [START_REF] Atkinson | Feeding rates and diel vertical migration of copepods near South Georgia: comparison of shelf and oceanic sites[END_REF], DVM participates in a massive carbon transfer across the mixed layers of the ocean [START_REF] Buesseler | Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[END_REF][START_REF] Cavan | Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets[END_REF][START_REF] Aumont | Evaluating the Potential Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine Biogeochemistry[END_REF][START_REF] Hernández-León | Large deep-sea zooplankton biomass mirrors primary production in the global ocean[END_REF]. This vertical migration pump results from MTL zooplankton and micronekton rising to the euphotic zone near the surface where they generally feed at night. Carbon acquired at the surface is then actively transported during the day to deeper waters where MTLs release rapidly-sinking faecal pellets that form large aggregates [START_REF] Belcher | Copepod faecal pellet transfer through the meso-and bathypelagic layers in the Southern Ocean in spring[END_REF]. This biological detritus gravitational flux, in addition to active transport by MTL organisms, increases the transfer and transformation of carbon [START_REF] Cavan | Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets[END_REF][START_REF] Belcher | Copepod faecal pellet transfer through the meso-and bathypelagic layers in the Southern Ocean in spring[END_REF], Cavan et al. 2019b), and contributes directly to deep carbon sequestration. Preliminary estimates suggest that MTLs may be responsible for about a quarter of carbon transport to deeper waters, though large uncertainties persist and regional variability exists [START_REF] Boyd | Multi-faceted particle pumps drive carbon sequestration in the ocean[END_REF]. Achieving better quantification of the role played by MTLs in the biological carbon pump is therefore still one of the current challenges in oceanography.

Although advances in marine acoustics, especially in multi-frequency and multi-beam echosounders, have resulted in a coarse classification of micronektonic organisms [START_REF] Escobar-Flores | Acoustic Assessment of the Micronekton Community on the Chatham Rise, New Zealand, Using a Semi-Automated Approach[END_REF], the understanding of MTL taxonomic composition, biomass, and behaviour remains limited due to the difficulty of sampling. This is especially true for the SO where logistics and weather constrain ship-based operations. Consequently, acoustic and nettow surveys of the mesopelagic layer, such as krill stock monitoring surveys [START_REF] Fielding | Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997-2013[END_REF][START_REF] Tarling | Varying depth and swarm dimensions of open-ocean Antarctic krill Euphausia superba Dana, 1850 (Euphausiacea) over diel cycles[END_REF][START_REF] Manno | Continuous moulting by Antarctic krill drives major pulses of carbon export in the north Scotia Sea, Southern Ocean[END_REF], remain sparse for most SO sectors. In addition, although such surveys are highly valuable, they inevitably suffer from limited spatial and temporal coverage [START_REF] Kloser | Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges[END_REF]. Each method also has its own sources of bias.

Acoustic surveys are sensitive to regional differences in the relative abundance of mesopelagic species or in their body structure [START_REF] Dornan | Swimbladder morphology masks Southern Ocean mesopelagic fish biomass[END_REF]. Net-tow sampling, which is often used to validate hydroacoustic surveys, suffers from an underestimation of energetic mesopelagic fishes that are able to escape the trawl [START_REF] Kaartvedt | Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass[END_REF][START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF], and rarely has sufficient spatial resolution to reveal mesoscale structuring [START_REF] Davison | Acoustic biomass estimation of mesopelagic fish: backscattering from individuals, populations, and communities[END_REF]. Although continuous ship-based acoustic surveys can sample over these larger spatial scales, they generally lack simultaneous sampling of fine-scale in-situ oceanographic profiles to investigate the coupling between physical and biological processes [START_REF] Proud | From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[END_REF].

Helping to fill in the gaps left by ship-based surveys are autonomous ocean profilers (e.g.

ARGO profilers and gliders), whose development has enabled extensive sampling of the physical properties of the water column. Recently some profilers were equipped to make continuous recordings of acoustic backscatter [START_REF] Haëntjens | Detecting Mesopelagic Organisms Using Biogeochemical-Argo Floats[END_REF]. However, the relatively slow vertical movement of autonomous underwater robotic samplers may prevent reliable sampling of more rapid biological processes, such as the daily vertical migration of actively swimming larger-size micronekton species.

A creative approach to achieve dense sampling of physical oceanographic parameters in otherwise difficult-to-observe oceanographic regions has been to fit marine animals with multi-sensor biologging tags so that they become ocean samplers [START_REF] Fedak | Marine animals as platforms for oceanographic sampling: a "win/win" situation for biology and operational oceanography[END_REF][START_REF] Hindell | Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories[END_REF], Harcourt et al. 2019). Although this method does not provide systematic surveys, it offers the important advantage of providing simultaneous information about marine predator foraging ecology along with oceanographic conditions such as temperature, salinity or light level [START_REF] Biuw | Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions[END_REF][START_REF] Guinet | Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution[END_REF].

Biologging tags with sensors for temperature, salinity, chlorophyll-a concentration, and dissolved oxygen have yielded fine-scale descriptions of oceanic processes in remote areas [START_REF] Roquet | Estimates of the Southern Ocean general circulation improved by animal-borne instruments[END_REF][START_REF] Bayle | Moving toward finer scales in oceanography: Predictive linear functional model of Chlorophyll a profile from light data[END_REF], Bailleul et al. 2015). Southern elephant seals (Mirounga leonina, SES hereafter) are particularly useful for such sampling as they perform long-range foraging trips with continuous diving to mesopelagic depths, routinely reaching 1000 m and in rare cases exceeding 2000 m [START_REF] Roquet | Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals[END_REF][START_REF] Hindell | Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories[END_REF]. In recent years, animal-borne sensors have been developed to quantify the marine organisms encountered by deep-diving mammals. High-resolution accelerometers have been used to detect prey capture attempts by SES [START_REF] Guinet | Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution[END_REF], Jouma'a et al. 2016), providing critical insight into interactions between these top predators and the MTLs. Importantly, this approach has opened the possibility of indirectly mapping the distribution of mesopelagic prey targeted by SES, in particular myctophid fish [START_REF] Cherel | Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands[END_REF][START_REF] Vacquié-Garcia | Delineation of the southern elephant seal׳s main foraging environments defined by temperature and light conditions[END_REF]. While more detailed information on MTL prey encountered by northern elephant seals has been collected by camera tags [START_REF] Naito | Unravelling the mysteries of a mesopelagic diet: a large apex predator specializes on small prey[END_REF], the high energy consumption of these devices has limited the amount of data that can be collected [START_REF] Watanabe | Linking animal-borne video to accelerometers reveals prey capture variability[END_REF].

More recently, measurements of bioluminescence from some SES prey [START_REF] Vacquié-Garcia | Marine Bioluminescence: Measurement by a Classical Light Sensor and Related Foraging Behavior of a Deep Diving Predator[END_REF][START_REF] Goulet | Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey[END_REF] have provided a means to distinguish classes of prey and their distribution. However, although these biologging approaches provide insight into the specific MTL prey targeted by SES [START_REF] Yoshino | Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals[END_REF], they offer little general information about the distribution of other MTL organisms. New perspectives are now offered by the miniature animal-attached echosounder used in our study. This sonar tag was deployed on female SES to study mesopelagic predator-prey interactions [START_REF] Goulet | A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals[END_REF]. It can detect echoes from small organisms (ranging from a few millimetres to tens of centimetres) over a short distance (up to 6 m) in front of the seal, resulting in detailed profiles of sonar backscatter as the animal dives. Here, we use data recorded by the tag on two SES females to assess the biological conditions as they forage in contrasting oceanographic regimes off Patagonia (Argentina) and the Kerguelen Islands. The goal of this study is to assess whether hydroacoustic data collected from deep-diving SES can contribute to understanding pelagic ecosystems in the SO by: 1) measuring the variation of MTL abundance and acoustic size within the water column; 2) documenting the diel vertical migration of MTLs; and 3) mapping spatial variations in MTL abundance and behaviour, and their relationships to local oceanographic conditions. While the aim of the present study is not to quantify carbon fluxes, which is beyond the scope of this paper and not possible at present, it can provide qualitative information on some processes that are involved in controlling these fluxes.

Material and methods

Study sites and logger deployments

In October 2018, adult female SES breeding at Peninsula Valdes (Argentina, 42°57'S, 63°59W, abbreviated to PV) and on the Kerguelen Islands (49°21'S, 70°13'E, abbreviated to KER) were fitted with biologgers using a standard procedure [START_REF] Mcmahon | Tracking and data-logging devices attached to elephant seals do not affect individual mass gain or survival[END_REF]). The animals were captured and anaesthetised with an injection of Zoletil100 (1:1 mix of tiletamine and zolazepam). In each study location, three biologging devices were glued to the animal's fur using quick-setting epoxy (Araldite AW 1201): a head-mounted sonar tag [START_REF] Goulet | A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals[END_REF], a back-mounted Satellite Relayed Data Logger (CTD-SRDL, Sea Mammal Research Unit, St Andrews, UK), and an ARGOS transmitting tag (SPOT, Wildlife Computers, USA).

The CTD-SRDL recorded conductivity, temperature, and pressure at 1 Hz while also sending summary data via ARGOS messages. The SPOT tag was included to facilitate recovery of the tags when animals returned to land, in case the CTD-SDRL had stopped transmitting. At-sea movements were monitored using the ARGOS satellite-tracking system, and the loggers were recovered as soon as the seals hauled out for moulting. The three loggers had a total mass of under 800 g, representing less than 0.5% of the animal weight, and should therefore have minimal impact on the survival or foraging success of equipped animals (McMahon et al.

2008).

The sonar tag recorded high-resolution sonar, location, and movement data. GPS positions were obtained at each surfacing. Pressure and triaxial magnetometer data were recorded at a sampling rate of 50 Hz while triaxial acceleration was recorded at 200 Hz. The active sonar had a centre frequency of 1.5 MHz and emitted 10 µs pings at a rate of either 12.5 (PV) or 25 (KER) pings per second, with a source level of approximatively 187 dB re 1 µPa at 1 m [START_REF] Goulet | A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals[END_REF]. Sound was transmitted and received via a transducer with a -3 dB beamwidth of approximately 3.4 degrees. The complex returning signal was demodulated and the resulting baseband signal was sampled at 192 kHz for intervals of 8 ms following each ping, giving a spatial resolution of about 3.9 mm and a maximum range of 6 m (see [START_REF] Goulet | A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals[END_REF] for device specifications). The sonar transducer on the tag has a rigid backing which does not compress with depth. Therefore, we assume that the performance of the transducer remains reasonably constant over the depth range explored by SES. More in-depth validation approaches are still in progress and will be the subject of future papers

In order to extend the recording duration, the sonar was switched on and off on a regular basis with a cycle of 5.5 h on and 5.5 h off for Kerguelen and 24 h on and 24 h off in Argentina.

Both protocols provided a homogenous sampling of all periods of the day throughout the recording duration. The sonar was activated at depths deeper than 50 m for Kerguelen and 15 m for Argentina. The CTD and sonar tags were synchronised by matching the depth data sampled by their respective pressure sensors following Le [START_REF] Bras | How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate[END_REF].

Sonar data processing and analysis

The echo level was calculated by first removing the mean values of the in-phase and quadrature received signals, and then computed as the root-mean square of these two signals.

Echogram images were constructed from the log of the echo level, with each pixel representing a sonar sample (i.e. 1/192000 s or 3.9 mm of round-trip travel). Similar to echograms obtained from traditional fishery echosounders, the vertical dimension of the echogram represents the range to targets while the horizontal dimension represents successive pings (Figure 1). Hereafter, any insonified object giving an echo will be referred to as a scatterer, regardless of its nature or size. From the echograms, the two following metrics were derived:

Scatterer count

The scatterer count is the number of pixels for which the echo level exceeds a threshold chosen to differentiate actual scatterers from background noise. For each sonar-on phase of the sonar data, the background noise level was calculated from the signal contained in the last meter of the sonar range. A visual inspection of the sonar data indicated that targets were rarely evident at this range due to high spreading and absorption losses. The echo level of all pixels in the ~4.6-5.6 m range were therefore fit to a Rayleigh distribution to characterise the noise floor, and the detection threshold was set to the 99.9 percentile of this distribution (Figure 2, Supplementary Information). The scatterer number (SN) was then calculated as the total number of pixels above the detection threshold for each sonar ping, averaged over a 2-second window, resulting in a proxy for absolute particle abundance. Scatterer abundance was then calculated as the standardised SN divided by the nominal sampled volume, resulting in an approximate scatterer abundance value, i.e. number per m 3 . The sample volume was taken as the truncated cone of the sonar beam in the 1-1.5 m range assuming a 3.4° beamwidth.

Maximum apparent target size

Acoustic studies often use the echo level as a proxy of the target size. In this study, it is not possible to ascertain the position of small echoic targets in relation to the beam axis, meaning that the echo level is dependent on the location, with the echo strength of a given target decreasing as its position departs from the centre of the beam, and varying with the orientation of the targets as well as their size and composition. However, the high spatial resolution of the sonar data allowed measurement of the echo duration, which is related to the target cross-section, shape and composition [START_REF] Burwen | Time-based signal characteristics as predictors of fish size and species for a side-looking hydroacoustic application in a river[END_REF]. Apparent size was therefore calculated for each detected scatterer using the duration Δt (s) for which the echo intensity was above the detection threshold. This was converted to distance to give a size estimate in metres: Δt * ss/2 = size, with ss = sound speed in seawater, taken as a constant 1500 m/s throughout the record. For each 2-second period, the scatterer with the largest apparent size was retained as the Maximum Apparent Size (MAS). Although the smallest organic particle size detectable by the sonar tag is about 1 to 2 mm (L. Petiteau, personal communication, Supplementary Information, Figure 4), the smallest apparent size that can be calculated is 3.9 mm due to the limited sonar resolution. This spatial resolution allows, in theory, the detection of most mesozooplanktonic organisms of high ecological importance such as calanoids (e.g. Rhincalanus gigas), euphausiids (e.g.

Euphausia vallentini), hyperiids (e.g. Themisto gaudichaudii), gelatinous organisms (e.g.

Rosacea plicata).

Considering that the sonar tag is able to detect targets as small as 1 mm (see Supplementary Information), it is also probable that smaller copepods (e.g. Calanus simillimus, C. acutus) contribute to the signal obtained. The apparent size is dependent on many factors including the distance, orientation and composition of the target, and its position relative to the beam axis, making this a noisy proxy for the real size. We therefore graded the MAS into two broad size classes based on the 'Sieburth-scale' plankton classes [START_REF] Sieburth | Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1[END_REF]: the first class contained small scatterers with MAS up to 20 mm which we considered as mesoplankton-like objects. The second class contained objects with MAS ranging from 20 to 50 mm which were considered as small macroplankton. Objects with MAS larger than 50 mm were rare (representing 2.2% and 2.9% of the signal for PV and KER respectively) and were often associated with a jerk (i.e. rapidly changing acceleration signal) which most likely indicates a prey capture attempt [START_REF] Ydesen | What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina)[END_REF]. These large targets are therefore likely to be macronekton, including the mesopelagic fish and squids preyed upon by SES [START_REF] Daneri | Fish prey of southern elephant seals, Mirounga leonina, at King George Island[END_REF].

This latter size class was therefore removed from the analysis to focus on potentially zooplanktonic organisms.

The above sonar metrics were calculated over non-overlapping 2-second windows and extracted at distances ranging from 1 to 1.5 m ahead of the elephant seal's head. The lower distance limit was chosen to be beyond the sonar near-field and yet close enough to potentially detect echoes from the full-size range of MTL organisms. The 0.5 m analysis range was a trade-off between a narrower range, which may lead to too few detections for statistical evaluation, and a larger sampling range over which the probability of detection would vary substantially and hence complicate analysis.

Combining these acoustic metrics with the depth and GPS positioning collected by the tag resulted in a set of time-depth profiles similar to the oceanographic data profiles obtained with CTD loggers deployed on SES [START_REF] Fedak | Marine animals as platforms for oceanographic sampling: a "win/win" situation for biology and operational oceanography[END_REF]). The acoustic data were analysed with MATLAB R2019b, using custom functions. Temperature and salinity profiles were generated on a constant vertical grid from 20 m to 200 m. This depth range was chosen to maximise temporal coverage especially at night when SES make shallower dives. As the objective of this analysis step was to describe near-surface mesoscale oceanic features that may influence MTL distribution, information loss on water structures below 200 m was not critical to our study. Dives shallower than 200 m were therefore removed. Oceanographic profiles were then decomposed on a B-spline basis with c coefficients estimated by polynomial regression (see [START_REF] Ramsay | Principal components analysis for functional data[END_REF]. The FPCA method was applied to the set of coefficients resulting in a compact representation of each profile according to its degree of similarity to the first principal components (PCs) generated by the FPCA.

Clusters of similar curves were discriminated using k-means supervised classification. The classification of temperature and salinity curves was achieved in the space of the 5 first PCs.

These PCs account for more than 90% of the total inertia and 98 % and 91.5% of the entire variability for KER and PV, respectively. Based on the Ward criterion, minimising the total within-cluster variance, we determined the number k of clusters for each SES track, with a maximum of five groups [START_REF] Murtagh | Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion?[END_REF]. Different clusters were considered as representing different water bodies and were then projected to their geographical positions along the track of the elephant seal, and did not necessarily correspond to the water bodies traditionally identified in these regions by other studies [START_REF] Carter | Chapter 4 Circulation and Water Masses of the Southern Ocean: A Review[END_REF] 4. Analysis of vertical distribution Each scatterer sampled by the sonar tag was assigned to a given water body as defined by the cluster analysis, according to the oceanographic conditions in which they were encountered.

Although SES perform long-range foraging trips, they only travel a few tens of kilometres per day. This pace allows capturing large-scale phenomena such as mesozooplankton swarms [START_REF] Fielding | Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997-2013[END_REF], and also the daily DVM, which is relatively consistent in the same water body [START_REF] Behrenfeld | Global satellite-observed daily vertical migrations of ocean animals[END_REF]. Migration behaviour, however, is suspected to be dependent on the organism type, which may lead to a time-varying vertical distribution of different-sized scatterers. We therefore determined the relative abundance in the water column of each scatterer size class (i.e. smaller than 20 mm and from 20 to 50 mm) according to the period of the day. As the prey of SES performed DVM as well, and were shallower at night, the sampling effort for the lower depths was unbalanced between day and night. The day period was determined using the sun angle for the current position of the seal [START_REF] Guinet | Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution[END_REF]. Then, for each water body, the mean abundance of each scatterer class for each 10metre depth bin was calculated. The percentage difference between day and night means in each depth bin was computed to summarise the relative difference in migration behaviour for the two size classes.

The intensity of the DVM, for each water type, was determined by comparing the depth range of the migration (i.e. vertical amplitude), the total estimated abundance of scatterers present in the water column, and the mean acoustic size composition over the same depth range. For each profile, the depth with the highest abundance of scatterers was considered to represent the depth containing most of the organisms participating in the DVM. For each dive, the vertical distribution of the scatterers was determined by a simple peak-finding procedure. In most dives the vertical distribution of abundance was unimodal. In the case of a multimodal distribution, the largest mode was taken as the depth of maximum abundance. For each location, the range between the deepest and the shallowest abundance maximum was defined as the DVM range. Over these DVM ranges, the total abundance of scatterers was estimated by adding up interpolated values of the abundance for each depth meter. Finally, the mean size of the scatterers over the same depth ranges was compared between day and night in each water body. The numbers of samples for the different possible combinations of analysis categories (i.e. day period and water body) were unbalanced and heteroscedastic. Therefore, analyses assessing the effect of the period of the day and the water body were conducted using a multiway rank-based analysis (Rfit, [START_REF] Kloke | Rfit: Rank-based estimation for linear models[END_REF]. Considering the large oceanographic differences between KER and PV regions, analyses were performed separately for each location, to compare DVM range, total abundance and size composition. Analyses were carried out with R software (R 3.5 R core team 2019). & 1.c). Over these 4 days, the mean size of the scatterers was 12 ± 4.5 mm.

A DVM pattern appeared to be the main driver of the vertical heterogeneity of the PV sonar signal data, in terms of scatterer abundance (Figures 3 and5). This feature was not as clear for the KER dataset (Figures 2 and4).

2. Classification of water bodies and scatterer size differences A total of 2094 and 2819 dives for KER and PV, respectively, were used for the FPCA procedure (representing 96.9% and 85.5% of the available profiles; the remaining profiles did not reach 200 m).

The first two principal components (PC) accounted for 80.1% and 89% of the variability in the individual profiles for PV and KER, respectively. CTD profiles were distributed within three water clusters for PV, with 226, 1819, and 364 profiles recorded for water clusters 1, 2, and 3, respectively. The water bodies were distributed along both temperature and salinity gradients, with, for each location, colder and less salty waters for cluster 1 and warmer and saltier waters for cluster 3 (Figure 6).

Analyses of vertical distribution

When considering all scatterers regardless of size, the mean vertical extent of the abundance maximum ranged from 30 to 260 m in PV (Figure 7) while a narrower depth range from 70 m (i.e. the turn-on depth of the sonar) to 160 m was observed at KER (Figure 8).

For KER, there was a significant difference in the depth of peak abundance between day and night (p-value > 0.001), but no significant variation in depth between clusters (Figure 8).

However, significant differences in scatterer abundance were found between water clusters (p-value < 0.005). The mean size of scatterers differed significantly across water clusters, but no diel differences in this parameter were observed. Larger scatterer sizes were encountered in water clusters 1 (14.7 ± 5 mm) and 2 (14.8 ± 3.7 mm) compared to water cluster 3 (11.8 ± 3.8 mm) (p-value < 0.001).

For PV, due to the 24-hour duty-cycle, no sonar profile was available for the night period of water cluster 1. For daylight hours, the depth of the main abundance peak differed significantly between the 3 water clusters (p-value < 0.001), with a deeper location in water clusters 2 and 3 compared to water cluster 1 (p-value < 0.001). Furthermore, the depth of the abundance maximum was significantly deeper during the day than the night for water clusters 2 and 3 (day: 113 ± 56.5 m, night: 42.3 ± 18.9 m, p-value < 0.001, for water cluster 2; day:

126 ± 49 m, night: 40.1 ± 13.1 m, p-value < 0.001 for water cluster 3; Figure 7b). The total number of scatterers, totalled over the depth range 30:260 m, was also significantly different between day and night for these water clusters (day: 194.10 3 ± 48.10 3 , night 185.10 3 ± 52.10 3 for water cluster 2; day: 250.10 3 ± 68.10 3 , night 125.10 3 ± 46.10 3 scatterers.m -3 , for water cluster 3, Figure 7c), but did not differ significantly between them. However, significant differences in scatterer size were found between the three clusters during the day (p-value > 0.001) when they could be compared (water cluster 1: 15.4 ± 6.6 mm, water cluster2: 10.7 ± 5.4 mm, water cluster 3: 11.5 ± 5.4 mm, Figure 7d).

The percentage difference between day and night for each scatterer size class in 10-metre depth bins showed a regular pattern of maximum abundance in upper layers at night, and in lower layers during the day (Figure 9). Depending on the water body, small (i.e. < 20 mm) and medium-sized (20-50 mm) scatterers exhibited some differences in their vertical distribution patterns (Figure 9).

Finally, clear differences were evident between KER and PV when looking at the complete depth range of 70 to 260 m that was sampled during the two surveys. Although the average scatterer abundance was similar in the two locations, PV data exhibited greater differences between the day and night vertical distributions of scatterers (p-value < 0.001, Figure 10a).

However, the mean size of scatterers was greater for KER (25.1 ± 7.1 mm, max = 175 mm) compared to PV data (17.4 ± 6.2 mm, p-value < 0.05, max = 351 mm, Figure 10b).

Discussion

1. Horizontal and vertical heterogeneity in the acoustic backscatter Two sonar tags were deployed in parallel on elephant seals from distinct oceanographic regions to assess their performance in capturing the sizes, vertical distribution and diel dynamics of MTL organisms. While a previous study showed that mesopelagic fish/squids were detected by the sonar tag during close prey encounters [START_REF] Goulet | A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals[END_REF], the present study quantifies the abundance of smaller acoustic targets, insonified by the tags as the seals dived through the water column. The primary aim of this study, presenting the first-ever application of the new biologger, is therefore to assess its potential for quantifying the vertical and horizontal distribution of the MTLs during the far-ranging foraging trips of SES.

It is important to note that using a free-ranging foraging animal as a sampling platform may ineluctably lead to some sampling bias. Foraging SES tend to target, and therefore oversample, highly dynamic areas such as fronts [START_REF] Cotté | Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current[END_REF][START_REF] Della Penna | Quasi-planktonic behavior of foraging top marine predators[END_REF], Rivière et al. 2019) characterised by complex hydrodynamic conditions, which are favourable for prey aggregation. In contrast, SES may tend to undersample areas of lower organism concentrations. However, this prey bias was reduced in this study by excluding portions of the sonar signal corresponding to prey catch attempts. As a result, only MTL organisms which were not targeted by the SES were investigated in the present study. Conversely, it should also be noted that some of the sampling biases associated with the use of non-biological platforms, such as gliders or Argo floats, are absent when using animal platforms. For A comparison between an underwater vision profiler and a sonar tag for measuring organism abundance has revealed the sonar tag's ability to detect organisms as small as 1 mm in diameter (unpublished data; Petiteau in prep., Supplementary Information). However, it is important to underline that the method used in this study cannot distinguish between several small, closely aggregated targets (i.e. separated by less than 3.9 mm, the spatial resolution of the sonar), and a single target of the same apparent size. Nevertheless, as the deep-water environments visited by foraging SES contain relatively few particles, the first scenario is rarely encountered, and should contribute only slightly to overall abundance estimates. Given the potential range of backscatter sources, the sonar tag data from SES in KER and PV likely include backscatter from a combination of objects whose nature cannot be determined, whether biological debris passively sinking to the ocean floor, or living organisms, some of them undertaking diel vertical migrations.

The main limitations being stated, we found that scatterers were more abundant and produced higher-intensity echoes in the upper part of the water column (i.e. above 250 m deep) in both locations. Temporal variations of the backscatter distribution were consistent with a daily cyclic movement in the water column corresponding to the daily migration of MTL organisms. However, this diel signal was not evident continuously throughout the datasets, and so is likely dependent on the nature of the scatterers present locally. Specifically, when the backscatter is dominated by small-size non-migrating items, we suggest that this could be indicative of biological detritus or else small-size non-vertically-migrating zooplankton, such as Calanus propinquus [START_REF] Conroy | Zooplankton diel vertical migration during Antarctic summer[END_REF], highly abundant in the eastern sector of the Kerguelen shelf [START_REF] Carlotti | Zooplankton community structure, biomass and role in carbon fluxes during the second half of a phytoplankton bloom in the eastern sector of the Kerguelen Shelf (January-February 2005)[END_REF].

We also found evidence that both the horizontal and vertical distributions of scatterers vary according to the oceanographic conditions encountered. Five distinct water bodies were identified along the seal tracks, corresponding closely with weekly estimates of SO fronts positions [START_REF] Sallée | Southern Ocean fronts and their variability to climate modes[END_REF]. Only one of these water bodies, water body 3, corresponding to Sub-Antarctic Waters (SAW), was encountered by seals from both KER and PV. Each seal also encountered two other water types but these were distinct in each location.

For the PV seal, clear differences in the vertical distribution, abundance and size of scatterers were found between each oceanographic domain visited, evidencing a change in MTL community composition and/or abundance depending on the water body. The changes in water body along the track may indicate that the seal encountered sub-mesoscale oceanographic features. Such structures are frequently used by SES and are often linked with improved foraging conditions [START_REF] Dragon | Linking foraging behaviour to physical oceanographic structures: Southern elephant seals and mesoscale eddies east of Kerguelen Islands[END_REF][START_REF] Della Penna | Quasi-planktonic behavior of foraging top marine predators[END_REF], Siegelman et al. 2019). Currently, the datasets are too limited to investigate the commonalities and differences of scatterers among similar water bodies, or to investigate seasonal changes. We can nevertheless expect an increased number of deployments of this tag, and the large ranges covered by SES, to lead to studies comparing the different large-scale water bodies explored by SES.

Regional differences in sonar signal

In both study areas, the abundance of scatterers varied depending on the water body. For the PV seal, significantly higher scatterer abundance was found in water body 1, which was close to the continental shelf, compared to the two other water bodies it encountered. This might be related to the highly productive waters of the Patagonian continental shelf, which receive nutrient-enriched inputs from the Malvinas current and support a large spring bloom [START_REF] Lutz | Overview on Primary Production in the Southwestern Atlantic[END_REF] with likely enhanced secondary production [START_REF] Cepeda | Zooplankton Communities of the Argentine Continental Shelf (SW Atlantic, ca. 34°-55°S), An Overview[END_REF]. However, the prey catch rate of the seal is low within this water body compared to elsewhere along its track, suggesting that this high spring productivity may not lead to increased abundance of the prey targeted by SES, or with a delay, due to the temporal decoupling of primary producers and primary consumers [START_REF] Latasa | Progressive decoupling between phytoplankton growth and microzooplankton grazing during an ironinduced phytoplankton bloom in the Southern Ocean (EIFEX)[END_REF]. Further offshore, within the Sub-Antarctic Front (SAF) northward inclusion, primary production tends to be lower and supports communities of small mesozooplankton with lower biomass [START_REF] Thompson | Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer[END_REF]) -a tendency that appears to be supported by the sonar tag data, revealing fewer and smaller scatterers with a very clear DVM pattern.

Similarly, MTL abundance in KER differs according to water mass, with the lowest abundance observed for water body 3 and the highest for water body 1. Water body 3 comprises profiles in the area around the North SAF and can be considered as a different bioregion than the other water bodies influenced by the subtropical regime [START_REF] Godet | Matching zooplankton abundance and environment in the South Indian Ocean and Southern Ocean[END_REF]. The warmer waters of this region tend to be associated with lower chlorophyll-a concentration and overall lower productivity than the high-productivity shelf and off-shelf waters of the Kerguelen plateau [START_REF] Godet | Matching zooplankton abundance and environment in the South Indian Ocean and Southern Ocean[END_REF]. The high abundance of scatterers seen in water body 1 may be associated with these enriched plateau waters, with eastward advection by currents releasing soluble iron, and enhancing primary production [START_REF] Robinson | A tale of three islands: Downstream natural iron fertilization in the Southern Ocean[END_REF][START_REF] Schallenberg | Sustained Upwelling of Subsurface Iron Supplies Seasonally Persistent Phytoplankton Blooms Around the Southern Kerguelen Plateau, Southern Ocean[END_REF].

Overall, a higher abundance of larger-sized scatterers was encountered in KER compared to PV waters while the DVM pattern is more obvious within the PV dataset. These findings exemplify the differences between these two distinct marine provinces (Longhurst 2010, Fay and[START_REF] Fay | Global open-ocean biomes: mean and temporal variability[END_REF]. Our results also highlight the wide variability in vertical distribution patterns of the MTLs, a finding consistent with recent fine-resolution studies [START_REF] Pinti | Predator-Prey Games in Multiple Habitats Reveal Mixed Strategies in Diel Vertical Migration[END_REF]Visser 2018, Conroy et al. 2020) and global ocean studies [START_REF] Behrenfeld | Global satellite-observed daily vertical migrations of ocean animals[END_REF]. More extensive deployments of the sonar tag may therefore help improve our understanding of the environmental and biological factors that drive these differences.

Diel vertical migration

The current study also reveals fundamental differences in the vertical distribution and behaviour of zooplanktonic and micronektonic organisms according to their sizes. 2016, [START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF], which is also revealed by the day and night mean diving depth of the two seals. Therefore, the observed DVM likely represents the vertical movement of zooplankton (i.e. the prey of SES prey) although inferences about the size of scatterers from the sonar data require validation. However, the minimum spatial resolution of the sonar tag (approx. 3.9 mm) means that smaller organisms will be lumped within the smallest size class resolved by the sonar tag. Nonetheless, the mean acoustic size (2 to 3 cm) of the migrating scatterers, and the depth range at which they are detected, suggest large zooplanktonic organisms like euphausids. Indeed, the Kerguelen waters host high abundances of euphausids [START_REF] Cuzin-Roudy | Southern Ocean Euphausiids[END_REF][START_REF] Koubbi | Ecoregionalisation of the Kerguelen and Crozet islands oceanic zone. Part I: Introduction and Kerguelen oceanic zone[END_REF][START_REF] Godet | Matching zooplankton abundance and environment in the South Indian Ocean and Southern Ocean[END_REF]) such as Thysanoessa macrura and Euphausia vallentini, both with an adult size close to 3 cm. The Argentinian Patagonian waters also host high densities of E. vallentini [START_REF] Cepeda | Zooplankton Communities of the Argentine Continental Shelf (SW Atlantic, ca. 34°-55°S), An Overview[END_REF]. This krill species makes a diel migration between 100 and 250 m depth (Cuzin-Roudy et al. 2014), matching the vertical range of the migration detected by the sonar tag in this location.

A possible marine snow event recorded off Kerguelen

Between November 10 th and 14 th , the sonar tag deployed in KER recorded anomalously high and constant scatterer abundances throughout the epipelagic layer to 500 m deep. This could have been caused by large concentrations of salps [START_REF] Wiebe | The acoustic properties of Salpa thompsoni[END_REF], and validation of the sonar tag is required to determine the typical echo signals generated by low-target strength targets such as salps and jellyfish. However, the homogeneous distribution along the vertical dimension could also indicate a mass sinking event of biological detritus, known as marine snow [START_REF] Alldredge | Characteristics, dynamics and significance of marine snow[END_REF]Silver 1988, Turner 2015). Marine snow events follow periods of high productivity, when heavy phytoplankton cells and zooplankton faecal pellets sink downwards rapidly (Laurenceau-Cornec et al. 2015b). Some studies suggest that these events, occurring off the Kerguelen plateau twice a year during the seasonal blooms, represent, in the SO, one of the main contributions to the biological pump that exports particulate organic carbon (POC) to depth [START_REF] Turner | Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump[END_REF][START_REF] Rembauville | Export fluxes in a naturally iron-fertilized area of the Southern Ocean -Part 1: Seasonal dynamics of particulate organic carbon export from a moored sediment trap[END_REF]. The spatial co-occurrence between such events and satellite-assessed POC from remote sensing may help resolve this question in the future [START_REF] Tran | Deriving Particulate Organic Carbon in Coastal Waters from Remote Sensing: Inter-Comparison Exercise and Development of a Maximum Band-Ratio Approach[END_REF].

5.

Where is the Deep Scattering Layer?

A vast majority of the scatterers recorded by the sonar tags come from the epipelagic zone, whereas beneath 300 m, in the mesopelagic layer, echoes were scarce. One of the most notable acoustic features of the global ocean, the deep scattering layer (DSL), is therefore not immediately evident in the sonar tag data. The DSL, mainly composed of mesopelagic fish and squids (i.e. the main prey of SES), is found in the mesopelagic zone at a depth of around 400 to 500 m throughout the world oceans [START_REF] Proud | Fine-scale depth structure of pelagic communities throughout the global ocean based on acoustic sound scattering layers[END_REF], and particularly in the SO [START_REF] Kloser | Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe[END_REF][START_REF] Béhagle | Acoustic distribution of discriminated micronektonic organisms from a bifrequency processing: The case study of eastern Kerguelen oceanic waters[END_REF]. This depth is consistent with the mean diving depth of the SES, and the sonar tag's inability to detect the DSL as a clear pattern in the way that ship-based echosounders have been found to do, can possibly be explained by their different sampling resolutions. Ship echosounders are mainly designed to detect mesopelagic scatterers composed of organisms exceeding several centimetres while the high frequency sonar tag is well-suited to detect smaller-size organisms. Studies have established that the abundance of zooplankton and micronekton decreases linearly with size following a log/log function [START_REF] Heneghan | Zooplankton Are Not Fish: Improving Zooplankton Realism in Size-Spectrum Models Mediates Energy Transfer in Food Webs[END_REF]). Therefore, due to its narrow beam, the water volume sampled by the sonar tag is limited and may prevent the relatively low densities of micronektonic fish and squids from being properly assessed. In comparison, ship-based echo-sounders have a larger beam and are operated from the surface, leading to a much greater insonified volume of water at greater depths. Such sonars are well suited to sample bulk micronekton but are not so wellsuited to assess small-size and dispersed zooplankton. Therefore, these two approaches should be seen as complementary with one another. Nonetheless, the bottom phase of SES dives, and more specifically the depth of prey capture attempts (PCAs), provide a proxy for the DSL depth in the water column [START_REF] Guinet | Southern elephant seal foraging success in relation to temperature and light conditions: insight into prey distribution[END_REF], McMahon et al. 2019) were excluded from this study. These larger scatterers however likely represent the DSL organisms targeted by SES and so provide some indication about the density and size distribution of the DSL that is the topic of a companion paper (Goulet et al., in prep).

Conclusion

Although the sonar tag, aided by the persistent diving behaviour of SES, shows considerable promise for in situ studies of the biotic environment of the deep ocean, namely the distribution and movement of resident organisms, a recurring issue is the lack of certainty in inferring organism size and type from the echo returns. A key area for future work is therefore to assess how well the echo patterns associated with different sizes and categories of organisms can be distinguished with the current tag design. This information is critical for most trophic and carbon flux studies [START_REF] Hernández-León | Zooplankton and Micronekton Active Flux Across the Tropical and Subtropical Atlantic Ocean[END_REF]. While careful tank-based validation studies can improve confidence in interpreting the sonar tag, ultimately in situ measurements will be most useful for the identification of unique deep-sea fauna that cannot be held in aquaria. One way to achieve in situ validation could be to combine the sonar tag with a camera tag in such a way that image capture is triggered by acoustic detections within a given detection range. 

Supplementary information

Calculation of the sonar tag metrics:

Intensity threshold definition:

The noise intensity threshold is set on the last meter of the sonar detection range (5 to 6m), assuming that the entire signal in this range is ambient noise, and designated as the Background Noise Level (BNL).

The amplitude fluctuations in the signal obtained from a shadow area (i.e. area behind a target) or from out-of-range detections are essentially electronic noise. The signal amplitude X is thus noised with a Gaussian distribution function.

= 1 √2 --μ ² 2 ²
where µ is the mean of the amplitude and the standard deviation.

The acoustic signal recorded by the sonar tag is the result of a combination of elementary signals, which can be for example caused by a strong scattering phenomenon. For the sonar tag, two signal channels of different amplitudes are considered, the sum of these constituting the acoustic signal. The signal amplitude R resulting in the sum of the channels is described as a Rayleigh law.
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A random sampling of the BNL is operated over the entire record, with 1000 pixels values (acoustic power) sampled over a continuous sonar record sequence of at least 10 minutes.

The sizes of the samples for KER and PV records are 10.10 7 and 13.10 7 respectively. The cumulative distribution function of the Rayleigh law is fitted upon the BNL samples (Figure 2). The threshold is set as the acoustic power value (µPa ) corresponding to the 99.9 th percentile of the Rayleigh distribution ( for KER and PV), allowing the discrimination between the actual target detection and the white noise in the studied range 1-1.5m of the sonar beam. 

Minimum size detected

The ability of the sonar to detect small targets at the limit of the sensor resolution depends primarily on its position in the beam and the acoustic backscattering properties of its body. However, size is the most common measure to discriminate organisms, but fluid-like organisms -even of large size -cannot be observed, thus we propose a limit of detectability for small targets with high Signal-to Noise-Ratio.

The sonar was deployed simultaneously with an optical sensor (Underwater Vision Profiler UVP5) in the Mediterranean Sea for an efficient measurement of the size of the targets. The density profiles show a maximum correlation for a target size class greater than 1mm, with the same density peaks at 47.5m and 147.5m deep for both instruments (Figure 4). Targets identified as detritus from the UVP images contribute to a large part of the signal and suggest that they are detectable by sonar for sizes larger than 1mm. 

Dives clustering:

A dive is considered when the animal is continuously deeper than 15m. After the B-spline reconstruction and the FPCA performed on the B-spline coefficients, the observations (profiles) were projected in the space of the first two PCs (Figure 5). The five first components explained 98% and 91.5% of the total inertia for KER and PV respectively.

By adding or subtracting the eigenfunctions to the mean profile, one can assess the effect of the principal components on the curve shape (Figure 6). For each component, if an observation is in the positive part of the PC axis, the shape of this observation should be close to the one described by the '+' curve. Inversely, negatives observations on the PC axis would have a curve close to the one described by the '-'.

Before the k-means classification, the optimal number of k clusters was determined using the Ward distance, minimizing the total within-cluster variance, on the observations. A visual assessment of the cluster tree allowed retaining 3 clusters for both KER (Figure 7) and PV (Figure 8). 

A

  typology of the water bodies was established to investigate whether scatterer abundance on the one hand, and day versus night vertical distribution on the other hand, varied according to the oceanographic conditions encountered by the seal. Despite the good spatial and temporal resolution of SO fronts position estimation[START_REF] Sallée | Southern Ocean fronts and their variability to climate modes[END_REF], finer-scale structures, such as sub-mesoscale eddies or meanders, can have a strong impact on biological structure at a more local scale[START_REF] Chapman | Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate[END_REF], and by extension on the foraging behaviour of SES[START_REF] Della Penna | Quasi-planktonic behavior of foraging top marine predators[END_REF], Siegelman et al. 2019).[START_REF] Pauthenet | A Linear Decomposition of the Southern Ocean Thermohaline Structure[END_REF] demonstrated that highresolution oceanographic data sampled by CTD tags on SES can be used to objectively define the geographical extents of water bodies by analysing joint variation of temperature (T) and salinity (S). We therefore produced profiles of temperature and salinity for each dive, and fit B-splines to the sampled points. The structural variability between the splines was evaluated using the functional principal component analysis (FPCA) method developed by[START_REF] Ramsay | Principal components analysis for functional data[END_REF], which is similar to a principal component analysis except that B-spline coefficients are used instead of raw data. Usage of FPCA enabled us to retain information about the shape of the temperature and salinity profiles(Nerini and Ghattas 2007, Pauthenet et al. 2017) while also allowing comparison between locations and individuals by smoothing out irregularities in data sampling.

Results 1 .

 1 Sonar observations The maximum depth and mean (± standard deviation) diving depths were respectively 936 m and 413 ± 136 m for KER individual with a mean diving depth of 321 ± 109 m at night and 499 ± 105 m during the day, and 1109 m and 392 ± 249 m for PV individual with a mean diving depth of 218 ± 108 m at night and 539 ± 272 m during the day. A total of 313.8 and 408.8 hours of sonar data for KER and PV, respectively, were analysed. The abundance of scatterers ranged from 7 to 11940 scatterers.m -3 in KER (mean = 490 ± 530 and from 13 to 13800 scatterers.m -3 in PV (mean = 795 ± 1465). The echo signal was dominated by small objects (< 20 mm), representing 52.4% of scatterers in KER and 93.9% in PV, whereas the 20-50 mm size class represented 44.7% and 5.6% of the objects detected in KER and PV respectively. The signals recorded by the sonar tag showed wide variability with time and depth (Figures 2 and 3). Scatterer abundance was the highest in the upper 200 m of the water column in both regions, for both day and night. A portion of the KER recording (Nov 11 th -15 th , Figure 2) showed an unusually high abundance of scatterers throughout the entire water column (from 70 m to 500 m) (Figures 1.b

  example,[START_REF] Haëntjens | Detecting Mesopelagic Organisms Using Biogeochemical-Argo Floats[END_REF] report a possible attraction of MTL organisms to the LEDs used on Argo floats, which is avoided by the sonar tag without LEDs. In addition, the slow descent speed of a float is likely to cause a gathering of organisms in the echosounder beam, whereas the vertical speed of the elephant seal of about 1.4 m/s prevents any flock formation.

  A dayscale cyclic vertical movement of a portion of the scatterers was evident in sections of the sonar recordings (see Figures 4.b & 5.b) comprising an upward migration at dusk and a downward one at dawn. The presence of this diel pattern in our data confirms the ability of the sonar tag to detect mesopelagic organisms, such as macrozooplankton, or other small MTL organisms involved in the DVM.The extent of the vertical migration recorded by the sonar tag in both regions, reaching 160 m deep in KER and 260 m deep in PV, does not match the migration range of mesopelagic fish such as myctophids, and squid(Davison et al. 2015, Bianchi and Mislan 2016, Béhagle et al. 

  . Both the dive depth and the depth of PCAs, as inferred from acceleration transients recorded by biologging tags on SES, vary with a diel cycle, presumably tracking the daily vertical migration of components of the DSL (Figure 4.b and Figure 5.b). The sonar tags frequently recorded scatterers with a large apparent size simultaneously with PCAs. The focus of the study being smaller-size MTL organisms, and the time SES spend foraging being disproportionate, PCAs

Figure 1 :

 1 Figure 1: (a) Echogram with a schematic representation of the metrics calculations. Red lines

Figure 2 :

 2 Figure 2: (a) Time-depth series of scatterer abundance, expressed in scatterers.m -3 , detected by the sonar tag on a seal tagged on Kerguelen Island (KER). The coloured rectangles above the plot indicate the position of inferred water body types 1 (purple), 2 (green) and 3 (light orange). (b) Water temperature profiles recorded by a tag on the same animal. Pink points indicate prey capture attempts inferred from acceleration transients.
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 3 Figure 3: (a) Time-depth series of scatterer abundance, expressed in scatterers.m -3, , detected by

Figure 4 :

 4 Figure 4: (a) Time-depth representation of the relative abundance of scatterers, expressed in scatterers.m -3 , detected by the sonar tag, zoomed over a one-day period for KER. The coloured rectangles represent the light angle with yellow and grey for day and night, respectively, and the shaded grey for twilight. The sonar was operated on a 5.5-hour on/off duty-cycle. (b) Temperature profiles, in °C for the same time interval. The dotted black lines in both plots represent the isotherms, with an increment of 1°C.

Figure 5 :

 5 Figure 5: (a) Time-depth representation of the relative abundance of scatterers, expressed in scatterers.m -3 , detected by the sonar tag, zoomed over a one-day period for PV. The coloured rectangles represent the light angle with yellow and grey for day and night, respectively, and the shaded grey for twilight. The sonar was operated on a 12-hour on/off duty-cycle. (b) Temperature profiles, in °C for the same time interval. The dotted black line represents the isotherms, with an increment of 3°C.
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 6 Figure 6: Average temperature (A, C) and salinity (B, D) profiles of KER and PV datasets. The

Figure 7 :

 7 Figure 7: (a) Track of the SES tagged on Peninsula Valdes during the interval recorded by the sonar tag (FPCA cluster colours as in Figure 6). The solid grey line shows the 1000 m isobath. Blue lines indicate the mean position of oceanic fronts over the study period, as given by the Centre for Topographic studies of the Ocean and Hydrosphere (see Sallée et al. 2008). Lower panels: (b) mean day (yellow) and night (blue) DVM depth (maximum abundance of profiles) for the 3 water clusters for the PV seal, (c) sum of the scatterers' abundances over the depth range 30-260 m (matching the vertical extent of the DVM depth for each cluster), (d) average scatterers' size distribution for each cluster. Grey dots and error bars respectively indicate the mean of each violin plot and the standard deviation.

Figure 8 :

 8 Figure 8: (a) Track of the SES tagged on Kerguelen Island during the interval recorded by the sonar tag (FPCA cluster colours as in Figure 6). The solid grey line shows the 1000 m isobath. Blue lines indicate the mean position of oceanic fronts over the study period, as given by the Centre for Topographic studies of the Ocean and Hydrosphere (see Sallée et al. 2008). Lower panels: (b) mean day (yellow) and night (blue) DVM depth (maximum abundance of profiles) for the 3 water clusters for the KER seal, (c) sum of the scatterers' abundances over the depth range 70-160 m (matching the vertical extent of the DVM depth for each cluster), (d) average scatterers' size distribution for each cluster. Grey dots and error bars respectively indicate the mean of each violin plot and the standard deviation.

Figure 9 :

 9 Figure 9: Percentage difference, for small-(left) and medium-(right) size scatterers between day (yellow) and night (grey), calculated over 10-m depth bins, for the three water clusters (colours as in Figure 6) for KER (upper panel) and PV (lower panel). Positive values correspond to higher abundances during daytime than at night, and conversely a negative difference indicates higher abundances at night than during daytime for this depth bin.

Figure 10 :

 10 Figure 10: (a) Mean day (yellow) and night (blue) DVM depth for the 2 locations. The DVM depth is

Figure 1 :Figure 2 :

 12 Figure 1: Time series of the Background Noise Level (BNL) for (a) KER and (b) PV. The interval between the red lines contains 99,9% of the sampled echoes, which are used to fit the Rayleigh distribution. The far range of the sonar beam is unlikely to insonify target. But it could sometimes happen that the far range contains a few targets, particularly in regions with high target densities. The evolution of the background sampled values is represented in Figure 1. To prevent the influence of peaks or trends in the signal, the 1 % of extreme values are removed to prevent the influence of peaks or trends in the BNL threshold calculation.

Figure 3 :

 3 Figure 3: Distribution of the echo integrated intensities for (a) KER and (b) PV sonar records.Minimum size detectedThe ability of the sonar to detect small targets at the limit of the sensor resolution depends

Figure 4 :

 4 Figure 4: Relative density of detected targets simultaneously by (a) an Underwater Vertical Profiler (UVP) and (b) the sonar tag attached to the UVP along a vertical profile. Colored curves represent the relative density of detected targets belonging to a specific size class.Dives clustering:A dive is considered when the animal is continuously deeper than 15m. After the B-spline
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 5 Figure 5: Left: Temperature-Salinity profiles represented over the space of the first two modes of the FPCA for KER (a) and PV (b). Right: Percentage of the variance explained by the first 5 eigenfunctions of the FPCA.

Figure 6 :

 6 Figure 6: Representation of the effects of the first two eigenfunctions on temperature and salinity mean profiles, for KER (a,b) and PV (c,d). The curves show the mean profile (solid) and the effect of adding (+) and subtracting (-) the first (a,c) and the second (b,d) eigenfunctions. The percentages indicated in the x-axis label are the variance contained by each variable (T and S) for the corresponding component.

Figure 7 :

 7 Figure 7: Cluster resulting of the k-means classification for KER. The hierarchical clustering tree, defined by the Ward distance, suggesting an optimal clustering in 3 groups: cluster 1 (purple), cluster 2 (orange), and cluster 3 (green). (b) T-S diagrams of all profiles contained in each cluster, associated with the mean 200m-deep and the standard deviation of the temperature.

Figure 8 :

 8 Figure 8: Cluster resulting of the k-means classification for PV. The hierarchical clustering tree, defined by the Ward distance, suggesting an optimal clustering in 3 groups: cluster 1 (purple), cluster 2 (orange), and cluster 3 (green). (b) T-S diagrams of all profiles contained in each cluster, associated with the mean 200m-deep and the standard deviation of the temperature.Table 1: Mean temperature and salinity with standard deviations recorded at 200m deep for each water masses in both locations. Location KERGUELEN PENINSULA VALDES

Table 1 :

 1 Mean temperature and salinity with standard deviations recorded at 200m deep for each water masses in both locations.

	Location		KERGUELEN		PENINSULA VALDES
	Cluster (water	1	2	3	1	2	3
	mass)						
	Temperature	3.1°C	5.7°C	8°C	4.8°C	6.4°C	7.9°C
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