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The potential of deep learning has been recognized in the
protein structure prediction community for some time, and
became indisputable after CASP13. In CASP14, deep learn-
ing has boosted the field to unanticipated levels reaching
near-experimental accuracy. This success comes from ad-
vances transferred from other machine learning areas, as
well as methods specifically designed to deal with protein
sequences and structures, and their abstractions. Novel
emerging approaches include (i) geometric learning, i.e.
learning on representations such as graphs, 3D Voronoi
tessellations, and point clouds; (ii) pre-trained protein lan-
guagemodels leveraging attention; (iii) equivariant architec-
tures preserving the symmetry of 3D space; (iv) use of large
meta-genome databases; (v) combinations of protein repre-
sentations; (vi) and finally truly end-to-end architectures,
i.e. differentiable models starting from a sequence and re-
turning a 3D structure. Here, we provide an overview and
our opinion of the novel deep learning approaches devel-
oped in the last two years and widely used in CASP14.

K E YWORD S
deep learning, protein structure prediction, CASP14, geometric
learning, equivariance, end-to-end architectures, protein
language models

1 | INTRODUCTION

In December 2020, the fourteenth edition of CASP
marked a big leap in protein three-dimensional (3D)
structure prediction. Indeed, deep learning-powered ap-

proaches have reached unprecedented levels of near-
experimental accuracy. This achievement has been
made possible thanks to the latest improvements in ge-
ometric learning and natural language processing (NLP)
techniques, and to the amounts of sequence and struc-
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ture data accessible today. The fundamental basis for
the revolution in structure prediction comes from the
use of co-evolution. While traditional measures of co-
variations in natural sequences led to a few successes
[1, 2, 3], major improvements came from recasting the
problem as an inverse Potts model [4, 5]. These ideas
started to show their full potential about 10 years ago
with the development of efficient methods dealing with
large scale multiple sequence alignments [6, 7, 8]. They
enabled the modelling of 3D structures for large protein
families [9, 10, 11, 12, 13, 14].

Shifting from unsupervised statistical inference to su-
pervised deep learning further boosted the accuracy
of the predicted contacts, and extended the applicabil-
ity of this conceptual framework to families with fewer
sequences [15, 16] and to the prediction of residue-
residue distances [17, 18]. These advances have signif-
icantly increased the protein structure modelling cover-
age of genomes [19, 20, 21], and also of bacterial inter-
actomes [22, 23, 24]. Over the past years, the CASP
community has contributed to these efforts, with an in-
creasing number of teams developing and applying deep
learning approaches.

The emergence of novel deep learning techniques
has inspired a re-visit of the representations best suited
for biological objects (protein sequences and structures).
In particular, advances in the treatment of language
[25] and of 3D geometry [26, 27, 28, 29, 30] by deep
learning architectures have further benefited the field
of protein structure and function prediction. Expanding
on this progress, the DeepMind team demonstrated in
CASP14 that it is possible to produce extremely accu-
rate 3D models of proteins by learning end-to-end from
sequence alignments of related proteins [31]. This im-
plies being able to capture long-range dependencies be-
tween amino acid residues, to transform these depen-
dencies into structural constraints, and to preserve the
symmetry and properties of the 3D space when operat-
ing on protein structures.

This article is a follow-up to Kandathil et al. [32].
It aims at providing CASP participants and observers
with some overview of the recent developments in deep
learning applied to protein structure prediction, and
some comprehensive description of key concepts we
think have contributed to the formidable improvements
we have witnessed in the latest CASP edition. We
then discuss the implications of these improvements,
the next-to-solve problems, and speculate about the fu-
ture of structural (and computational) biology.

2 | END-TO-END LEARNING FOR
PROTEIN STRUCTURE PREDIC-
TION

One of the advantages of deep learning methods com-
pared with traditional machine learning approaches is
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F IGURE 1 Schematic representation of the inputs
and outputs of deep learning-based methods in
CASP14, excluding pipelines compiling several
methods coming from different sources, and methods
lacking a clear description. The blue and red lines
indicate the input and output levels, respectively.
Pretrained: sequence embeddings determined from
NLP models pre-trained on huge amounts of sequence
data. MSA: raw multiple sequence alignement.
MSA-feat: MSA features (such as PSSMs, covariance
and precision matrices). Contacts: contact or distance
matrix. Geometry: geometrical features, typically
including contacts/distances and torsion angles.
Structure: 3D coordinates. QA: model quality. In case
of several inputs and/or outputs, we report those
closest to the "end". BrainFold is highlighted with a star
as it takes only the query sequence as input, without
using pre-trained embeddings. This classification is
based on available information from CASP abstracts
and publications/preprints. See Supplementary Table
S1 for more details.

the ability to automatically extract features from the in-
put data without the need to carefully handcraft them
(and potentially miss salient information). Assuming suf-
ficient training data is available, learned features are ex-
pected to better generalize to heterogeneous or novel
datasets. In addition, it is generally accepted that end-to-
end learning, where the network is trained to produce
the exact desired output and not some sort of heuris-
tic representation of it, is advantageous. Indeed, achiev-
ing a high accuracy on some intermediate result does
not guarantee high accuracy on the final output. For
instance, a learning algorithm may achieve a small loss
on dihedral angles, and yet computing atomic coordi-
nates from the predicted dihedral angles could lead to a
high reconstruction error [33]. Nevertheless, introduc-
ing well-chosen intermediate losses in a so-called "end-
to-end" architecture can help to produce better final
outputs [31]. These auxiliary intermediate losses pro-
vide some guarantee that the method is not only able
to produce an accurate final output (e.g. a protein 3D
structure) but also to accurately model some other prop-
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erties of the object under study (e.g. secondary struc-
ture, stereo-chemical quality...), and a mean to incorpo-
rate additional domain knowledge. While most protein
structure prediction methods take pre-computed fea-
tures as input and output a contact or distancemap, pos-
sibly augmented with other geometrical features (Fig. 1,
see iPhord, ProSPr [34], Kiharalab_Contact [35], Phar-
mulator, DeepPotential, RaptorX [36], Galaxy, Triple-
tRes [37], A2I2Prot, DESTINI2 [38], DeepHelicon [39],
DeepHomo [40], ICOS, PrayogRealDistance [41, 42],
RBO-PSP-CP [43], DeepECA, ropius0 [44], tFOLD, plus
QUARK, Risoluto, Multicom [45] and those from the
Zhang lab), several efforts have been recently engaged
towards developing end-to-end architectures. Here, we
will shortly review these efforts and try to identify the
key components of what represents end-to-end learn-
ing in protein structure prediction (Table 1).

Ideally, the ultimate input would be the sequence
of the query protein. So far, only a couple of learn-
ing methods have exploited solely and directly this in-
formation to efficiently fold proteins de novo [46, 47].
They rely on differentiable [46] and neural [47] poten-
tials whose parameters are learnt from conformational
ensembles generated by Langevin dynamics simulations.
More commonly, the strategy of state-of-the-art meth-
ods is to leverage the very high degenerative nature of
the sequence-structure relationship through the use of
a multiple sequence alignment (MSA) of evolutionary-
related sequences, or a pre-trained protein language
model (see below). In this context, methods qualifying
for "end-to-X" learning should take as input raw (pos-
sibly aligned) sequence(s), as opposed to features de-
rived from them such as conservation levels (e.g. stored
in a Position-Specific Scoring Matrix or PSSM) or co-
evolution estimates (e.g. mutual information, direct pair-
wise couplings). One of the first examples of end-to-
X method was rawMSA [48], which leveraged embed-
ding techniques from the field of NLP, to map the amino
acid residues into a continuous space adaptively learned
based on the sequence context (Table 1). In DMP-
fold2 [49, 50], this idea was extended to MSAs of ar-
bitrary lengths by scanning individual columns in the
MSA with stacked Gated Recurrent Unit (GRU) layers.
CopulaNet [51] adopts a query-centered view by ex-
panding the input MSA to a set of query-homolog pair-
wise alignments prior to embedding it. In AlphaFold2
[31], the MSA embedding is obtained through several
rounds of self-attention (see below) applied to the MSA
rows and columns. Beyond computing MSA embed-
dings, rawMSA, CopulaNet and AlphaFold2 add an ex-
plicit step aimed at converting the information they con-
tain into residue-residue pairwise couplings through an
outer product operation on the embedding vectors. Re-
cently, a compromise end-to-X solution where the com-
putation of traditional hand-crafted features takes place
on theGPUand is tightly coupled to the networkwas im-
plemented into trRosetta [52], allowing for backpropa-

gating gradients all the way to the input sequences [53].
At the other end of the spectrum, the ultimate output

is the 3D structure of the query protein. Thus, an "X-
to-end" deep learning architecture should directly pro-
duce 3D coordinates and not some intermediate repre-
sentation such as a contact map. M. AlQuraishi [54] was
among the first to develop such amethod in 2019 (Table
1). The model takes as input a PSSM, without account-
ing for any co-evolutionary information, and outputs the
Cartesian coordinates of the protein. The torsion angles
are predicted and used to reconstruct the 3D structure.
Although novel, such an approach has so far not proven
to perform better than earlier methods in CASP. One
well-known problem is that internal coordinates are ex-
tremely sensitive to small deviations as the latter easily
propagate through the protein, generating large errors
in the reconstructed structure [33]. To overcome this
problem, it is possible to efficiently reconstruct Carte-
sian coordinates from a distance matrix by using multi-
dimensional scaling (MDS) or other optimization tech-
niques as in CUTSP [55], DMPfold2 [49], or E2E and
FALCON-geom methods of CASP14. In its classical for-
mulation, used by both DMPfold2 and E2E, MDS ex-
tracts exact 3D coordinates (provided that the distance
matrix is exact) through eigendecomposition of the cen-
tered distance matrix. Nevertheless, one issue with us-
ing MDS as the final layer in the network is that the
output may be a mirror image (chiral version) of the pro-
tein. The most recent version of DMPfold2 (DPMfold2-
new in Table 1 [50]) attempted to resolve this issue by
adding an extra-GRU layer. AlphaFold2 takes a differ-
ent route and elegantly solves the 3D reconstruction
and themirror-image problems jointly by learning spatial
transformations of the local reference frames of each
of the protein residues. Computing the geometric loss
function in the local frames automatically distinguishes
the mirror images, as one of the local axes is a vector
product of the two others. Noticeably, even though X-
to-end approaches generate a 3D structure, the latter is
usually refined afterwards (for example through molec-
ular dynamics simulations). For instance, relaxation of
AlphaFold2’s output with a physical force field is neces-
sary to enforce peptide bond geometry [31].

Although the protein 3D structure appears as an obvi-
ous and legitimate target, onemaywonderwhether gen-
erating 3D coordinates confers any advantage, in terms
of problem solving and performance, compared to a per-
fect 2D contact map. First, as mentioned above, effi-
cient methods to use 2D information for generating 3D
models exist [56, 52]. Further, the most popular residue-
or even atom-level loss functions used in deep neural
networks (DNNs) do not depend on the superposition of
the predicted model to the ground-truth structure and
are evaluated using the comparison of distance maps.
The most illustrative example is the local distance dif-
ference test (lDDT) [57], which has been employed as a
target function in CASP14 by some of the best perform-
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ers including AlphaFold2 [31] and Rosetta. The value of
this loss would not change if we swap the 3D and 2D
representations. Nevertheless, it is not clear whether
a perfect 2D map can be reached without using some
3D knowledge about the structure. Operating on 3D
representations allows calculating global or local quality
scores reflective of the structural accuracy in a way that
2D distance maps do not, as illustrated by the mirror-
image issue mentioned above. The DNN can then learn
to regress against these quality scores, and iteratively re-
fine a first rough 3D guess by predicting (local) deforma-
tions to arrive at a better structure. However, operating
in 3D poses specific challenges related to the preserva-
tion of symmetries, which we discuss in Section 5. So
far, the only successful example of indisputable improve-
ment of 3D structure representation over 2D maps is
given by AlphaFold2 [31]. Whether similar performance
can be achieved with 2D maps and whether 2D maps
are needed at all in the predictive process remain open
questions.

Being able to produce 3D models resembling experi-
mental structures implies being able to tell apart "good"
from "bad"models. Hence, proteinmodel quality assess-
ment (MQA or QA), now referred in CASP to as estima-
tion of model accuracy (EMA), has always been an im-
portant step in protein structure prediction pipelines. It
allows, in principle, to choose the best models (in case
of global QA) and/or spot inaccuracies in the proposed
models for a subsequent refinement (in case of localQA).
In recent years, a large number of deep learning-based
approaches have been specifically designed for this task.
Classically, they take a 3D model as input and then as-
sess its quality in a stand-alone fashion (Fig. 1). Alter-
natively, some teams proposed integrative approaches.
For example, QDeep QA predictions [58] are based on
distance estimations from DMPfold [21]. In GalaxyRe-
fine2 [59], RefineD [60], and Baker suite [61], the QA is
incorporated into a model refinement pipeline. Finally,
QA blocksmay be used as an integral part of a sequence-
to-structure prediction process, as is the case in DMP-
fold2 [49] and AlphaFold2 [31].

3 | THE IMPORTANCE OF DATA
AND DATA REPRESENTATIONS

The success of deep-learning methods is heavily
grounded in the availability of large amounts of data,
and the development of suitable representations struc-
turing and expressing the information they contain. The
advent of high throughput sequencing technologies has
widened the gap between the number of known protein
sequences and known protein structures. Genomics
has become pre-eminent in terms of data scale, with
an exponential growth [64, 65]. These huge amounts
of data offer unprecedented opportunities to develop
high-capacity models detecting co-variation patterns

and learning the "protein language".

3.1 | Leveraging (meta-)genomics
In the last few years, the accessible resources for unan-
notated sequences coming from metagenomics exper-
iments have multiplied. They include databases like
NCBI GenBank [66], Metaclust [67], BFD [68], MetaEuk
[69], EBI MGnify [70], and IMG/M [71]. Since CASP12,
several teams attempted to exploit this type of data,
mostly to increase the depth of the MSAs and obtain a
more accurate estimation of (co-)evolutionary features.
For example, RaptorX [36], methods from the Yang and
Baker teams [72, 73], Multicom [45], and GALAXY ex-
ploited metagenome data for contact prediction and
distance estimation between residue pairs in combina-
tion with residual convolutional neural networks (resC-
NNs). The HMS-Casper [54, 74], DMPfold2 [49] and
AlphaFold2 methods [31] exploited them directly to
predict 3D structures. Regarding QA, DeepPotential
from the Zhang lab and QDeep [58] leverage gener-
ated MSA profiles from metagenome databases. To
gather large amounts of sequences, coming from dif-
ferent sources, many teams relied on the DeepMSA al-
gorithm [75]. Most of the time, the sequences were
integrated altogether in a single MSA. However, some
methods proposed to combine several MSAs with dif-
ferent weights (e.g. Kihara’s lab) or to select a few of
them with high depth and/or variability (e.g. DeepPo-
tential). Noteworthily, deep learning is not only used to
exploit sequence alignments, but also to generate them.
For instance, the SAdLSA algorithm improves the qual-
ity of low-sequence identity alignments by learning the
"protein folding code" from structural alignments [76].
NDThreader [77] and ProALIGN [78] are specifically de-
signed to optimally align the query with the template
in template-based modeling. Both methods exploit pre-
dicted or observed inter-residue distances to improve
the sequence alignments, a strategy that proved power-
ful already in CASP13 [72, 79, 80].

3.2 | FromMSA to query-specific
embeddings
The most traditional way to extract information from an
MSA is to compute a probabilistic profile or a PSSM re-
flecting the abundance of each amino acid at each po-
sition. This type of representation has been very popu-
lar from the very first CASP editions. Over the past 10
years, direct coupling analysis (DCA)-based models[12],
including Potts model and pseudolikelihood maximiza-
tion [8, 81, 82, 83], and Graphical lasso-based (low-rank)
models [84, 85, 86] became widespread in the com-
munity. These statistical methods explicitly estimate
residue pairwise couplings as proxies for 3D contacts.
More recently, some meta-models [87, 88], correlation
and precisionmatrix-based approaches [89, 90, 52], and
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TABLE 1 Overview of X-to-end and end-to-X deep learning approaches for protein structure prediction.
End-to-end learning

AlphaFold2[31] The MSA, along with templates, is fed into a translation and rotation equivairant trans-
former architecture, which outputs a 3D structural model

DMPfold2
(new)[49, 50]

The MSA, along with the precision matrix, is fed into a GRU, which outputs a 3D struc-
ture

End-to-X learning
MSA Transformer[62] Transformer architecture
rawMSA[48] TheMSA is fed into a 2DCNN (the first convolutional layer creates an embedding) which

outputs a contact map
CopulaNet[51] Extracts all sequence pairs from the MSA and feeds them to a dilated resCNN
TOWER The network is trained with a deep dilated resCNN to predict inter-residue distances

directly from the raw MSA
trRosetta[52] Computes traditional MSA features on the fly and passes them to dilated convolutional

layers
X-to-end learning

NOVA[63] Adopts DeepFragLib from the same team which uses Long Short Term Memory units
(LSTMs), to output a 3D structure

DMPfold2[49] The MSA, along with the precision matrix, is fed into a GRU, which outputs distances
and angles (version used in CASP14)

HMS-Casper[54] Raw sequences plus PSSMs are given to a "Recurrent Geometrical Network" comprising
LSTM and geometric units and outputting a 3D structure

a variety of of deep-learning models [91, 16, 92, 93,
21, 38, 73, 42, 41, 37, 45], including generative adver-
sarial networks for contact map generation and refine-
ment [94, 35], got widely used to capture the same type
of co-evolutionary information. One limitation of these
methods is that they estimate average properties over
an ensemble of sequences representative of a protein
family. Hence, they may miss information specifically
relevant to the protein query. The DeepMind team cir-
cumvented this limitation with AlphaFold2 by comput-
ing embeddings for residue-residue relationships within
the query and sequence-residue relationships between
the sequences in the MSA and the query, and making
the information flow between these two representa-
tions. Alternatively, one may transfer the knowledge ac-
quired on hundreds of millions of natural sequences to
generate query-specific embeddings (Table 2). Several
models developed for NLP, including BERT [95], ELMo
[96], and GPT-2 [97], have been adapted to the "protein
language". During the semi-supervised training phase,
the model attempts to predict a masked or the next to-
ken [98]. In CASP14, EMBER directlymade use of ELMo
and BERT while HMS-Casper [54] used a reformulated
version of the latter, called AminoBert. A2I2Prot and
CUTSP leveraged the TAPE initiative [98], which pro-
vides data, tasks and benchmarks to facilitate the evalu-
ation of protein transfer learning.

3.3 | Representations of protein
structure
Sequence-based protein representation may be en-
riched with different levels of structural information, for

example, some prior knowledge about secondary struc-
ture (SS) elements. In principle, some of these elements,
such as alpha helices or beta strands, can be represented
with 3D primitives. An interesting idea that we saw in
CASP14 was the use of a discrete version of Frenet-
Serret frames for the protein backbone parametrization
by HMS-Casper. However, such a representation is very
complex, and a much simpler way would be to abstract
SS primitives with a hydrogen-bond (HB) 2D map. For
example, the ISSEC network was specifically trained to
segment SS elements in 2D contact maps [99]. Similarly,
the protein 3D topology may be abstracted as a 2D con-
tact map, or its probabilistic generalization, e.g. a matrix
filled with continuous probabilities or contact propen-
sities between protein atoms or residues. Beyond 2D
contact maps, richer descriptions of the 3D structures
can be achieved with 2D contact manifolds and protein
surfaces, 3D molecular graphs, point clouds, sets of ori-
ented local frames, volumetric 3D maps, or 3D tessel-
lations, e.g. through Voronoi diagrams (Table 2). These
different levels of protein representations and their ap-
plications in CASP are discussed in more details below
and schematically shown in Fig. 2.

3.3.1 | Volumetric protein
representations
The first attempt to train 3D CNNs on a volumetric pro-
tein representation dates back to CASP12, with the goal
of assessing protein model quality [100]. The architec-
ture was robust but had two major limitations. Specifi-
cally, it relied on a predefined protein’s atom types, and
the orientation of the protein model given as input had
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F IGURE 2 Comparison between protein representations for human PCNA (PDB code:1AXC, chain A) .

TABLE 2 Overview of approaches transferring knowledge from large amounts of protein sequence data.
HMS-Casper (NLP)[54] Sequence embeddings generated by a reformulated version of the BERT language

model are given as input to a LSTM-based architecture
EMBER (NLP) Sequence embeddings are generated by BERT and ELMo trained on protein sequence

sets and given to a resCNN with dilatations
A2I2Prot A sequence embedding correlation map is fed into a resCNN
CUTSP[55] Sequence embeddings, along with a MSA, are fed to a bi-directional GRU and LSTM

with skip connections, followed by an Encoder-Decoder architecture

an influence on the output of the network. In other
words, the network was not rotation-invariant. To cope
with this issue, it had to be trained on the input data aug-
mented by a set of rotations applied to each input pro-
tein model. In a follow-up work, Derevyanko and Lam-
oureux [101] introduced an SE(3)-invariant architecture
building on Weiler et al. [102].

The Ornate architecture overcomes both limitations
[103] (Table 3). Ornate learns atom type embeddings
and constructs local volumetric representations of each
amino acid in a protein in a local coordinate system, thus
achieving local translation-rotation invariance of the net-
work. Sato-3DCNN by Sato and Ishida [104] used an
idea similar to that of Ornate with oriented local frames
but did not automatically learn the atom type embed-
dings. 3DCNN_prof (or P3CMQA) extended this net-
work with additional input features including MSA pro-

file, predicted secondary structure, and solvent acces-
sibility [105]. Finally, DeepAccNet showed remarkable
performance in the CASP14 refinement category. This
architecture extends Ornate by adding 1D and 2D in-
put features coming from sequence and Rosetta energy
terms [61] (Table 3). It predicts per-residue model accu-
racy and also inter-residue distance signed error, such
that the network can be efficiently used for protein
model refinement.

3.3.2 | Graph protein representations
A remarkable fact of the CASP14 edition is the emer-
gence of graph representations as means to encode se-
quence and/or structure information. Indeed, graphs al-
low formally and compactly encoding diverse relation-
ships between heterogeneous objects. The DeepMind
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teamwas probably the onewho best exploited this prop-
erty, by using the graph representation to encode both
sequence information taken as input and structural in-
formation learned by the architecture in an end-to-end
fashion. Several other teams have made contributions
toward deriving graph representations for protein data
and developing algorithms operating on these graphs.
For example, DeepML, GQArank, LAW, and GraphQA
[106] applied classical graph convolutional networks
(GCNs) at the residue level, where the convolution op-
erator averages the features of each node’s neighbours
(Table 3). Spherical Graph Convolutional Network (S-
GCN) made a step further and extended the graph con-
volution operator for spherical geometry in molecular
graphs. This allowed to effectively encode mutual an-
gular dependence of neighbouring graph nodes using
spherical harmonics expansions [107]. In its turn, GN-
NRefine predicted distances between protein atoms us-
ing graph neural networks and then converted these dis-
tances into interatomic potentials and employed them
for protein structure refinement [108]. A more recent
method, GVP-GNN [109], augments graph networks
with the ability to reason about protein features ex-
pressed as geometric vectors in an equivariant manner.

3.3.3 | Point clouds and oriented frames

Alternatively to a graph, one may want to make the pro-
tein topology evolve through the architecture, without
explicitly fixing it. The protein is then seen as a set of iso-
lated nodes with specific positions in 3D space, in other
words, a 3D point cloud. The EDN method in CASP14
was the first approach to describe a 3Dprotein structure
as a set of points in 3D [110, 111]. In this setting, each
point is associated with a set of features. At input, in-
dividual atoms are represented as points and the chem-
ical element type is the sole associated feature. New
point-based features are then calculated over a series of
rotation-equivariant convolutions based on the 3D en-
vironment around each point. In addition, the network
aggregates information at different levels of point hierar-
chy, from individual atoms over α-carbons to the whole
protein.

In AlphaFold2, the protein structure is modelled
through a related representation, a cloud of local coor-
dinate system frames, each unambiguously associated
with a residue. The method updates these frames in-
directly by applying an attention mechanism to "3D
points" generated from the query sequence embed-
ding. Hence, at each step, the changes computed on
the embedding, which is an abstract representation of
the protein, are converted into concrete 3D coordinate
changes. DeepMind team uses the term "residue gas"
to refer to this frame cloud representation, to empha-
size the fact that the peptide bond geometry is totally
unconstrained (i.e. the peptide bonds are "broken").

3.3.4 | 3D tessellations

A somewhat similar concept to the graph description
is a tessellation of the 2D or 3D space. Tessellations
are partitions of the space (3D for most CASP applica-
tions) into regions (cells) with specific properties. A tes-
sellation can be represented with a graph, where each
node stands for a cell and each edge for the contact be-
tween two cells. A particularly useful type of tessella-
tion is the Voronoi tessellation, or Voronoi diagram. Con-
sidering protein structure, the interior of the Voronoi
cell around each protein atom must be closer to that
atom than to any other. As the atoms are physical ob-
jects with different radii, the Voronoi cells are defined
by intersecting pairwise bisector surfaces. In case of the
additively-weighted Voronoi tessellation, a bisector sur-
face is a part of a hyperboloid of two sheets, approach-
ing a plane when the difference between atomic radii
tend to zero (Fig. 2). The Voronoi tessellation turned out
to be a very powerful description of protein structure
and interactions and has been used in structural bioin-
formatics for several decades [112, 113, 114, 115, 116].
In CASP14, we saw this description incorporated into
DNNs. VoroCNN was the first attempt to construct
a deep network passing messages between the neigh-
bouring Voronoi cells [117]. The network performs a
hierarchical tessellation by starting at the atom level,
and then aggregating features to the residue level. An-
other interesting idea was implemented in VoroMQA-
dark [118], an extension of the VoroMQAmethod [119]
where contact Voronoi areas and pseudo-energies are
fed to a feed-forward network. An important particu-
larity of VoroMQA, VoroCNN, and related methods is
that their Voronoi tessellations are constrained by the
solvent-accessible surface. Therefore, the Voronoi cells
of the surface atoms are finite, and the corresponding
contact surfaces abstract solvent-protein interactions.

3.3.5 | 2D manifolds

Another flavour of the VoroMQA method has also
proved successful in scoring protein complexes since
the CASP12-CAPRI experiment [120, 121]. Here, only
the protein-protein contact areas contribute to the final
score. In such an approach, the 3D protein structures
are viewed as 2D surfacemanifolds. In CASP14, this type
of protein description has been combined with deep
learning [118]. Other developments include the applica-
tion of ideas from the recent MoNet manifold network
architecture [122] toward learning protein surfaces with
very exciting outcomes for protein binding sites and
protein-protein complexes prediction [123, 124]. Over-
all, 2D surface manifolds seem very powerful and com-
pact representations of 3D shapes, at least in the con-
text of protein-protein interactions.
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TABLE 3 Overview of deep learning QA approaches in CASP14.
Volumetric representations

3DCNN[100] A non-invariant 3D CNN
Ornate[103] A local frame-based 3D CNN model with learned atom embeddings
Sato-3DCNN[104] A local frame-based 3D CNN
3DCNN_prof (P3CMQA)[105] Extends Sato-3DCNN with predicted features and PSSMs
SE(3)-3DCNN[101] An invariant 3D CNN based on [102] trained for protein complexes
iPhord & DeepMUSICS 3D CNNs
TopQA[125] 3D CNN with explicit rotations and automatic scaling to fit into a unit cube
DeepAccNet[61] Extends Ornate with 1D and 2D geometrical features to predict per-residue

model accuracy and also inter-residue distance signed error
Graph representations

Graph-QA[106] GCNwith representation learning, explicit modeling of both sequential and 3D
structure, geometric invariance, and computational efficiency

S-GCN[107] Molecular-graph-basedmethodwhere angular information is accounted for us-
ing spherical harmonics

GQArank GCNwithmany features, including PSSMand predicted geometrical properties
DeepML A classical GCN
LAW 5-layer GCN followed by a 3-layer 1D CNN

Tessellations, 2D manifolds, and point clouds
VoroCNN[117] A CNN built on a hierarchical 3D Voronoi tessellation of a protein molecule
VoroMQA-dark[118] A CNN-based extension of VoroMQA [119]
EDN[111] A point-cloud representation of the atomic structure combined with rotation-

equivariant, hierarchical convolutions

4 | FROM CONVOLUTIONS TO AT-
TENTION

The choice of the protein data representation is in-
timately linked to that of the deep learning architec-
ture and operators. Historically, the first deep learning
breakthrough in protein structure prediction came from
CNNs, widely used for computer vision, applying multi-
ple filters to protein "images". Each filter of a standard
CNN aggregates information coming from a region of
the input data, namely the receptive field (Fig. 3, area
above the main diagonal). The filters in the first layer di-
rectly operate on the input data, while the filters in each
of the subsequent layers apply some operation on the
output of the previous layer. As the information is pro-
cessed by the successive layers, the size of the receptive
field increases, and, as a consequence, longer-range de-
pendencies are captured. However, this accounting of
long-range dependencies comes at the expense of pre-
cision, since it occurs only after a certain depth in the
network. Indeed, the late layers corresponding to a large
receptive field do not directly operate on the input data
but on some abstract representation of it containing less
information. This makes CNNs strongly dependent on
the way the input observations are ordered or located
with respect to each other. For example, when dealing
with a 2D covariance matrix computed from a multiple
sequence alignment, local patterns formed by residues
adjacent in sequence will be captured with higher preci-
sion. This may constitute a limitation since protein 3D
structures are also stabilized by interactions formed be-

tween distant amino acids in the sequence. When treat-
ing a rawMSA as a 2D image, the order of the sequences
will also have an influence while this order may some-
what be arbitrary. In the case of a geometric represen-
tation of the 3D protein structure, the information en-
coded in local neighbourhoods of the Euclidian space
will be aggregated first and thusmore precisely captured
than relationships between distant atoms.

One way to overcome such limitation is to intro-
duce gaps (dilations) when defining the filters. With
a dilation d , the window starting at location i of size
k is [xi xi+d xi+2d · · · xi+(k−1) Ûd ]. Stacking dilated
convolutions with increasingly large d allows operat-
ing on exponentially large receptive fields, while retain-
ing short backpropagations [126, 127, 18]. In CASP14,
dilated convolutions were used by several groups, in-
cluding ProSPr [34], DESTINI2 [38], CopulaNet [51],
PrayogRealDistance [41, 42], and also EMBER, TOWER,
ICOS, and LAW/MASS. Another solution lies in the self-
attention mechanism, where parametric filters capture
high-order dependencies between the input observa-
tions at arbitrary range and with high precision (Fig. 3,
area under the main diagonal). The intuition is to fo-
cus on the most relevant parts of the input with respect
to a task or output (general attention) or to another
part of the input (self-attention). Specifically, for each
input point, a set of trainable attention weights deter-
mines the relative importance of each of the other in-
put points. Attention mechanisms have made a major
breakthrough in NLP, as they allow keeping in memory
the sequence context (although limited in practical ap-
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attention heads

receptive fields Standard convolutional filters Parametric attention filters

F IGURE 3 Comparison between convolutional
filters and attention heads. The input data is either
represented as a 2D image or as a graph. The
information encoded may be for instance
MSA-inferred covariances or template-derived
Euclidean distances between protein residues. In the
top left triangle of the image, the overlapping squares
correspond to the increasing receptive fields obtained
by stacking multiple layers of convolutional filters in a
2D-CNN. In the area under the main diagonal, the
coloured squares represent the input points being the
most important with respect to the one in the center of
the circle, as the result of applying attention filters. In
case the nodes represent residues, and the attention
weights can be interpreted in terms of 3D distances or
contact, only 2 links are necessary to infer a triangle (in
blue). This observation was exploited by AlphaFold2
through the implementation of triangular self-attention
[31]. In the graph on the left, the red arrows indicate a
standard convolution aggregating information from
neighbouring nodes. On the right, the attention
mechanism puts more weight on certain neighbours
(illustrated by arrow thickness).

plications) in translation tasks [128, 129, 25, 130]. They
are particularly well suited for data whose underlying
representation does not have a grid-like structure and
rather lie in an irregular domain. Such data can often
be represented in the form of graphs. While standard
graph convolutions indifferently aggregate information
from neighbouring nodes [131] (Fig. 3, left graph), the
attention mechanism puts more importance on a subset
of neighbours, without increasing the time complexity
[132] (Fig. 3, right graph). In the extreme case, each
node may attend to all other nodes, allowing for a full
inference of the graph structure. This strategy has been
employed by the DeepMind team in CASP14 in sev-
eral places of their AlphaFold2 architecture. Particu-
larly, when operating on the 3D structure, they impose
a strong spatial/locality bias on the attention that de-
pends on the relative positions of 3D points produced
in the local frames of the residues (invariant point at-
tention, IPA). Recent works have also shown that the
residue-residue dependencies extracted by certain at-
tention heads in transformers trained on large amounts
of sequences can be directly interpreted as 3D contacts
or distances [133, 134, 62].

5 | FROM INVARIANCE TO EQUIV-
ARIANCE

Breakthrough applications of deep learning often have
in common that the underlying methods cater to spe-
cific characteristics of the data domain, such as long-
range dependencies in text and hierarchical features in
images. Figure 4 considers relevant characteristics for
macromolecular structure, namely invariance and equiv-
ariance with respect to translations and rotations in 3D.
For illustration purposes, the figure includes a series of
cat cartoons in 2D.

As training progresses, a neural network should learn
to identify structural features helpful for the task it is
designed to solve. We refer to such an informative fea-
ture as a structural motif — a specific arrangement of a
set of atoms in 3D (Figure 4A). In the case of the cat car-
toons, themouth and nose of the cat shall correspond to
“structural motifs”. Given a protein structure, a network
should further be able to identify structural motifs inde-
pendent of the orientation and position in which they
occur. If this ability is not built into the network architec-
ture, the network needs to learn it by seeing the same
motif in different orientations and positions. This addi-
tional learning task does not only require more network
parameters, but the network can also only learn an ap-
proximation of the desired detection ability.

The general idea is that incorporating specific domain
knowledge into the architecture — here the assumption
that a structural motif is the same independent of where
and in which orientation it occurs — provides an advan-
tage over amore flexible network architecture through a
reduction inmodel parameters that ultimately translates
to better network prediction accuracy given the same,
finite amount of training data. Assuming the domain-
specific assumptions are true, this reduction in model
parameters does not result in a loss of expressive power,
as it only prevents the network from learning functions
inconsistent with the assumptions [30].

Feature detection independent of orientation and po-
sition is not enough in the case of a larger receptive field
encompassing two structural motifs (Figure 4B). To ag-
gregate information from local neighborhoods, the net-
work also needs information on the relative orientation
and position of the learned structural motifs. These ge-
ometrical aspects are crucial since they govern the in-
tramolecular interactions. The importance of relative
orientation is also apparent in the cat cartoons — rotat-
ing the mouth motif by 180◦ with respect to the nose
turns the happy cat into a sad one. Here, the desired
property is that of equivariance. Informally, a function
or neural network layer is equivariant to some transfor-
mation (such as a rotation or translation) if a transforma-
tion of the input results in the same transformation of
the output. For invariance, the function output does not
vary with respect to transformations of the input. Stan-
dard CNNs and other neural network architectures al-
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F IGURE 4 Symmetry considerations in learning from macromolecular structure (A) Given the 3D structure of a
protein (grey surface), it is desirable that a neural network can identify a structural motif (blue) — a specific
arrangement of atoms in 3D — independent of the position and orientation at which the motif occurs in the
structure. Insert: Analogy with a cat face, where the ’structural motif’ is represented by the mouth of the cat. (B) A
larger receptive field encompassing two motifs (blue and red) is shown in green. In order to aggregate information
from local neighbourhoods, independent motif detection is not enough. The network requires information on the
relative orientation and position of the structural motifs, which is realised through translation and rotation
equivariant features. Insert: The cat’s happiness changes with the relative orientation of the nose and mouth ‘motifs‘.
(C) At the global level, the accuracy of a protein model is rotation invariant. Insert: A global rotation leaves the cat’s
happiness unaffected.

ready account for translational equivariance (e.g., by en-
coding only relative positions of atoms) but not for rota-
tional equivariance. Rotational symmetry is specifically
important in 3D: non-equivariant architectures require
a factor of O(δ−1)more filters to achieve an angular res-
olution of δ in 2D but already O(δ−3) more filters in 3D
[29].

Finally, invariance vs. equivariance can also depend
on the perspective, as illustrated in Figure 4C. If the goal
is to predict global protein model accuracy, such as mea-
sured by global lDDT, a network should provide equivari-
ant outputs at the local level but a global prediction that
is invariant under rotations and translations. Turning
again to the cartoon cat, we similarly note that a global
rotation of the cat leaves its happiness unaffected.

Historically, machine-learning-based scoring func-
tions [135, 136] were inspired by statistical potentials
[137, 138] relying on pairwise distance/ angular distri-
butions or contact maps, which are perfectly rotation
and translation invariant representations. The challenge
of equivariance arose with the development of deep-
learning architectures operating directly on raw 3D ge-
ometry, rather than precomputed (primarily 1D or 2D)
features [100]. Pagès et al. [103], Sato and Ishida [104]
elegantly circumvented the need for rotational data aug-
mentation in standard CNNs by leveraging a residue-
level coordinate system to learn an invariant local quality
metric. AlphaFold2 also represents the protein residues
with local oriented frames. Both the frames and their
relationships are learnt through a geometry-aware at-
tention mechanism. Graph representations of protein
structure generally similarly encode the local and global

3D geometry through rotation-invariant scalar features
such as angles and distances [106]. Recent efforts in-
clude the use of spherical convolutions in combination
with a residue-level coordinate system to learn a lo-
cal quality metric [107], and the development of in-
variant volumetric [101] and equivariant point clouds
representations in 3D [110, 111]. Specifically, in Eis-
mann et al. [111], starting from the 3D coordinates and
element type of each atom, the network first learns
rotation-equivariant representations of local neighbor-
hoods and then aggregates this information hierarchi-
cally to predict a rotation-invariant fingerprint at the
level of the entire protein structure, reflecting the previ-
ously discussed symmetry considerations. The architec-
ture builds on tensor field networks [29] in which points
in 3D space are associated with tensor features (such as
scalars and vectors) and these features are updated over
consecutive network layers.

From a broader perspective, early work from Cohen
and Welling [27] pioneered the use of tools from group
representation theory to build a rotation equivariant
neural network architecture. This idea has been fol-
lowed by a rich body of publications, including transla-
tion and rotation equivariant architectures for 3D point
clouds [29, 139, 140]. These architectures can be seen
as equivariant extensions of neural-network-based ra-
dial and angular symmetry functions for molecular struc-
ture [141, 142, 143]. Weiler et al. [102] further pro-
posed a rotation-equivariant architecture for continu-
ous data in 3D. All these equivariant architectures share
the use of spherical harmonics, a set of functions de-
fined on the unit sphere that is intrinsically linked to 3D
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rotation equivariance. Spherical harmonics have played
a prominent role in molecular surface representations
for several decades [144, 145] and are also at the heart
of the classical fast multipole method [146].

We believe that equivariant architectures in learn-
ing from macromolecular structure will grow further in
popularity due to their parameter-efficient expressive
power and their ability to directly reason about, and also
predict geometric quantities such as vectors. The re-
cent work by Fuchs et al. [147] on small molecules and
the success of AlphaFold2 at CASP14 further suggest
promise for network architectures combining equivari-
ance and attention mechanisms. This combination was
also leveraged in the most recent RoseTTAFold network
[148].

6 | CONCLUSION AND OUTLOOK

The success of CASP14 methods in general, and Al-
phaFold2 in particular, leads to the awareness of the
community that highly-accurate protein structure pre-
dictions can be obtained for virtually all well-folded pro-
tein domains, but also that the performance gap be-
tween AlphaFold2 and other methods is significant. Af-
ter CASP13, it took the community about 12 months
to catch up with AlphaFold1. It is uncertain whether we
can expect a similar duration, in part due to the combina-
tion of innovative approaches in AlphaFold2. We should
also not forget that the computational costs engaged by
DeepMind to develop the method, tune its hyperparam-
eters and train it are substantial. A rough estimate for
the cost of training the network architecture using cloud
resources exceeds $20K. This emphasises the need for
a community-wide effort to catch up with AlphaFold2
and/or the design of shortcuts alleviating training costs.

Recently, a first attempt to reproduce DeepMind’s
work was presented. The RoseTTAFold method [148]
is not as accurate as AlphaFold2, but still clearly better
than all earlier methods. Further, it is rather cheap to
train and use, providing hope that computational cost
will not be a burden for large scale application of these
methods. Nonetheless, it is clear to us that the entire
community ought to come together with an open mind
to develop next generation deep learning-based tools
for protein structure prediction. Such an effort would
not only have an impact on the field of structure pre-
diction but also on related fields through the innovation
of novel deep learning methods. Further, there are, as
discussed below, still many challenges in computational
structural biology that are not (yet) solved.

6.1 | The impact of accurate models in
structural biology and bioinformatics
Accurate 3D structures provide valuable information
about protein biological functions. They can be used

by themselves, and also as a starting point for further
computational studies. For some studies, the accu-
racy of theoretical models has been sufficient, for oth-
ers not. The improvements brought by CASP14 will,
therefore, increase the number of suitable targets for
tasks requiring a very high-quality models, such as mu-
tational effects prediction, ligand binding site identifi-
cation, molecular dynamics simulations, drug discovery
and enzymatic reactions modeling, to list a few. They
also open avenues for a tight cross-talk between struc-
ture in silico prediction and experimental determination.
Already in CASP14, models from AlphaFold2 were used
to phase crystals and thereby to solve protein structures.
If this can be extended and done systematically, there
are probably hundreds of unsolved protein crystals that
could benefit from high-quality models. The latter can
also help in the initial steps of single-particle Cryo-EM
reconstructions. However, the full extent of the im-
pact of computational models on structural biology and
other fields will likely depend on their ability to provide
profound novel biological insights, that are generally ac-
cepted by the community. When this will happen de-
pends on how good the models are. One possible start
here could be to examine what additional information
was obtained by the experimental structures, phased by
the AlphaFold2 models, over the models themselves. If
predicted models are accurate enough, one major role
for future structural biology might become to identify
all the chemical compounds (proteins, ligands, lipids, co-
factors) that interact and then use artificial intelligence
methods to predict the structure of this ensemble.

6.2 | Learning the laws of physics?
Most methodologies in computational structural biol-
ogy build on physics’ first principles to describe indi-
vidual atoms and how they interact. These laws are
then used to model larger molecules such as proteins.
One may wonder to what extent the emergent data-
driven approaches that do not explicitly implement de-
tailed physical descriptions of biomolecules are able to
implicitly learn physics laws. For instance, end-to-end
sequence-to-structure deep learning methods do not
explicitly model water molecules, co-factors or partners.
Yet, AlphaFold2 was able to determine the residue side-
chain orientations competent for binding a zinc ion in
the M23 peptidase (target T1056) and also the bound
conformation of a cell wall surface anchor protein form-
ing homo-trimers (target T1080). These conformations
make sense, from a physical point of view, only when
the co-factor or the partner is present. From a data sci-
ence point of view, however, if some proteins are always
found in complex with co-factors or partners, then the
machine will learn to associate the matching sequence
contexts with bound conformations. In other words,
it implicitly learns the physical contexts compatible (at
least in the experimentally data at hand) with a partic-
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ular sequence context. This ability may be further ex-
ploited to discover ligand- or partner-binding sites by
analysing the geometry and physico-chemical proper-
ties of the predicted conformations. Indeed, the ma-
chine may not only be able to predict plausible bound
conformations but also to identify the location of the
"missing" co-factor(s), ligand(s) or partner(s). Next, it can
be asked — is an accurate physical description neces-
sary for other tasks such as binding free energy esti-
mation and mutant stability prediction? The main lim-
itation might be the amount of training data available
to develop such methods, but we certainly do foresee
many attempts to transfer these ideas to other areas of
computational structural biology.

6.3 | Protein disorder, flexibility and
dynamics
Beyond 3D structure, proteins’ dynamical behaviour is
important for their functions. Flexibility is necessary
for binding, enzymatic reactions, transport, and many
more [149, 150]. Many proteins adopt two or more sta-
ble conformations and the equilibrium between these
states has a direct implication on their functioning. For
instance, protein kinases, representing about 2% of the
human proteome, adopt two distinct forms, one inactive
and the other active. These two states are clearly distin-
guishable and can be captured by X-ray crystallography.
As an extreme version of flexibility, intrinsic disorder
is commonly observed in eukaryotic proteins and plays
crucial roles in transient protein-protein interactions as
well as in linkers between domains. Some intrinsically
disordered regions (IDRs) form a stable structure upon
binding to their partners but it is difficult to experimen-
tally identify them.

Co-evolutionary patterns extracted from related se-
quences have proven useful to predict some IDR bound
forms [151] and, in some cases, to untangle a pro-
tein’s multiple functional states [152, 153, 154]. How-
ever, systematically training DL models to predict pro-
tein flexibility, either as a probabilistic structural profile
or as conformationalmulti-modalities, remains very chal-
lenging. Experimental measurements are very scarce
and/or probe conformational states only indirectly. For
instance, crystallographic temperature (B-) factors, al-
though abundant, are not reliable proxies of internal
molecular fluctuations. Indeed, at cryogenic tempera-
tures, the main contribution to B-factors will be crys-
tal lattice disorder. Another option is to use nuclear
magnetic resonance (NMR) data as the ground truth
for structure prediction architectures. However, we
have relatively few NMR structures (6K that contain at
least one protein chain as of 2021), and even fewer col-
lected rawNMRobservations. In principle, one can train
deep models on NMR-inferred 3D reconstructions, of-
ten given as multiple models in the PDB, instead of the
raw NMR data, but this most likely does not reflect the

true flexibility of a model, as it is also dependent on the
number of nuclear Overhauser effect (NOE) constraints
obtained in the NMR experiments. It is also possible
to obtain direct measurements of flexibility by study-
ing amide-protein exchange rates by NMR, but this does
not provide detailed structural information on different
structural states.

Other experimental techniques can also provide in-
formation of flexibility. Small-angle X-ray scattering
(SAXS) can determine a rough low-resolution shape of
the molecules, but it is limited to a few hundred col-
lected datasets. Different structures of (related) pro-
teins solved by X-ray crystallography can shed light
into the different conformational states of some pro-
teins. However, only states that form stable crystal
forms can be measured, limiting the types of flexibility
that can be detected. Moreover, there is an imbalance
in the PDB related to the abundance of pharmaceuti-
cally important proteins in complex with different lig-
ands, or other factors. For example, the inactive state
of kinases is largely underrepresented in the PDB com-
pared to the active state [155]. This may bias data-
driven approaches while, in principle, without any extra-
information about the context (post-translational mod-
ifications, bound ligand...etc), there is no reason why
one state should be favoured over the other one. Cryo-
EM can also provide information about multiple struc-
tural states as well as flexibility. Here, current meth-
ods are often limited to a fixed set of clearly distinguish-
able shapes/conformations present in the sample and
selected during refinement. Most of the flexibility in-
formation comes in the form of missing density, with-
out any details about the flexible regions beyond the
fact that they are flexible. However, we see the com-
munity moving toward the reconstruction of continu-
ous structural heterogeneity, also using DL techniques
[156, 157, 158]. Similar architectures, i.e. generative ad-
versarial networks and variational auto-encoders, have
also been used to generate protein backbones and pro-
duce smooth motions through linear interpolations in
the latent space [159, 160].

Finally, large collections of molecular dynamics (MD)
trajectories [161, 162] may be exploited toward protein
flexibility learning. However, today unbiased MD sim-
ulations are still too short (and likely too inaccurate) to
sample large conformational changes. Therefore, learn-
ing from these simulationswould be limited to small fluc-
tuations around the starting structure. In fact, as we
have seen in the recent CASP structure refinement stud-
ies, MD is only practical if additional restraints are ap-
plied to keep the structure near the initial conformation.
Alternatively, instead of learning from MD trajectories,
deep learning can be used to generate conformational
ensembles obeying the Boltzmann distribution [163].
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6.4 | Protein complexes and interactions
Most proteins do not act alone. They function by in-
teracting with other proteins and molecules. Protein
complexes come in different forms and shapes. A com-
plex can consist of one or several types of molecules,
contain anything from two to hundreds of different pro-
tein chains (as well as other macromolecules), and can
have different degrees of symmetries. Experimentally,
the study of stable protein interactions can be carried
out using various techniques. While many of them only
provide an estimate of the strength or probability of the
interaction, structure determination methods, including
crystallography and Cryo-EM electron microscopy, un-
veil the atomic-resolution details of the assemblies.

Co-evolutionary information can, in principle, also be
used to extract information about protein-protein inter-
actions. Such strategy has been employed to predict
bacterial complexes [164, 165, 166], to single out pairs
of interacting paralogs [167, 23] and to gain insight into
the interactomes of viruses, like HCV [168], or bacte-
ria, like E. coli [24]. We do believe that this is the next
area where end-to-end learning methods will make an
impact. In contrast to the prediction of a single struc-
ture, one limitation here might be to detect a strong
enough signal, since interactions across protein (and do-
main) interfaces are less conserved than intra-domain
contacts [169]. Noticeably, the different types of assem-
blies have different specific properties and may require
the development of different strategies.

Homodimeric complexes are special as the co-
evolutionary signals from a single protein describe
both inter- and intra-protein residue-residue interac-
tions. Current methods assume that only predicted in-
teractions not satisfied within a single protein (given
some error margin) are potential inter-unit connections
although this is not always the case [170]. It is also com-
mon that homomeric protein complexes can adopt dif-
ferent quarternary forms, further complicating the pre-
diction, but wewould expect that extending AlphaFold2
to predict the structure of homodimers (and even homo-
multimers) should not be too difficult, at least as long as
the multimeric formation is conserved within a family.
What might prove to be more difficult is to identify the
multimeric state of a protein without some type of ex-
perimental information. To the best of our knowledge,
this problem is not yet studied.

Heterodimeric complexes create a different chal-
lenge for multiple sequence alignments. In short, here it
is necessary to match the exact pairs of interacting pro-
teins from two lists of homologs. In rare cases, where
there exists exactly one homolog to each of the pro-
teins in a genome, this is trivial. However, many pro-
teins have paralogs that might not all interact with each
other. Some paralogs might interact with the same pro-
tein and some might not. One common approach is to
identify the top hit in each proteome — but this is not
always correct and it significantly reduces the number

of sequences in the MSA. In a small benchmark of 215
proteins [171], the structure for only a handful (5-10%)
of the complexes could be predicted correctly using a
naive approach matching top hits from all genomes [20].
Other methods trying to identify the pairs might work
better but are computationally expensive [167]. It is
also possible that methods using unaligned sequences
will provide a solution to this problem [172]. Assum-
ing that this problem can be solved, we do not see that
there should exist any major obstacle to develop an end-
to-end solution for the modeling of heterodimeric com-
plexes.

Large molecular machines, such as the ribosome,
may represent the most challenging case. They typically
perform very important functions in a cell. Their inter-
action networks may comprise very dense and stable
subnetworks, and also parts where binary or ternary in-
teractions are established at a given time-point. Recent
Cryo-EM structures of large complexes have revealed
that these machines often are dynamic with subunits
coming on and off. Clearly, we are still far away from
being able to fully predict their structure and dynamics.

In the few weeks since the release of the Alphafold2
source code, various groups have shown that the pro-
gram in many cases can produce accurate assemblies,
for most types of complexes. Different strategies seem
to work for different types of complexes. First, many
groups simply added a poly-G linker to join two (ormore)
chains and successfully docked both protein-protein
and protein-peptide complexes. Later, it was discov-
ered that the poly-G linker was not needed, as it was
sufficient to just change the residue numbering. Inter-
estingly, in some cases it seems not to be necessary to
"merge" the alignments by matching orthologous pairs,
instead, the alignments can just be added with gaps at
the end - this strategy seems to be the best for homo-
meric complexes. Exact limits and optimal strategies for
using Alphafold2 for docking will certainly be known in
a short time - but we will have to wait for larger bench-
marks and not just rely on anecdotal stories.

6.5 | Protein mutations and design
Even one single-point mutation can have a dramatic ef-
fect on a protein’s ability to fold and/or perform its func-
tion(s). In parallel to the evolution of CASP, the past
few years have seen a significant improvement in the
field of mutational outcome prediction. By leveraging
the large amounts of available sequence data, several
recent methods have achieved much higher accuracy
than established popular approaches relying on a vari-
ety of sequence and structure-based features [173, 174,
175, 176, 177, 178, 179, 180, 181]. These approaches
make the estimation of the impact of every possible sub-
stitution at every position in a protein-coding genome
computationally feasible [182]. They also hold great po-
tential for guiding protein design and engineering [183,
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184]. The success of these methods lies in their ability
to capture dependencies between protein residues ei-
ther by explicitly estimating inter-residue (pairwise) cou-
plings [178, 179] or by implicitly accounting for global
sequence contexts [174, 176]. In essence, the con-
cepts at play are no different from those implemented
for protein contact prediction, suggesting that muta-
tional outcome prediction, protein structure prediction
and protein design can be unified in a common theoret-
ical framework extracting information from protein se-
quences [173, 172, 176]. Along this line, recent works
have shown that NLP models pre-trained on millions
of unlabelled protein sequences can be effectively fine-
tuned with small amount of labelled data toward accu-
rately predicting mutational effects as well as 3D con-
tacts [185, 184, 186]. Additionally, fully trained DNNs
designed to predict inter-residue distances can be re-
purposed to estimate the impact of mutations on the
3D structure toward guiding the generation of new se-
quences predicted to fold to new structures [187].
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