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MATHEMATICAL MODELING OF CELL COLLECTIVE MOTION

TRIGGERED BY SELF-GENERATED GRADIENTS

VINCENT CALVEZ, METE DEMIRCIGIL, AND ROXANA SUBLET

Abstract. Self-generated gradients have atttracted a lot of attention in the recent biological

literature. It is considered as a robust strategy for a group of cells to find its way during a

long journey. This note is intended to discuss various scenarios for modeling traveling waves
of cells that constantly deplete a chemical cue, and so create their own signaling gradient all

along the way. We begin with one famous model by Keller and Segel for bacterial chemotaxis.

We present the model and the construction of the traveling wave solutions. We also discuss
the limitation of this approach, and review some subsequent work addressing stability issues.

Next, we review two relevant extensions, which are supported by biological experiments. They

both admit traveling wave solutions with an explicit value for the wave speed. We conclude
by discussing some open problems and perspectives, and particularly a striking mechanism of

speed determinacy occurring at the back of the wave. All the results presented in this note are
illustrated by numerical simulations.

1. Introduction

It has been now 50 years that Evelyn F. Keller and Lee A. Segel published their article ”Traveling
bands of chemotactic bacteria: A theoretical analysis” [40], which is part of a series of works about
the modeling of chemotaxis in bacteria Esherichia coli and amoebae Dictyostelium discoideum
(shortnamed as Dicty in the following) [37–40]. This article described in a simple and elegant way
the propagation of chemotactic waves of E. coli in a one-dimensional space, echoing the remarkable
experiments by Adler performed in a capillary tube [1].

In the present contribution, the seminal ideas of Keller and Segel are discussed from a modern
perspective, after half a century of intense activity at the interface of mathematics and biology.
Our goal is not to review exhaustively various directions of research in the modeling of chemotaxis.
Our narrow objective consists in setting the focus on the notion of self-generated gradient (SGG),
which has recently shed a new light on several biological processes, both in bacterial collective
motion, and in some aspects of developmental biology [68, 70]. SGG are at the heart of the model
in [40], in which cells create their own signaling gradient by consuming some nutrient, while moving
collectively from one side of the domain to the other. There, collective motion results from the
averaged biases in the individual trajectories, in response to nutrient heterogeneities, a process
called chemotaxis. This concept of SGG can be generalized to any situation where the signal
depletion and chemotaxis functions overlap within the same cells [59, 69, 70].

SGG in waves of bacteria. The work of Keller and Segel has initiated a wealth of studies on
bacterial chemotaxis. We refer to the comprehensive review of Tindall et al [66], and also the
recent studies [17, 29] for new biological questions in this topic. Most of the works discussed in
this note consider short time experiments, or experiments at low level of nutrients, neglecting the
effect of cell division. This makes a clear distinction between SGG and reaction-diffusion waves,
as the celebrated Fisher/Kolmogorov-Petrovsky-Piskunov (F/KPP) equation [3, 27, 41]. For this
reason, we shall not comment further about the numerous modeling contributions following the
patterns reported by Budrene and Berg [7–9] (ring expansion followed by formation of bacteria
spots with remarkable symmetries). Chemotaxis has been shown to be crucial in the emergence of
such patterns. However, the dynamics of ring expansion are mainly driven by growth and diffusion
such as described by F/KPP, (but see [17] for a recent study where chemotaxis has been shown to
enhance range expansion).

There exist many modeling contributions of chemotaxis in bacteria [31, 66], with a particular
emphasis on the derivation of macroscopic models from individual rules through kinetic transport
equations, see e.g. [2, 4, 14, 15, 26, 49, 50]. In contrast, the number of contributions about
mathematical analysis of traveling waves without growth beyond [40] is relatively scarce. We refer
to [33], for an (algebraic) extension of [40] with more general chemotaxis functions and uptake
rates. We also refer to the series of articles by Z.A. Wang and co-authors, see [73] for a preliminary
review and below for further discussion.
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SGG in development and cancer. In developmental biology, cell movement over long distances is
mediated by navigating cues, including chemotactic factors [45]. It is commonly postulated that
external, pre-patterned gradients, drive cellular migration. One of the key conceptual advantage
of SGG is to free the developmental process from the requirement of pre-imposed long-range
chemoattractant gradients. In contrast, SGG travel together with the cells, so that they can
experience similar environmental conditions (chemical concentration, gradient steepness) all over
the journey. This is thought to provide robustness to the developmental system [68, 69].

Recently, SGG have been shown to occur during embryogenesis, and in particular during the
initiation of the posterior lateral line in zebrafish [22, 72]. More precisely, migrating cell cohorts
(consisting of approximately a hundred of cells) can generate and sustain gradients of chemoattrac-
tants across their length. This experimental work is of great importance as being the first proof
of the occurrence of SGG in vivo.

Self-generated gradients are also under investigation during cancer invasion and metastasis. This
includes modeling in silico (see [60] and references therein), and experiments with cell cultures in
vitro [47]. In particular, we highlight the work of [59], in which an astonishing self-guidance strategy
in cancer epithelial cell populations was unravelled. In fact, cells were put in microfluidic mazes,
without any pre-existing external gradients. Most of them could find their way out of the mazes
by generating their own navigating cues. Experimental studies with increasingly complex mazes
were also performed with Dicty cells, with quite remarkable outcomes [71].

Plan and purpose of the paper. In Section 2.1 we recall the basic construction of traveling waves
in the seminal article [40]. The lack of positivity of the chemical concentration is illustrated by
some numerical simulations (Section 2.2). The issue of instability is also reviewed. Section 2.3
briefly presents some possible variations of the original article from the literature. It is one of
the main goal of the present contribution to discuss in details two possible extensions which are
biologically relevant (that is, supported by experiments). Section 3 contains an overview of past
work where another attractant signal is added to prevent cell dispersion during propagation. This
results in competing cell fluxes, with stronger advection at the back of the wave than at the
edge. Section 4 reports on a piece of recent work including signal-dependent phenotypical switch
(division/ migration). This results in a wave sustained by cell division restricted to the edge.

All mathematical results proven here are simple, namely involving explicit construction of one-
dimensional traveling waves (whose respective stabilities are supported by numerical simulations
of the Cauchy problems). The last construction is original, up to our knowledge, see Theorem
4.2. It could be of interest for experts in reaction-diffusion equations, as it exhibits a possibly new
phenomenon of selection of the minimal speed at the back of the wave.

Acknowledgement. Part of this work has been achieved during the third author’s master internship
at Institut Camille Jordan. The two first authors are indebted to Christophe Anjard, Olivier
Cochet-Escartin and Jean-Paul Rieu for having drawn their attention to SGG beyond the case of
bacterial waves. The authors are very grateful to Eitan Tadmor for his constant encouragement
to write this contribution, and to a pair of anonymous reviewers for their feedbacks. reviewers
This project has received financial support from the CNRS through the MITI interdisciplinary
programs. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement No 865711).

2. The Keller-Segel model and variations

2.1. The construction of waves by Keller and Segel. In this section, we recall briefly the
model and analysis in [40]. The cell density (bacteria) is denoted by ρ(t, x), for time t > 0, and
position along the channel axis x ∈ R, whereas the concentration of the signaling molecule is
denoted by S(t, x).

(2.1)


∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ χρ

∂ logS

∂x

)
= 0 ,

∂S

∂t
= D

∂2S

∂x2
− kρ .

The equation on ρ combines unbiased (diffusive) motion with directed motion in response to the
logarithmic signaling gradient (see below for further discussion about this specific choice), with
intensity χ > 0.

On the one hand, the equation on ρ is conservative, and the total mass of cells in the channel,
which is an invariant of the system, is denoted by M , so that M =

∫
R ρ(0, z) dz =

∫
R ρ(t, z) dz. On

the other hand, the chemical concentration decays globally in time, and the limiting value at ∞
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is denoted by Sinit, which can be viewed as the initial, homogeneous, concentration in the channel
associated with the Cauchy problem.

Noticeably, the consumption term in the equation on S, namely −kρ, does not involve S itself,
precluding any guarantee about the positivity of S in the long time. Nevertheless, the existence of
positive traveling wave solutions ρ(x − ct), S(x − ct) was established in [40] by means of explicit
computations, in the absence of signal diffusion D = 0 (for mathematical purposes), and with
the condition χ > d. The wave under interest has the following structure: ρ ∈ L1

+(R), with
limz→±∞ ρ(z) = 0, and S ∈ L∞+ (R) is increasing with limz→−∞ S(z) = 0, and limz→+∞ S(z) =
Sinit, the reference value of the chemical concentration.

Theorem 2.1 (Keller and Segel [40]). Assume D = 0, and χ > d. Then, there exist a speed c > 0
(depending on M , k and Sinit, but not on χ nor on d), and a stationary solution of (2.1) in the
moving frame (ρ(x− ct), S(x− ct)), such that ρ is positive and integrable,

∫
R ρ(z) dz = M , and S

is increasing between the following limiting values{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Before we recall briefly the construction of the wave solution, let us comment on the value of
the wave speed c, that can be directly obtained from the second equation in (2.4), whatever the
value of D ≥ 0 is. Indeed, the equation in the moving frame reads

−cdS
dz

= D
d2S

dz2
− kρ .

By integrating this equation over the line, and using the extremal conditions at ±∞ (that can be
verified a posteriori), we find

(2.2) cSinit = k

∫
R
ρ(z) dz = kM .

Strikingly, the wave speed depends only on the dynamics of establishment of the gradient. In
particular, it does not depend on the intensity of the chemotactic response χ. This is in contrast
with several conclusions to be drawn from alternative models in the sequel (see Sections 3 and 4).

Proof. The speed c is given a priori by the relationship (2.2).
The first step in the construction of traveling wave solutions is the zero-flux condition in the

moving frame z = x− ct, namely

−cρ− ddρ
dz

+ χρ
d logS

dz
= 0 ⇔ d log ρ

dz
= − c

d
+
χ

d

d logS

dz

⇔ ρ(z) = a exp
(
− c
d
z +

χ

d
logS

)
,

where a is a (positive) constant of integration. The second step consists in solving the following
ODE (assuming D = 0)

c
dS

dz
= ka exp

(
− c
d
z +

χ

d
logS

)
⇔

(
1− χ

d

)−1 (
S
1−χd
init − S(z)1−

χ
d

)
=
kad

c2
exp

(
− c
d
z
)
.

By re-arranging the terms, we obtain(
S(z)

Sinit

)1−χd
= 1 +

(χ
d
− 1
)(kad

c2
S
χ
d−1
init

)
exp

(
− c
d
z
)
.

Suppose that χ < d, then the right-hand-side goes to −∞ as z → −∞ which is a contradiction.
Hence, the calculations make sense only if χ > d. By translational invariance, the constant a can
be chosen so as to cancel the prefactor in the right-hand-side (provided χ > d), yielding the simple
expression

(2.3)
S(z)

Sinit
=
(

1 + exp
(
− c
d
z
)) d

d−χ
.

The corresponding density profile is:

(2.4) ρ(z) = a′ exp
(
− c
d
z
)(

1 + exp
(
− c
d
z
)) χ

d−χ
,

for some constant a′, that can be determined explicitly through the conservation of mass. �
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Figure 1. Positivity and stability issues in the numerical simulations of (2.1).
(a) Starting from a generic initial data, the numerical scheme quickly breaks
down because the signal becomes negative at some point. The initial condi-
tion is shown in dashed line, and the final state in plain line (last time before
numerical breakdown). (b) Aligning the initial data on the exact density and
signal profiles (ρ(z), S(z)) (2.3)–(2.4), yields the same conclusion. The cell den-
sity is shown in space/time. The numerical breakdown occurs at approximately
t = 0.6. (c) The propagation of the wave can be rescued by setting manually
Sn+1 = max(Sn, 1E − 12) after each time step, as in [32]. For all the figures, the
parameters are (d = 1, χ = 2, D = 0, k = 1).
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2.2. Positivity and stability issues. Despite its elegance, the previous construction suffers from
two drawbacks. First of all, the positivity of the signal concentration S is not guaranteed in the
Cauchy problem. Actually, numerical solutions soon break down because of this positivity issue.
This occurs starting from a generic initial data (Figure 1a), and even from the traveling wave
solution (ρ(z), S(z)) given by the expressions (2.3)–(2.4), after accumulation of numerical errors
(Figure 1b). Nevertheless, the positivity can be manually rescued by setting Sn+1 = max(Sn, ε)
for some arbitrary threshold ε� 1, as suggested in [32]. In that case, the wave seems to propagate
in a stable way in the long term, see Figure 1c.

Second, and somewhat related, is the problem of stability of the wave constructed in Section
2.1. Linear stability was addressed first in [53], where it was proven that the spectral problem
admits no real positive eigenvalue. However, the linearized problem is not self-adjoint, so that this
preliminary result is largely incomplete from the perspective of stability. Few years later, it was
proven in [48] that the (essential) spectrum of the linear operator intersects the right half-plane,
meaning that the wave is linearly unstable. The authors proved a refined instability result, when
perturbations are restricted to a class of exponentially decreasing functions. Noticeably, their
results cover both D = 0 and D > 0. This analysis has been largely extended in [18, 19] where
it was proven that the wave is either transiently (convectively) unstable, that is, the spectrum
is shifted in the open left half plane in a two-sided exponentially weighted function space [56],
when χ > d is not too large, but it is absolutely unstable when χ is above some threshold, that
is, χ

d > β0
crit(D), where, e.g. β0

crit(0) is the unique real root above one of an explicit 10th order
polynomial, see [18, Theorem 2.1].

Recently, it has been established the existence and nonlinear stability of stationary solutions
for the problem (2.1) set on a half-line {x > 0}, with respectively Neumann boundary condition
for ρ, and positive Dirichlet boundary condition for S at the origin [13]. The motivation comes
from the study of spike solutions stabilized by a sustained amount of chemical concentration at the
boundary. The stability result in [13] imposes quite stringent conditions on the decay of the initial
data at +∞. Nevertheless, local stability of the stationary spike does not preclude loss of positivity
in the numerics when initiating the Cauchy problem with initial conditions far from equilibrium,
see Figure 2.

Remark 2.2. Many of the references mentioned above also discuss and analyze the case of a

degenerate consumption rate ∂S
∂t = D ∂2S

∂x2 − kρSm (m < 1), without changing much of the global
picture.

The case m = 1 differs significantly, however. It can be viewed directly on the case D = 0 that
the logarithmic gradient of the putative wave in the moving frame, that is, d logS

dz cannot have a

positive limit as z → −∞, simply because it satisfies the relationship −cd logSdz = −kρ, the latter
being integrable. Consequently, advection cannot balance diffusion at −∞, preventing the existence
of a traveling wave. The same conclusion holds in the case D > 0, for which u = d logS

dz is a
homoclinic orbit of the following first-order equation

du

dz
= − c

D
u− u2 +

k

D
ρ ,

that leaves the origin u = 0 at z = −∞, and gets back to the origin u = 0 at z = +∞, see [10,
Proposition 6.3].

2.3. Variations on the Keller-Segel model. As mentioned above, the seminal work [40] gave
rise to a wealth of modeling and analysis of traveling bands of bacteria. Many extensions were
proposed soon after Keller and Segel’s original paper, with various sensitivity functions (other than
the logarithmic sensitivity), and various consumption rates. The models have the following general
form,

(2.5)


∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρχ

(
S,
∂S

∂x

))
= 0 ,

∂S

∂t
= D

∂2S

∂x2
− k(S, ρ) .

where the chemotactic sensitivity χ can be a function of both the signal concentration and its
gradient (as well as the diffusion coefficient d – dependency not reported here for the sake of
clarity). These variations were nicely reviewed by Tindall et al [66], and we are not going to
comment them, but the contribution of Rivero et al [51]. The latter follows the approach of
Stroock [65], and Alt [2]. These approaches make the connection between the individual response
of bacteria to space-time environmental heterogeneities, and the macroscopic flux, hence making
sense of the aforementioned averaging, by means of individual biases in the trajectories (see e.g. [4,
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Figure 2. Numerical solutions of (2.1) with respectively Neumann boundary
condition for ρ, and positive Dirichlet boundary condition for S at the origin.
(a) Local stability, as established in [13] is illustrated numerically, for an initial
condition chosen near the stationary state, and a relatively large diffusion of the
chemical (d = 1, χ = 2, D = 1, k = 1). (b) Nonetheless, the numerical solution
may become nonpositive when the initial condition is far from the stationary state,
and diffusion of the chemical is not too large (d = 1, χ = 2, D = 0.25, k = 1). For
each figure, the initial condition is shown in dashed line, and the final state in
plain line (last time before numerical breakdown in (b)).

14, 15, 26, 49, 50], and more specifically [24, 58, 61, 74] for bacterial populations). Interestingly,
Rivero et al postulate a chemotactic advection speed χ which is non-linear with respect to the
chemical gradient at the macroscopic scale, namely

(2.6) χ

(
S,
∂S

∂x

)
= χ tanh

(
f(S)

∂S

∂x

)
,

where f is a decreasing function containing the details of signal integration by a single cell.
Up to our knowledge, none of the models in the long list of existing variations could exhibit

traveling waves while preserving positivity of S and keeping the total mass
∫
R ρ constant (that is,

ignoring growth). The minimal requirement for ensuring positivity would essentially be that the

uptake function k(S, ρ) is dominated by S at small concentration, typically: lim supS→0
k(S,ρ)
S <∞.

However, this intuitively leads to a shallow (logarithmic) gradient at the back of the wave, unable
to guarantee the effective migration of cells left behind, see Remark 2.2. Cell leakage has long
been identified in the biological literature, but not considered as a major issue, see for instance a
discussion in [29], and also the addition of a linear growth term in [57] so that the loss of cells at
the back is qualitatively compensated by cell division (for a realistic value of the division rate).

It is interesting to discuss the natural choice −k(S, ρ) = −kSρ (combined with logarithmic
sensivity), which has been widely studied using tools from hyperbolic equations (after performing
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Figure 3. Cartoon of the experiments performed in [58] and [57]. A band of
bacteria is traveling from left to right in a microfluidic channel. Videomicroscopy
allows tracking individual trajectories inside the wave, revealing heterogeneous
behaviors: biases are stronger at the back of the wave than at the edge.

the Hopf-Cole transformation) by Z.A. Wang and co-authors, see the review [73], and further
stability results in [35, 42]. The issue of shallow gradients is overcome by the boundary conditions
at infinity, ρ being uniformly positive at least on one side. Clearly, the traveling wave solutions
are not integrable. This hints to the conflict of conservation of mass and chemical positivity which
seem not concilable.

This leakage effect is a major mathematical issue, because most of the analytical studies build
upon the existence of a wave speed and a wave profile which is stationary in the moving frame.

2.4. Beyond the Keller-Segel model: two scenarios for SGG. In the next two sections, we
discuss two relevant modeling extensions, motivated by biological experiments, for which traveling
waves exist and are expected to be stable. In the first scenario, cell leakage is circumvented by
enhanced advection at the back of the wave, with an asymptotic constant value of the transport
speed at −∞. In the second scenario, cell leakage occurs, but it is naturally compensated by
growth at the edge of the propagating front.

For each scenario, we discuss briefly the biological motivations. Then we present the explicit
construction of the traveling wave solutions, together with the formula for the wave speed. When
possible, we discuss the connections with some other works in the literature.

3. Scenario 1: strongest advection at the back

In this section, we present some study performed a decade ago, revisiting original Adler’s exper-
iment, see Figure 3. Inspired by massive tracking analysis, Saragosti et al [58] proposed a simple
model for the propagation of chemotactic waves of bacteria, including two signals (see also [75] for
an analogous approach developed independently at the same time). The macroscopic model is the
following:

(3.1)



∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρ

(
χSsign

(
∂S

∂x

)
+ χAsign

(
∂A

∂x

)))
= 0 ,

∂S

∂t
= DS

∂2S

∂x2
− k(S, ρ) ,

∂A

∂t
= DA

∂2A

∂x2
+ βρ− αA .

As compared to (2.5), it is supplemented with a second chemical signal, A, which plays the role of a
communication signal released by the cell population (hence, the source term +βρ), and naturally
degraded at a constant rate α > 0. Indeed, bacteria are known to secrete amino-acids, which play
the role of a chemo-attractant as part of a positive feedback loop [5, 46]

Moreover, bacteria are assumed to respond to the signal in a binary way at the macroscopic
scale: the advection speed associated with each signal (S,A) can take only two values, respectively
±χS , ±χA, depending on the direction of the gradients. Then, the total advection speed is simply
the sum of the two components. This was derived in [58] from a kinetic model at the mesoscopic
scale, assuming a strong amplification during signal integration, see also [10] for a discussion. This
can be viewed as an extremal choice of the advection speed proposed by Rivero et al [51], in
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Figure 4. Sketch of the chemical environment viewed by the cell density in model
(3.1). It is characterized by stronger advection at the back (the two signals have the
same orientation), than at the edge (the two gradients have opposite orientations).
When chemotactic speeds coincide (χS = χA), then we simply have diffusion on
the right side of the peak.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
space

0

2

4

6

8

10

12

14

16

tim
e

Figure 5. Numerical simulation of model (3.1) for a half-gaussian initial density
of bacteria.

the regime f → +∞ (2.6). The biophysical knowledge about the details of signal integration in
bacteria E. coli have increased in the meantime [34, 36, 62, 67]. Actually, the logarithmic sensing
is a good approximation in a fairly large range of signal concentrations. However, we retain this
simple, binary, choice for theoretical purposes.

As for the Keller-Segel model, traveling waves for (3.1) have the great advantage of being ana-
lytically solvable, essentially because the problem reduces to an equation with piecewise constant
coefficients. Introduce again the variable z = x − ct in the moving frame at (unknown) speed c.
Then, we have the following result:

Theorem 3.1 (Saragosti et al [58]). There exist a speed c > 0, and a positive limit value S− < Sinit,
such that the system (3.1) admits a stationary solution in the moving frame (ρ(x − ct), S(x −
ct), A(x − ct)), such that ρ is positive and integrable,

∫
R ρ(z) dz = M , A decays to zero on both

sides, and S is increasing between the following limiting values{
limz→−∞ S(z) = S− ,

limz→+∞ S(z) = Sinit .
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Moreover, the speed c > 0 is determined by the following implicit relation,

(3.2) χS − c = χA
c√

c2 + 4αDA

.

Proof. Contrary to the proof of Theorem 2.1, the wave speed c cannot be computed by a direct
argument.

As a preliminary step, we should prescribe the environmental conditions, as they are expected
heuristically to be seen by the bacteria, see Figure 4. On the one hand, we seek an increasing
profile S, hence sign

(
dS
dz

)
= +1, and the equation on the density profile ρ is decoupled from the

dynamics of S. On the other hand, we assume that the communication signal A reaches a unique
maximum, that can be set at z = 0 by translational invariance. The validation of this ansatz, a
posteriori, will set the equation for c (3.2).

The equation for ρ has now piecewise constant coefficients in the moving frame,

−cdρ
dz

+
d

dz

(
−ddρ

dz
+ ρ (χS + χAsign (−z))

)
= 0 .

Hence, ρ is a combination of two exponential functions,

ρ(z) =


exp (λ−z) for z < 0, λ− =

−c+ χS + χA
d

(signals are aligned),

exp (−λ+z) for z > 0, λ+ =
c− χS + χA

d
(signals are competing).

Next, the attractant concentration A can be computed explicitly, by convolving the source term

βρ with the fundamental solution of the elliptic operator −c ddz −DA
d2

dz2 + α, denoted by A, that
is, A = βA ∗ ρ. Coincidentally, A shares the same structure as ρ, namely A(z) = a0 exp(µ−z)
for z < 0 and A(z) = a0 exp(−µ+z) for z > 0, with µ± = 1

2DA

(
±c+

√
c2 + 4αDA

)
, and a0 is a

normalizing factor.
It remains to check the preliminary ansatz, that is, A changes monotonicity at z = 0. A

straightforward computation yields

dA

dz
(0) = βa0

(
− 1

1 + λ−/µ+
+

1

1 + λ+/µ−

)
.

Therefore, the construction is complete, provided λ−µ− = λ+µ+, which is equivalent to (3.2). �

To partially conclude, let us highlight the fact that cohesion in the wave is guaranteed by the
local aggregation signal A. To put things the other way around, in the absence of the driving signal
S, the cells can aggregate thanks to the secretion of A, and the density reaches a stationary state
(standing wave). In turn, this cohesive state can travel (with some deformation) in the presence
of the (self-generated) driving signal S. To make the link with SGG in developmental biology
[22], let us point to the modeling study [64] which is devoted to the migration of cell collectives
in the lateral line during development of the zebrafish. There, it is assumed that the rod of cells
maintains its shape per se with a constant length which is a parameter of the model, see also [12]
for biological evidence of cell attraction during collective motion.

4. Scenario 2: cell leakage compensated by growth

In this section, we present a recent model of SGG, including localized (signal-dependent) growth
[16]. This work was motivated by aeroactic waves of Dicty observed in vertically confined assays, in
which oxygen is consumed by the cells and is soon limited at the center of the colony, see Figure 6.
We refer to [16] for the experimental details. The model introduced in [16] was referred to as a ”go-
or-grow” model, a term coined in a previous work by Hatzikirou et al [30] in the context of modeling
cell invasion in brain tumors. There, the basic hypothesis was that cells could switch between two
states, or phenotypes: a migrating state ’go’ (with enhanced random diffusion), and a proliferating
state ’grow’ (with enhanced rate of division), following previous works in the same context (see
e.g. [25]). In [30] it was assumed that hypoxia (lack of oxygen) triggers the switch in the long
term dynamics of the system, by selection of the migrating phenotype, but in a global manner
(oxygen supply was accounted for via the constant carrying capacity, as one parameter of the
cellular automaton). Later contributions considered PDE models with density-dependent switch
(see [63], as opposed to [25] where the switching rate is not modulated, and also the experimental
design of density-dependent motility in bacteria [44]).

In [16], the go-or-grow hypothesis was revisited, by studying an expanding ring of Dicty cells,
with limited supply of oxygen. Figure 7a shows the cell density profile, as it is observed in experi-
ments. Figure 7b summarizes the minimal assumption of an oxygen-dependent switch, as proposed
in [16]. It was hypothesized that the transition between the proliferating state and the migrating
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Lateral exchange
of Oxygen

Initial layer of cells Cover glass

(a)

Lateral exchange
of Oxygen

Ring of cells Hypoxic region

(b)

Figure 6. Schematic view of the experimental set-up in [16]. (a) An initial layer
of Dicty cells is deposited at the center of the plate, and covered with a large
glass coverslip (after [21]). This vertical confining reduces drastically the inflow of
oxygen within the plate, by restricting it to lateral exchanges. (b) Soon after the
beginning of the experiment, a ring of cells emerges, which is traveling over several
days at constant speed with a well-preserved shape. The moving ring consumes
almost all the available oxygen, so that the center of the colony is at very low
concentration, below 1%.

state is modulated by the level of oxygen, with a sudden change of phenotype at some threshold
S0. Above this threshold, when oxygen is available in sufficient quantity, cells exhibit slow random
(diffusive) motion and divide at some constant rate. Below this threshold, when oxygen is limited,
cells stop dividing and move preferentially up the oxygen gradient. The latter hypothesis (direc-
tional motion) is different from the aforementioned go-or-grow models [25, 30, 63]. It is consistent
with the observations of individual tracking within the cell population in the bulk of the wave in
[16].

The following model recapitulates these assumptions,

(4.1)


∂ρ

∂t
+

∂

∂x

(
−d∂ρ

∂x
+ ρχ

(
S,
∂S

∂x

))
= r(S)ρ ,

∂S

∂t
= D

∂2S

∂x2
− k(S, ρ) .

with the specific choice

(4.2) χ

(
S,
∂S

∂x

)
= χsign

(
∂S

∂x

)
1S<S0

, r(S) = r1S>S0
.

This can be viewed as another variation of (2.5) including growth. It can also be viewed as
an extension of the celebrated F/KPP equation, with a signal-dependent growth saturation, and
including advection (we refer to [11, 54, 76] and references therein for more classical synthesis of the
F/KPP equation and the Keller-Segel model of cellular aggregation). Interestingly, an analogous
model was proposed in [28], following a general motivation, and beginning with the statement
that proliferation is necessary to sustain wave propagation. As compared with (4.1)–(4.2), in the
latter work, the reproduction rate r is signal-dependent with a linear dependency, and there is no
threshold on the chemosensitivity χ which is simply a linear function of the gradient ∂S

∂x . As a
consequence, the wave speed cannot be calculated analytically, in constrast with (4.1)–(4.2) (see
Theorem 4.1 below).

Before we show the construction of traveling wave solutions for (4.1)–(4.2), let us comment on
the reason why such solutions can exist. The expected density profile exhibits a plateau of cells
left behind the wave, see Figure 7a. In the vertical confining assay experiment with Dicty, this
corresponds to cells that are still highly motile, but have lost the propension to move directionally.
They cannot keep pace with the self-generated oxygen gradient. The increasing amount of cells
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Cell density

[O2]

Direction of propagation

IIIIII

(a)

[O2]

Direction of propagation

transition
threshold

DIVISIONMIGRATION

(b)

Figure 7. Graphical description of the ’go-or-grow’ model (4.1). (a) Individual
cell tracking in [16] shows different cell behaviours depending on the relative posi-
tion with respect to the tip of the ring: (I) ahead of the moving ring, cells exhibit
unbiased motion, together with division events; (II) inside the ring, cells exhibit
clear directional motion (which indeed results in the formation and maintenance
of the ring); (III) the trail of cells which are left behind exhibit unbiased motion,
again, with more persistent trajectories (but this last observation is neglected in
the model, because it was shown to have limited effect). (b) We hypothesize a
single transition threshold S0 such that cells can divide above the threshold, while
they move preferentially up the gradient below the threshold, when oxygen is lim-
ited. The unbiased component of cell motion (diffusion) is common to both sides
of the threshold.

which are left behind is compensated by the growth at the edge of the pulse. This localized growth
term (above the oxygen threshold) creates a flux term (negative flux in the moving coordinate)
which is key to the mathematical construction of the wave.

We can be more precise about the negative flux issued from cell division by looking at the
traveling wave equation (4.1)–(4.2) in the moving coordinate z = x− ct.

(4.3) − cdρ
dz

+
d

dz

(
−ddρ

dz
+ ρχ

(
S,
dS

dz

))
= r(S)ρ .

Below the oxygen threshold, S < S0, the right-hand-side vanishes, and we are left with a constant
flux,

(4.4) − cρ− ddρ
dz

+ ρχ

(
S,
dS

dz

)
= −J .
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Figure 8. Numerical simulation of model (3.1) for an initial plateau of cells
restricted to the interval {x < 10}.

By integrating (4.3) on {S > S0}, and using the continuity of the flux at the interface {S = S0},
we find

(4.5) J = r

∫
{S>S0}

ρ(z) dz .

Note that the continuity of the flux is a pre-requisite for the well-posedness of (4.1)–(4.2), see [20]
for a rigorous analysis of this problem, and unexpected mathematical subtleties.

Theorem 4.1 (Cochet et al [16], Demircigil [20]). There exist a speed c > 0, and a positive limit
value ρ− > 0, such that the system (4.1)–(4.2), admits a stationary solution in the moving frame
(ρ(x− ct), S(x− ct)), such that ρ and S have the following limiting values{

limz→−∞ ρ(z) = ρ− ,

limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy

(4.6) c =

2
√
rd if χ ≤

√
rd ,

χ+
rd

χ
if χ ≥

√
rd .

Interestingly, the dichotomy in (4.6) depends on the relative values of the advection speed (up

the gradient) χ, and half the reaction-diffusion speed of the F/KPP equation
√
rd. When the

aerotactic biases are small (low advection speed χ), then the wave is essentially driven by growth
and diffusion. When biases are large, then the wave is mainly driven by aerotaxis. This has
interesting implications in terms of maintenance of genetic diversity inside the wave (see [6, 52]
for diversity dynamics among reaction-diffusion traveling waves). In fact, the so-called dichotomy
between pulled and pushed waves is at play here, see [16, 20] for more details and discussion.

In contrast with the original Keller-Segel model (2.2), the wave speed does not depend on the
features of oxygen consumption and diffusion.

Proof. As in Section 3, the wave speed is not given a priori. We seek a monotonic oxygen profile,
such that dS

dz > 0. Therefore, the first equation reduces to

−cdρ
dz
− dd

2ρ

dz2
+

d

dz

{
0 if S > S0

χρ if S < S0

}
=

{
rρ if S > S0

0 if S < S0

}
.

By translational invariance, we assume that S = S0 occurs at z = 0.
For z < 0, we have by (4.4)–(4.5),

(4.7) d
dρ

dz
= J + (χ− c)ρ , J > 0 .
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Suppose that c ≤ χ. Then, ddρdz ≥ J > 0, which is a contradiction with the positivity of ρ. Hence,

we must have c > χ. The solution of (4.7) is unbounded unless it is constant, that is ρ = J
c−χ , and

this is the natural choice we make for the construction.
For z > 0 we have the standard linear problem arising in the F/KPP equation (at small density),

−cdρ
dz
− dd

2ρ

dz2
= rρ .

We look for exponential solutions exp(−λz). The characteristic equation, dλ2 − cλ + r = 0 has
real roots when c2 ≥ 4rd. Then, we proceed by dichotomy.
� The case c = 2

√
rd. The general solution for z > 0 is of the form (a + bz) exp(−λz), with

λ =
√

r
d the double root. The constant a coincides with J

c−χ by continuity of the density (its value

does not really matter here). Continuity of the flux at the interface z = 0 yields −d(b− aλ) = χa,

hence bd = a(
√
rd− χ). Thus, the solution is admissible (b ≥ 0) if, and only if χ ≤

√
rd.

� The case c > 2
√
rd. Standard arguments in the construction of reaction-diffusion traveling

waves imply to select the sharpest decay on the right side [3, 55], namely ρ = a exp(−λz), with

λ = 1
2d

(
c+
√
c2 − 4rd

)
. Continuity of the flux at the interface now writes −d(−aλ) = χa, which

is equivalent to

2χ− c =
√
c2 − 4rd ⇔

(
c = χ+

rd

χ

)
&
(
χ >

c

2

)
.

It must be checked a posteriori that c > 2
√
rd, which is immediate. The last inequality constraint

ensures that χ >
√
rd, in contrast with the other side of the dichotomy.

Thus, the construction is complete. �

The wavefront constructed above appears to be numerically stable, driving the long-time asymp-
totics, see Figure 8. However, the very strong advection at the back of the wave creates a decreasing
density profile, which is actually constant at the back of the wavefront, in contrast with the exper-
iments showing a non-monotonic pulse (Figure 7). Several extensions were discussed in [16].

Logarithmic sensitivity. Below, we discuss a natural, yet original, extension of the previous result,
restoring the logarithmic gradient in the advection term. More precisely, we consider (4.1) again,
with the following choice of functions, instead of (4.2)

(4.8) χ

(
S,
∂S

∂x

)
= χ log

(
∂S

∂x

)
1S<S0 , r(S) = r1S>S0 .

We present below a preliminary result about the existence of traveling waves, followed by heuristic
arguments about the determination of the speed, and some numerical investigation.

Theorem 4.2. Assume D = 0, and k(S, ρ) = kρS for some k > 0. There exists a speed c > 0,
and a positive limit value ρ− > 0, such that the system (4.1)–(4.8), admits a stationary solution
in the moving frame (ρ(x− ct), S(x− ct)), such that ρ and S have the following limiting values{

limz→−∞ ρ(z) = ρ− ,

limz→+∞ ρ(z) = 0 ,

{
limz→−∞ S(z) = 0 ,

limz→+∞ S(z) = Sinit .

Moreover, the speed is given by the following dichotomy

(4.9) c = 2

√
rmax

{
d, χ log

(
Sinit

S0

)}
.

Proof. We proceed similarly as in the proof of the previous statement. The assumption D = 0
enables expressing the logarithmic gradient in terms of the density:

(4.10) − cd(logS)

dz
= −kρ .

For z < 0 we have a constant (negative) flux at equilibrium in the moving frame (4.4),

(4.11) − cρ− ddρ
dz

+ χρ
d(logS)

dz
= −J < 0 .

Combining (4.10) and (4.11), we get the ODE satisfied by the cell density profile at the back:

(4.12) d
dρ

dz
= −cρ+

kχ

c
ρ2 + J .
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This ODE comes with a sign condition, for the discriminant of the right-hand-side to be non-
negative (otherwise ρ cannot be positive for all z < 0 when dρ

dz is uniformly positive), that is

(4.13)
c3

4kχ
≥ J .

This condition is complemented by the integration of (4.10) over {z > 0}:

c log

(
Sinit

S0

)
= k

∫ +∞

0

ρ(z) dz =
k

r
J ,

where the last identity follows from (4.5). This yields the constraint

(4.14)
c3

4rχ
≥ c log

(
Sinit

S0

)
⇔ c2 ≥ 4rχ log

(
Sinit

S0

)
.

This is one part of the condition in (4.9). The second part comes naturally from the constraint on
the characteristic equation on {z > 0}, namely c2 ≥ 4rd. It can be shown by simple phase plane
analysis that admissible solutions exist in both cases when the inequality (4.9) is an equality. �

The previous analysis calls for a few comments:

(1) Contrary to the former construction in Theorem 4.1, the latter construction does not come
naturally with an equation for c. This is because there is no clear way to remove one degree
of freedom on {z < 0} under the sign condition (4.13). Indeed, the solution of (4.12) is
naturally bounded for any intial condition, in opposition to (4.7).

(2) Surprisingly, the additional restriction (4.14) results from conditions imposed on the so-
lution at the back of the wave on {z < 0}, in opposition with the standard case, say for
F/KPP and related equations, where it always come from conditions on {z > 0} (as it is
the case for the classical restriction c2 ≥ 4rd).

At this point, we conjecture that the minimal speed (4.9) giving rise to admissible solutions is
selected when the Cauchy problem is initiated with localized initial data.

Claim 4.3. Starting from a compactly supported initial data, the asymptotic spreading speed of
solutions to (4.1)–(4.8) is given by (4.9).

This claim is supported by numerical exploration of the system in some range of parameters,
see Figure 9 for one typical set of paramaters. On the one hand, the claim is not surprising in the
case of small bias, when c = 2

√
rd. In fact, this corresponds to the standard mechanism of speed

determination at the edge of the front in reaction-diffusion equation with pulled waves. This was
indeed confirmed in the previous model (4.1)–(4.2) [16, 20]. On the other hand, we emphasize that

it does look surprising in the case of large bias, when c = 2

√
rχ log

(
Sinit

S0

)
. In the latter case, the

selection of the minimal speed would come from a discriminant condition at the back of the wave,
which would be a quite original phenomenon, up to our knowledge.

5. Conclusion and perspectives

We exposed the original contribution of Keller and Segel devoted to chemotactic waves of bac-
teria, and discussed its limitations. These limitations are mainly concerned with the possible lack
of positivity of the chemical concentration in the model. A pair of extensions were described.
They both resolve the positivity issue, while keeping analytical solvability of the waves thanks
to the specific choice of piecewise homogeneous models. In addition, they are both supported by
biological experiments, respectively with bacteria E. coli and Dicty cells.

To conclude, let us mention some open problems, either on the mathematical or on the modeling
side.

Determinacy of the speed at the back of the wave. The result stated in Theorem 4.2 appeared
quite unexpectedly. If further numerical exploration with alternative schemes tends to confirm our
Claim 4.3, we believe that understanding the mechanism of speed selection is an interesting, and
possibly original problem per se. We stress out that this mechanism occurs at z = −∞, in the sense
that the sign condition on the discriminant in (4.12) ensures that the cell density remains positive
for negative z. Alternatively speaking, we face a situation which is the mirror of the standard
mechanism of speed determinacy at z = +∞ in the F/KPP equation.
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Figure 9. (a) Traveling wave propagation obtained after long time simulations
of the Cauchy-problem (4.1)–(4.8) with parameters (d = 1, χ = 2, r = 1, D =
0, k = 1, Sinit = 8, S0 = 2). (b) The density profile is shown at successive times
in the moving frame. Note the low decay at the back of the wave, which is the
signature of singular point in the ODE (4.12) together with the choice of J that
cancels the discriminant in (4.13). The numerical speed is cnum ≈ 3.17, close to

the theoretical one, 2
√

log(4) ≈ 3.33. (c) To better assess our Claim 4.3, the
numerical solution is plotted in the phase plane (ρ, ρ′) (black dots), against the

theoretical curves, that is ρ′ = −λρ (for z > 0), and ρ′ = kχ
cd

(
ρ− c2

2kχ

)2
(4.12)

(red lines). The isolated point on the right corresponds to the transition at z = 0,
where the expected theoretical profile has a C1 discontinuity. We believe that the
discrepancy is due to numerical errors.
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Figure 10. Same as in Figure 9, except for the diffusion coefficient of the chemical
which is set to D = 1. (a) We observe propagation of a traveling wave in the
long time asymtptotic with a reduced speed. Clearly, the wave profile differs
significantly from 9b. (b) In particular, the solution in the phase plane does
not align with the theoretical expectation available in the case D = 0 (red plain
curves). It aligns much better with the theoretical expectation computed from
the equations (4.10)–(4.14) taking the reduced numerical speed as an input (red
dashed curves). We believe that the discrepancy is due to numerical errors.

Traveling waves with non-zero chemical diffusion. Figure 10 shows the numerical simulation of the
Cauchy problem (4.1)–(4.8) with a chemical diffusion coefficient D of order one. It seems that the
solution converges towards a traveling wave profile as t → +∞ with reduced speed as compared
to the case without chemical diffusion (Figure 9). Moreover, the numerical wave plotted in the
phase plane shows a similar pattern (compare Figure 9c and 10b), suggesting similar mechanisms

occurring at z = −∞ (in particular, a vanishing discriminant in the super-critical case c > 2
√
rd).

However, since the relationship (4.10) is not satisfied with non-zero diffusion, we are lacking one
equation to perform explicit computations. There exist multiple works extending the construction
of waves for the original model (2.1) to the case of non-zero chemical diffusion. This may give
some hints to address this question.

Stability. Although stability in the Keller-Segel model (2.1) has drawn some attention, with a
nearly complete picture by now, stability of the traveling wave solutions to the models presented
in Sections 3 and 4 is almost entirely open. The first author and Hoffmann proved local non-linear
stability of standing waves for (3.1) (without the SGG signaling S), assuming that the attractant
concentration A is quasi-stationary (solving an elliptic equation at any time). They performed a
change of coordinates to by-pass the discontinuity of the advection coefficient, and used higher-
order energy methods to handle the singular term of the coupling.
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Nevertheless, numerical investigation performed at the occasion of this work, with simple finite
volume, semi-implicit, upwind schemes, argue in favor of stability of all the waves described in 3
and 4.

Spatial sorting. Another open problem is the theoretical analysis of spatial sorting in bacteria
collectives when the individuals have different chemotactic sensitivities. In [29], remarkable exper-
iments on bacteria E. coli, together with a very elegant analytical argument, indicated that cells
can move together despite their differences. The argument of [29] goes as follows: assume that
there exist multiple types of bacteria consuming a single nutrient S, and that each type is char-
acterized by a chemotactic sensivity χi ; suppose that, for each type, the chemotactic advection

is of the form χi
(
S, ∂S∂x

)
= χi

∂F (S)
∂x , say the logarithmic gradient as in the original model (2.1) ;

suppose that the solution of each type converges towards a traveling wave in the long-time, with
a common speed c, so that the flux is asymptotically zero in the moving frame for each type:

(5.1) (∀i) − c− d d
dz

(log ρi) + χi
d

dz
F (S) = 0 .

Evaluating (5.1) at the maximum point of the density ρi, say z∗i , we would get that

(5.2) c = χi
d

dz
F (S)(z∗i ) .

Differentiating (5.1) at z = z∗i , it could be deduced that

(5.3)
d2

dz2
F (S)(z∗i ) = d

d2

dz2
(log ρi) (z∗i ) ≤ 0 .

The combination of (5.2) and (5.3) says that the peaks (z∗i ) of the densities (ρi) which are traveling
together are restricted to the interval where F (S) is concave. Moreover, they are ordered in such
a way that (χi < χj)⇒ (z∗i < z∗j ). This nice calculation indicates that different phenotypes could
migrate collectively despite their differences. The intuitive reason, which can be read on (5.2), is
that larger chemosensitivity χi naturally pushes the cells ahead, where they experience shallower
gradients. Nonetheless, the analysis in [29] is not complete, as the existence of a stable traveling
waves of different types with a common speed is taken for granted.

There exist previous theoretical works about collective migration of different phenotypes within
the same chemical environment. We refer for instance to [43], which adopted the framework of
the original model by Keller and Segel (2.1). In view of the discussion above, the stability of
their theoretical outcomes is questionable. In [23], the authors extend the framework of Section
3, including two subpopulations with different chemotactic phenotypes. This work was supported
by experimental data. However, the discussion in [29] makes it clear that the framework of [23] is
not directly compatible with their findings. Actually, it is one consequence of the advection speed
discontinuity in (3.1) that the maximum peak density is located at the sign transition, whatever
the chemosensitivity coefficient is, hence violating the nice relationship (5.2).

Preliminary investigations suggest that the framework of Section 4 cannot be readily extended
as well. Indeed, signal-dependent growth counter-balances the fact that more efficient chemotactic
types experience shallower gradients, because they have better access to nutrient. This triggers
natural selection of the more efficient type by differential growth (results not shown).

To our knowledge, there is no clear mathematical framework to handle the remarkable experi-
ments and biological insights as shown in [29], at the present time.
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