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In gas-solid confined flows, particle rebound on a rough wall may have a great influence on the macroscopic
properties of both phases. Existing simulation methods use simplified approaches where surface roughness is
modelled as two-dimensional or isotropic. To improve the accuracy of such simulations, an anisotropic virtual
rough wall statistical approach and the corresponding Lagrangian stochastic particle-wall collision model are
proposed. From deterministic simulations of the impact of particles on the anisotropic virtual wall given as cor-
related bi-Gaussian surface, wall-normal vector angle statistics are used for model development. Rebound angle
statistics computed from deterministic simulations and using the proposed stochastic model are in very good
agreement. Incident particles in vertical planes not collinearwith one of the principal directions of the anisotropic
rough surface are bouncing with a mean transverse angle towards the principal direction of lower roughness.
1. Introduction

Wall-confined particle-laden turbulentflows are frequently encoun-
tered in variousfields of industry, such as in the pneumatic conveying of
powders, in fluidized beds and in pollution control devices. In these
flows, confinement with rough boundaries can significantly influence
the properties of both phases [1,2]. The main effect of rough walls in
particle-laden flows is redispersion of the particles. This effect depends
on mechanisms that control particle motion, such as particle inertia,
gravitational settling and inter-particle collisions [3,4].

Machined surfaces are usually rough owing to the manufacturing
process. Depending on the directional properties, surfaces can have an
isotropic roughness distribution (with the same roughness patterns in
different directions) or, more often in engineering, an anisotropic
roughness distribution (with different roughness patterns in different
directions). For example, surfaces with isotropic roughness are
manufactured using electro-chemical machining, abrasive jet machin-
ing and multi-directional surface milling, whereas anisotropic surfaces
are created using turning, shaping and drilling processes [5]. Further,
during exploitation, surfaces can become roughened owing to erosion
or corrosion due to ageing.

In pure fluid turbulent flow, it has been found that surface anisot-
ropy is an important parameter that influences skin friction and anisot-
ropy of Reynolds stresses [6].
ovic).
Owing to the particle incident angles and rough wall geometry,
particle-rough wall interactions are usually three-dimensional (3D).
However, in previous studies, a significant number of simplifiedmodels
for particle-wall interactions in a Lagrangian frame have been proposed
as two-dimensional (2D) [7,8,9,10,11,12,11] and 3D simplified models
[13,14,15]. Improving the models for particle-rough wall interactions
with respect to surface anisotropy can lead to more accurate numerical
predictions of these flows.

Also, more detailed models for particle-rough wall interactions can
support more accurate CFD-based erosion studies used to optimize the
design of piping equipment with respect to erosion or to estimate loca-
tions in pipelines that are most prone to erosion [16,17,18,19,20,21].

In early studies of mechanisms to suspend particles in pneumatic
conveying, Matsumoto and Saito [22] proposed a 2D model for the re-
bound of ellipsoidal particles from a smooth surface and then in a sub-
sequent study [23] a 2D model for the rebound of spherical particles
from rough wall was developed, in which the wall was modelled with
a sine function. It was found that non-sphericity of the particles and
wall roughness lead to an increase in the particle wall-normal rebound
velocity.

In order to account for the irregular particle rebound from a rough
wall, a stochastic 2D virtual wall concept was proposed for the first
time by Tsuji et al. [7]. When the particle centre reaches a distance
half of the particle diameter from the smooth wall boundary, if the par-
ticle incident angle is smaller than a certain value, the actual wall is re-
placed with a smooth “virtual” inclined wall. Further, the impact of a
particle with this virtual wall is calculated according to a hard-sphere
model for particle-wall collisions. Also in that study, parameters that
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determine the virtual wall inclination were empirical and valid only for 
pipe flows with the examined experimental configuration. The model 
was later modified in [24] for the case of particle-laden channel flows.

To include the influence of particle collision with the three-
dimensional wall roughness in numerical Euler-Lagrangian simulation 
of particle-laden flow in a horizontal pipe, in a study of Sommerfeld 
and Zivkovic [25] when particle collided with a wall, a virtual wall 
was generated with an inclination that obeyed Gaussian distribution. 
This virtual wall was then rotated around the vertical axis by an angle 
that obeyed continuous uniform distribution, assuming no preferential 
direction of roughness. If particle after collision with the virtual wall 
did not return into the flow, a virtual wall was generated again and 
the particle-wall collision process was repeated.

The results of experimental investigations of the rebound of particles 
with different sizes/shapes from channel walls made of different mate-
rials were presented by Sommerfeld and Huber [8]. It was found that at 
large incident angles, the roughness inclinations seen by the particles 
obey a Gaussian distribution with zero mean and standard deviation 
that depends on the wall roughness structure and the particle diameter. 
At low incident angles, due to the incident perspective, the particles 
“see” positive roughness inclinations with a higher possibility than neg-
ative inclinations, which is called the shadow effect. To take this effect 
into account, a modified Normal distribution was proposed for the 
roughness angles seen by the particles. The application of this distribu-
tion gave simulated particle rebound angles that were in good agree-
ment with those from experimental measurements, except that the 
predicted probability density function (PDF) of small rebound particle 
angles was significantly higher compared with the experimental results.

The reason for this discrepancy is that in the proposed model it is 
neglected that if a particle has a small positive rebound angle, it can col-
lide again with some near-wall asperity and return to the flow with a 
higher rebound angle, as described by Konan et al. [26].

Application of the stochastic model of Sommerfeld and Huber [8] for  
the generation of rough wall inclinations seen by particles in the RANS-
DPS of particle-laden flows through pipes [27] and channels [2] enabled  
reasonable agreement of the particle mean velocity and rms of particle 
velocity fluctuations with the results of experimental measurements.

Squires and Simonin [13] studied the influence of wall roughness on 
disperse phase properties in the LES-DPS of vertical particle-laden tur-
bulent channel flow. The rebound of particles from smooth and 3D 
rough walls was treated as elastic and, to account for particle rebound 
from a rough wall, a stochastic procedure was used. In that procedure, 
virtual walls were determined with a normal vector n = [sin(ϕ) cos  
(θ),cos(ϕ),sin(ϕ) sin  (θ)], where the angles ϕ and θ obey a Gaussian dis-
tribution with zero mean and standard deviations Δγ. If after 
rebounding from the wall the particle does not return to the flow, sam-
pling of the virtual wall is repeated.

Using the property that the PDF of the rebound angles of particles 
that undergo only one collision with a wall is nearly the same as the 
PDF of the rebound angles of particles that experience multiple 
particle-wall collisions before their return to the flow, a stochastic pro-
cedure to model multiple particle-wall collisions was proposed by 
Konan et al. [9].

Konan et al. [28] examined the influence of wall roughness on the 
dispersed phase in particle-laden turbulent channel flow in a DPS-DES 
frame using both a shadow effect model and a multiple particle-rough 
wall collision model. Comparing the results of these simulations, it 
was shown that the shadow effect model alone makes the effects of 
wall roughness less pronounced since a large number of grazing parti-
cles is generated. To increase the dispersion induced by wall roughness 
and to obtain better agreement with experimental results, the statistical 
characteristic of roughness should be increased in the shadow effect 
model when neglecting the multiple collision effect.

A stochastic procedure in a Lagrangian framework to account for 3D 
particle rebound from an isotropic rough surface was proposed by 
Radenkovic and Simonin [29]. Using a deterministic simulation of the
3D particle impact on such a surface, it was found that the particle re-
bound angle in the bouncing plane and the probability that a particle
makes only one rebound before returning to the flow are in agreement
with the 2D stochastic approach of Konan et al. [9]. The transverse devi-
ation angle obeys a zero mean Normal distribution with a standard de-
viation that increases with increase in the particle vertical incident
angle.

In this paper, the interaction of particles with anisotropic walls is
analysed andmodelled as an extension of the 2Dmodels of Sommerfeld
and Huber [8] and Konan et al. [9] and the 3Dmodel for the interaction
of particles with isotropic walls of Radenkovic and Simonin [29]. The
fluid influence on particle-wall collision processes is neglected in this
study.

In order to support the derivation of a stochastic procedure for
particle-roughwall interactions, deterministic simulations of the impact
of particles on a rough wall are presented. These simulations enable us
to isolate and study the effect of particle-wall interactions indepen-
dently of other mechanisms that influence particle motion. These simu-
lations are carried out from the perspective of the particle centre: wall
inclination seen by the particle at the point of true particle-wall contact
is assumed to be equivalent to the virtual wall inclination seen by the
particle centre at the moment when the particle reaches the true wall
[29].

The paper is organized as follows. In Section2 the generation of a vir-
tual anisotropic rough wall and the statistical characteristics of the cor-
responding virtual wall normal vector are described. The procedure for
the deterministic simulation of particle impact on a rough wall is pre-
sented in Section 3. Also in that section a statistical analysis of particle
rebound angles is carried out and virtual wall normal vector angles
are modelled. As a result, a stochastic procedure for the calculation of
3D particle rebound from an anisotropic rough wall is obtained and
the corresponding predictions of virtual wall normal vector angles
viewed by incident particles are validated from the deterministic simu-
lations results. The particle rebound angles obtained from available ex-
perimental results and deterministic and stochastic simulations are
compared in Section 4.

2. Generation and properties of a virtual anisotropic rough wall
surface

2.1. Description of Gaussian random rough surface generation

An anisotropic Gaussian rough surface, used here as a virtual rough
wall, is generated according to Garcia and Stoll [30], implemented and
freely available at [31].

To create this rough surface, random uncorrelated height values are
generated at given Cartesian mesh nodes (x′,z′) in the x-z plane, obey-
ing a Normal distribution with zero mean and standard deviation
equal to the rms roughness height h. To achieve correlation length scales
in the x and z principal directions, cL, x and cL, z, respectively, a convolu-
tion of distribution yu(x′,z′) is performed:

y x, zð Þ ¼
Zþ∞

−∞

Zþ∞

−∞

f x−x0, z−z0ð Þyu x0, z0ð Þdx0dz0 ð1Þ

where

f x, zð Þ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πcL,xcL,z

p exp −
2x2

c2L,x
−

2z2

c2L,z

!
ð2Þ

represents the anisotropic Gaussian filter.
Eq. (1) is calculated using a fast Fourier transform algorithm. An ex-

ample of the anisotropic surface generatedwith this procedure is shown
in Fig. 1. To achieve proper statistics, characteristic surface length scales



Fig. 1. Virtual anisotropic rough wall with rms roughness height h = 0.37μm and
correlation length scales in the x and z principal directions of cL, x = 12μm and cL, z =
4μm, respectively. The mesh resolution is δx = δz = 1μm.
have to be sufficiently larger than the corresponding correlation length
scales [31].

2.2. Characterization of the 3D virtual anisotropic roughwall normal vector

Let us introduce angles (ξ,η,ζ) ∈[0,π] x[0,π/2]x[0,π], between the
normal vector n of a virtual rough wall and direct basis vectors along
the coordinate axes (Fig. 2).

The virtual normal vector n may be written as

n ¼ cos ξð Þ iþ cos ηð Þ jþ cos ζð Þk ð3Þ

where i, j and k are direct basis vectors in the direction of the x, y and z
coordinate axes, respectively.

Let us assume that the angles ξ and ζ are random variables with
mean values μξ and μζ and fluctuations ξ′ and ζ′, respectively:

ξ ¼ μξ þ ξ0, ζ ¼ μζ þ ζ 0 ð4Þ

and let us introduce standard deviations Δξ and Δζ (or variances Δξ2

and Δζ2), the covariance Cov(ξ,ζ) and the correlation coefficient ρξζ:

ρξζ ¼ Cov ξ, ζð Þ
ΔξΔζ

ð5Þ

In the frame of low roughness approximation studied here we as-
sume that the standard deviations of angles ξ and ζ (in radians) satisfy:

Δξ≪1 and Δζ≪1 ð6Þ

Let us introduce angles ξ ∗, η ∗ and ζ ∗ that the virtual normal vector n
forms with the x ∗, y ∗ and z ∗ axes, respectively, of the reference frame
Fig. 2. Angles of the virtual wall normal vector nwith direct basis vectors along the coor-
dinate axes of reference frameOxyz. Rotation of reference frameOxyz around the y-axis by
an angle β ∗ ∈ [−180°,180°].
Ox ∗y ∗z ∗ obtained by the rotation of reference frame Oxyz around the
y-axis by an angle β ∗ ∈ [−180°,180°] (Fig. 2). So, for β ∗ = 0∘, it follows
ξ ∗ = ξ, η ∗ = η and ζ ∗ = ζ.

To examine the properties of these virtual wall normal vector angles
along different x ∗ directions of numerically generated surface, scatter
plots of angles (ξ ∗, η ∗), (ζ ∗, ξ ∗) and (ζ ∗, η ∗) are shown in Fig. 3 for β ∗

∈ [0°,90°] and the corresponding correlation coefficients are given in
Table 1.

The numerical surface examined has the equal length L = 5mm in
the x and z direction, number of computational nods is 5001, rms rough-
ness height is h = 0.37μm and correlation length scales in the x and z
directions are cL, x =12μm and cL, z =4μm, respectively. Discretization
points along direction defined with β ∗, where the angles ξ ∗, η ∗ and ζ ∗

are calculated, are distanced with step around 0.1μm. In these points,
virtual wall normal vector is calculated as unit vector normal to triangu-
lar plane formed with surrounding heights in the computational nods
and virtual normal vector angles are:

ξ∗ ¼ arccos nx∗ð Þ η∗ ¼ arccos ny∗
� �

ζ ∗ ¼ arccos nz∗ð Þ ð7Þ

The calculations of virtual wall normal vector angles ξ ∗ and ζ ∗ of nu-
merically generated surface show that these two angles obey Normal
distributions with mean values μξ ∗ = μζ ∗=π/2 along any direction de-
termined with the angle β ∗.

Table 1 shows that the correlation coefficients of the angles ξ ∗ and
ζ ∗,

ρξ∗ζ ∗ ¼
Cov ξ∗, ζ ∗ð Þ
Δξ∗ Δζ ∗ ð8Þ

are nearly equal to zero when coordinate axes x ∗ and z ∗ (Fig. 2) are col-
linear with principal directions of roughness, i.e. the angle β ∗ ∈ {0°,90°}
(or in opposite directions β ∗ ∈ {−90°,180°}). In contrast, when coordi-
nate axes x ∗ and z ∗ are non-collinear with principal directions of rough-
ness, correlation coefficients of the angles ξ ∗ and ζ ∗ are different from
zero.

In the frame of low roughness approximation given by Eq. (6), the
variances and covariance of ξ ∗ and ζ ∗ for any β ∗ valuemay be computed
directly in terms of the variances and covariance of ξ and ζ, correspond-
ing to β ∗ =0°, using the relations for the rotation of a frame Oxyz by an
angle β ∗ around the y-axis (Fig. 2),

Δξ∗2 ¼ cos 2 β∗ð ÞΔξ2 þ sin 2 β∗ð ÞΔζ2

Δζ ∗2 ¼ sin 2 β∗ð ÞΔξ2 þ cos 2 β∗ð ÞΔζ2

Cov ξ∗, ζ ∗ð Þ ¼ sin β∗ð Þ cos β∗ð Þ Δξ2−Δζ2
h i ð9Þ

Anisotropic roughness imposes the condition that variances of the
angles ξ ∗ and ζ ∗ are different, Δξ ∗2 ≠ Δζ ∗2.

Table 1 shows that the agreement of standard deviations Δξ ∗ and
Δζ ∗ and correlation coefficient ρξ ∗ζ ∗ given by Eq. (8) calculated with
variances Δξ ∗2 and Δζ ∗2 and covariance Cov(ξ ∗,ζ ∗) from Eq. (9) and
the corresponding values calculated from the numerically generated
surface, is excellent, for different directions defined with the angle β ∗.

Based on the values of the correlation coefficients ρξ ∗ζ ∗ and the
shape of scatter plots, it can be concluded that the angles ξ ∗ and ζ ∗ are
uncorrelated for principal directions of roughness whereas for direc-
tions non-collinear with principal directions of roughness, the angles
ξ ∗ and ζ ∗ are correlated.

Fig. 3 shows that the angles η ∗ and ξ ∗ as well as the angles η ∗ and ζ ∗

are conditionally dependent variables although the corresponding cor-
relation coefficients are nearly equal to zero. The statistical dependence
measured between these random variables is due to the fact that they
are linked analytically by the equation:

cos 2 ξ∗ð Þ þ cos 2 η∗ð Þ þ cos 2 ζ ∗ð Þ ¼ 1 ð10Þ



Fig. 3. Scatter plots of virtual wall normal vector angles ξ ∗, η ∗ and ζ ∗ along the direction x ∗ defined with angle β ∗ for the numerically generated surface. Values on the axes are in degrees.

Table 1
Virtual wall normal vector angle characteristics calculated from a numerically generated
virtual wall and statistical model Eq. (9) in a rotated frame of reference around the y axis
by an angle β ∗ with respect to principal directions x and z. Values of standard deviations
Δξ ∗ and Δζ ∗ are in degrees, whereas correlation coefficients ρξ ∗ζ ∗, ρξ ∗η ∗ and ρη ∗ζ ∗ are
dimensionless.

Numerically generated surface Statistical model

β ∗ Δξ ∗ Δζ ∗ ρξ ∗ζ ∗ ρξ ∗η ∗ ρη ∗ζ ∗ Δξ ∗ Δζ ∗ ρξ ∗ζ ∗

0° 2.32 7.59 0.05 0.03 −0.02 2.50 7.50 0.00
30° 4.38 6.09 −0.73 0.02 0.04 4.53 6.53 −0.76
60° 6.66 4.30 −0.73 −0.06 0.00 6.53 4.53 −0.76
90° 7.67 2.45 −0.08 0.00 0.03 7.50 2.50 0.00
2.3. Statistical modelling of the vector angles ξ ∗ and ζ ∗ for any given
reference frame rotation angle β ∗

According to deterministic simulation results, in the frame of low
roughness given by Eq. (6), we can assume that virtual normal vector
angles ξ ∗ and ζ ∗ are randomvariables, (ξ ∗,ζ ∗)∈ [0,π]2 that obey a Bivar-
iate Normal Distribution:

Pξ∗ζ ∗ θ,φð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

ξ∗ζ ∗

q
Δξ∗ Δζ ∗

exp −
z2ξ∗ζ ∗

2 1−ρ2
ξ∗ζ ∗

� �
2
4

3
5, θ,φð Þ∈ 0,π½ �2

ð11Þ



Fig. 5. Angles of particle incident velocity Up
− and angles of particle rebound velocity Up

+.
Unit virtual wall normal vectors n and nγ are defined in Eqs. (3) and (17), respectively.
where

z2ξ∗ζ ∗ ≡
θ−μξ∗
� �2

Δξ∗2
−

2ρξ∗ζ ∗ θ−μξ∗
� �

φ−μζ ∗
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δξ∗2Δζ ∗2

q þ
φ−μζ ∗
� �2

Δζ ∗2

and ρξ ∗ζ ∗ is the correlation coefficient of angles ξ ∗ and ζ ∗ given by
Eq. (8), mean values μξ ∗ = μζ ∗ = π/2 and variances Δξ ∗2 and Δζ ∗2 and
covariance Cov(ξ ∗,ζ ∗) follow from Eq. (9).

Themarginal distributions of angles ξ ∗ and ζ ∗ then obey Normal dis-
tributions, given by,

Pξ∗ θð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔξ∗2

q exp
− θ−μξ∗
� �2
2Δξ∗2

2
64

3
75, θ∈ 0,π½ � ð12Þ

and

Pζ ∗ φð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔζ ∗2

q exp
− φ−μζ ∗

� �2
2Δζ ∗2

2
64

3
75, φ∈ 0,π½ � ð13Þ

From numerical calculations, it is confirmed that angles ξ ∗ and ζ ∗

obey Normal distributions Eqs. (12) and (13), respectively, with mean
values μξ ∗ = μζ ∗ = π/2 and variances Δξ ∗2 and Δζ ∗2 that follow from
Eq. (9).

2.4. Link between anisotropic surface parameters and standard deviations
of virtual wall normal vector angles

For a one-dimensional Gaussianwall roughness profile, as described
by Tsang et al. [32], it holds that

σ ¼
ffiffiffi
2

p h
cL

in radiansð Þ ð14Þ

where σ is the rms of the wall roughness inclination slope, h is the rms
roughness height and cL represents the correlation length scale of that
profile.

Comparison of Eq. (14) with rms of wall roughness inclination
slopes along the x and z principal directions is shown in Fig. 4a and
Fig. 4b, respectively. These slopes are calculated in every triangular
mesh cell as sx = − nx/ny and sz = − nz/ny, respectively. As can be
seen, the agreement between Eq. (14) and values calculated from the
generated surface is very good.
Fig. 4.Comparison of Eq. (14)with the rms ofwall roughness inclination slopes and standardde
dimensionless and values on the ordinate axis are in radians.
It can be seen from Fig. 4 that agreement of Eq. (14) and the virtual
wall normal vector angle standard deviationsΔξ andΔζ calculated from
the numerically generated surface is excellent in the case of low rough-
ness given by Eq. (6). Therefore, up to approximately 0.13rad (7.5°), it
holds that,

Δξ ¼
ffiffiffi
2

p h
cL,x

Δζ ¼
ffiffiffi
2

p h
cL,z

ð15Þ

3. Numerical simulation of 3D elastic bouncing of particles on an
anisotropic rough wall and statistical analysis of results

3.1. Description of numerical simulation

The goal of deterministic simulations of 3D ideally elastic bouncing
of particles on an anisotropic roughwall is to give the statistical proper-
ties of particle rebound angles αp

+ and βp
+ and of virtual wall normal

vector angles ξ and ζ “seen” by the particles, for different particle inci-
dent angles αp

− and βp
− (Fig. 5). Particle incident angles are defined by

α−
p ¼ arcsin

v−p
∣U−

p ∣

 !
, α−

p ∈ −π=2, 0½ �

β−
p ¼ − sgn w−

p

� �
arccos

u−
p

∣U−
p ∣ cos α−

p

� �
0
@

1
A, β−

p ∈ −π,π½ �

In this section, particle rebound characteristics are calculated for two
surfaces determined with virtual normal vector angle standard devia-
tions (Δξ,Δζ) = (2.5 ° ,7.5°) and (Δξ,Δζ) = (7.5 ° ,2.5°).

The procedure of the numerical simulation can be summarized as
follows. Coordinates x and z of the particle centre are sampled from a
viations of virtual normal vector anglesΔξ (Fig. a) andΔζ (Fig. b). Values on the abscissa are



Fig. 6. PDFs of the final particle rebound angle αp
+ before their return to the flow, computed from deterministic simulations for anisotropic walls characterized by normal vector angle

standard deviations Δξ and Δζ, for particle vertical incident angle αp
− = − 2.5°, −12.5° or −32.5° and transverse incident angle βp

− = 0° (left column) or 60° (right column). Angle
αp
+ is in degrees.
Uniform distribution, whereas the y coordinate of the particle centre is
slightly higher than the highest asperity of the sampled virtual wall.
Under prescribed particle incident angles, the first point of intersection
of the particle centre trajectory and the virtual wall is found. At this in-
tersection point, the global coordinate system (x,y,z) is rotated to the
local coordinate system (x′,y′,z′), such that the virtualwall normaln co-
incides with the y' axis. Equations for the ideally elastic rebound of par-
ticles are then applied: u′p+ = u′p−; v′p+ = − v′p−; wp

+ = w′p− (particle
incident characteristics are denoted with superscript − and particle re-
bound characteristics are denotedwith superscript +) and subsequently
the obtained rebound velocities are rewritten in the global coordinate
170
system. The particle centre is further tracked and if the particle centre
after rebound intersects the virtual wall again, i.e. there are multiple
particle-wall collisions, the described procedure for the calculation
of particle rebound is repeated. The particle centre is tracked until
it does not pass the highest asperity in the sampled virtual wall
domain.

Results of performed simulations have shown that tracking around
10,000 particle centres is sufficient to obtain converged statistics. Con-
sidering that rebound of particles from the wall is calculated as ideally
elastic, the statistics obtained are independent of the value of the inci-
dent velocity norm.



Fig. 7. PDFs of the transverse deviation angle βp
+ − βp

− in the case of the first (1C) and the final (MC) rebound of particles from the wall before their return to the flow, computed from
deterministic simulations for anisotropic walls characterized by normal vector angle standard deviationsΔξ andΔζ, for particle vertical incident angle αp

−=− 2.5°,−12.5° or−32.5° and
transverse incident angle βp

− = 0° (left column) or 60° (right column). Angle βp
+ − βp

− is in degrees.
3.2. Statistical analysis of 3D particle rebound from an anisotropic rough
wall

PDFs of particle rebound angles αp
+ for different particle incident an-

gles αp
− and βp

− are shown in Fig. 6. At large particle vertical incident an-
glesαp

− (∣αp
− ∣≫Δξ andΔζ), the rebound angleαp

+ obeys a nearlyNormal
distributionwith amean value equal to the absolute value of the particle
vertical incident angle, μαp

+=∣αp
−∣. As the absolute value of vertical inci-

dent angle ∣αp
−∣ decreases, mean value μαp

+ of particle rebound angle αp
+

also decreases, but slower, such that at low particle vertical incident an-
gles αp

− (of the order of Δξ and Δζ), μαp
+ becomes larger than ∣αp

−∣.
This behaviour was pointed out by previous studies and is due to

several effects. On one hand, by definition, the final bouncing angles of
particle returning to the flow takes only positive values. So, the PDF
must be truncated forαp

+ less than zero andmay not be a simpleNormal
distribution. On the other hand, Sommerfeld and Huber [8] show that
the so-called shadow effect will modify the virtualwall normal distribu-
tion angle seen by particles with small vertical incident angles and that
will change the bouncing angles statistics. Finally, Konan et al. [9] show
that particles bouncing with small incident angles may undergo multi-
ple collisions with the wall which will also change the final distribution
of the bouncing angles of the particles when they return to the flow.

Fig. 7 shows PDFs of the transverse deviation bouncing angle βp
+ −

βp
− for a particle transverse incident angle βp

− equal to 0° or 60°. For
βp
−=0∘, PDFs obeyNormal distributionswith zeromean and a standard

deviation that increases with increase in the absolute value of the



particle vertical incident angle ∣αp
−∣. This behaviour is also characteristic 

of the PDF of transverse deviation bouncing angle βp
+ − βp

− in the case of 
particle rebound from a 3D isotropic rough wall. A stochastic model for 
such a rough wall was proposed by Radenkovic and Simonin [29]. For 
particle transverse incident angle βp

− = 60°, PDFs of transverse devia-
tion angles βp

+ − βp
− are not symmetric and do not obey a Normal dis-

tribution. For these cases, the mean values of these distributions are of 
the order of a few degrees and the standard deviations of these distribu-
tions increase with increase in the absolute value of the particle vertical 
incident angle ∣αp

−∣.
For all particle transverse incident angles βp

− examined (Fig. 7), there 
is excellent agreement between the PDF of the transverse deviation 
angle after the first rebound of the particle from the wall and the PDF 
of the transverse deviation angle after the final rebound of the particle 
from the wall before its return to the flow, which suggests that the
Fig. 8. PDFs of thefirst vector angle ξ seen by incident particles computed from deterministic sim
and Δζ, for particle vertical incident angle αp

− = − 2.5°, −12.5° or−32.5° and transverse inci
PDF of the transverse deviation angle after particle rebound from an an-
isotropic rough wall is not significantly influenced by multiple particle-
wall collisions.

As can be seen from Fig. 7, when particles rebound from an aniso-
tropic rough wall and the particle transverse incident angle is βp

− =
60°, forwhich the particle vertical incident plane is not collinearwith ei-
ther of the two principal directions of roughness, after rebounding the
particles are “pushed” towards the principal direction of low roughness:

• for virtual wall normal vector angle standard deviations Δξ = 2.5∘ <
Δζ = 7.5∘, after rebounding from wall the particles are “pushed” to-
wards the direction that corresponds to βp

− = 0∘. In this case, the
mean particle final transverse rebound angle βp

+ before the particles
return to themain flow is smaller than the particle transverse incident
angle βp

−.
ulations for anisotropicwalls characterized by normal vector angle standard deviationsΔξ
dent angle βp

− = 0° (left column) or 60° (right column). Angle ξ is in degrees.



Fig. 9. PDFs of thefirst vector angle ζ seen by incident particles computed fromdeterministic simulations for anisotropicwalls characterized by normal vector angle standard deviationsΔξ
and Δζ, for particle vertical incident angle αp

− = − 2.5°, −12.5° or−32.5° and transverse incident angle βp
− = 0° (left column) or 60° (right column). Angle ζ is in degrees.
• for virtual wall normal vector angle standard deviations Δξ = 7.5° >
Δζ = 2.5°, after rebounding from wall the particles are “pushed” to-
wards the direction that corresponds to βp

− = 90°. In this case, the
mean particle final transverse rebound angle βp

+ before the particles
return to the main flow is larger than the particle transverse incident
angle βp

−.

3.3. Statistical analysis of the first virtual wall normal vector “seen” by
incident particles

The angles ξ and ζ of the first virtual normal vector “seen” by inci-
dent particles for different particle vertical and transverse incident an-
gles, αp

− and βp
−, respectively, are shown in Figs. 8 and 9. As can be
seen, at large particle vertical incident angles αp
− (∣αp

− ∣ ≫ Δξ and Δζ),
angles ξ and ζ obey Normal distributions with nearly zero mean and
standard deviationsΔξ and Δζ and variances Var(ξ) and Var(ζ), respec-
tively. Such values of standard deviations Δξ and Δζ and variances Var
(ξ) and Var(ζ), are the same as ones calculated from virtual wall normal
vector angles ξ and ζ, Section 2.2, Var(ξ) = Δξ2 and Var(ζ) = Δζ2.

In contrast, as the absolute value of the particle vertical incident
angle ∣αp

−∣ decreases, due to the shadow effect pointed out by
Sommerfeld and Huber [8], for the transverse incident angle βp

− = 0°
the distribution of angle ξ changes whereas the distribution of angle ζ
remains the same. For the transverse incident angle βp

−=90° the distri-
bution of angle ζ changes whereas the distribution of ξ remains the
same and for transverse incident angles βp

−=30° and 60°, the distribu-
tions of both angles ξ and ζ change shape.



Pξζ θ,φð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δξ2Δζ2

q exp
− θ−μξ

� �2
2Δξ2

þ
− φ−μζ

� �2
2Δζ2
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with (θ,φ) ∈ [0,π]2, mean values μξ = μζ = π/2 and variances Δξ2 and
Δζ2, respectively.

Therefore, for these large particle vertical incident angles αp
−, angles

ξ and ζ could be directly sampled fromEq. (16). However,when thepar-
ticle vertical incident angle decreases, due to the incident perspective,
particles do not “see” with equal probability the lee and luv sides of
roughness, and as Figs. 8 and 9 show, the distributions of angles ξ and
ζ change and a specific approach needs to be developed.

3.4. Modelling the first virtual wall normal vector “seen” by particles

To account for the shadow effect in the 3Dmodelling of the first vir-
tual wall normal vector seen by incident particles, Radenkovic and
Simonin [29] introduce the unit normal vector nγ (Fig. 5):

nγ ¼ − sin γð Þt−p þ cos γð Þ j, γ∈ −
π
2
,
π
2

h i
ð17Þ

where tp− is the unit vector collinear with the projection of the incident
particle velocity Up

− on the horizontal plane:

t−p ¼ cos β−
p

� �
i− sin β−

p

� �
k, β−

p ∈ −π,π½ � ð18Þ

Then, it is imposed that the scalar projection of the unit vector nγ onto
theparticle incident velocityUp

− is equal to that of theunit normal vectorn,

U−
p ⋅nγ ¼ U−

p ⋅n ð19Þ

So, the shadow effect realisability condition for virtual wall normal
vector n “seen” by incident particles with velocity Up

−, given by Up
− ⋅ n

< 0 and the corresponding statistical approach developed by
Sommerfeld and Huber [8] may be applied on unit vector nγ which be-
longs to the particle incident plane.

In the frame of low roughness approximation, as shown by
Radenkovic and Simonin [29], from the Eq. (19) follows the first order
solution for the angle γ:

γ ¼ cos β−
p

� �
ξ0− sin β−

p

� �
ζ 0 ð20Þ

To compute virtual wall normal vector n, the additional angle γ ∗ is
defined in [29] as:

γ∗ ¼ sin β−
p

� �
ξ0 þ cos β−

p

� �
ζ 0 ð21Þ

such that the transverse virtual wall normal vector component is
written

n−nγ ¼ −γ∗ sp ð22Þ

where sp = tp− × j is the unit vector orthogonal to the particle incident
plane.

The angle γ ∗ allows accounting for the particle transverse rebound
effect when the virtual wall normal vector n does not belong to the par-
ticle incident plane.

The influence of the shadow effect is less pronounced for the distri-
butions of angle ξ for a virtual wall with normal vector angle deviations 
Δξ =2.5° and  Δζ = 7.5° and the distributions of angle ζ for a virtual wall 
with normal vector angle deviations Δξ = 7.5° and Δζ = 2.5°.

At large particle vertical incident angles αp
− (∣αp

− ∣ ≫ Δξ and Δζ), vir-
tual wall normal vector angles ξ and ζ are random variables obeying a 
Bivariate Normal Distribution:
Anglesγ andγ ∗, with definitions in Eqs. (20) and (21), represent vir-
tualwall inclination angles defined in the particle incident plane and the
orthogonal plane, respectively.

Finally, the virtual normal vector angles may be computed as,

ξ ¼ cos β−
p

� �
γ þ sin β−

p

� �
γ∗ þ π

2

ζ ¼ − sin β−
p

� �
γ þ cos β−

p

� �
γ∗ þ π

2

ð23Þ

Using Eqs. (3) and (23), η may be written as

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ γ∗2

q
ð24Þ

At large particle vertical incident angles αp
− (∣αp

− ∣ ≫ Δξ and Δζ), the
shadoweffect is negligible and according to Eqs. (9), (11), (20) and (21),
the anglesγ andγ ∗ are assumed toobey aBivariateNormalDistribution:

Pγγ∗ θ,φð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

γγ∗

q
ΔγΔγ∗

exp −
z2γγ∗

2 1−ρ2
γγ∗

� �
2
4

3
5 ð25Þ

where

z2γγ∗ ≡
θ−μγ

� �2
Δγ2 −

2ργγ∗ θ−μγ

� �
φ−μγ∗

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δγ2Δγ∗2

p
þ

φ−μγ∗

� �2
Δγ∗2 , θ,φð Þ∈ −

π
2
,
π
2

h i2

themean values of angles γ and γ ∗ are zero, μγ= μγ ∗ =0, the variances
and covariance are defined by

Δγ ¼ cos 2 β−
p

� �
Δξ2 þ sin 2 β−

p

� �
Δζ2

Δγ∗ ¼ sin 2 β−
p

� �
Δξ2 þ cos 2 β−

p

� �
Δζ2

Cov γ,γ∗ð Þ ¼ sin β−
p

� �
cos β−

p

� �
Δξ2−Δζ2
h i ð26Þ

and ργγ ∗ is the correlation coefficient of angles γ and γ ∗:

ργγ∗ ¼ Cov γ,γ∗ð Þ
ΔγΔγ∗ ð27Þ

At large particle vertical incident angles αp
− (∣αp

− ∣ ≫ Δξ and Δζ), the
stochastic modelling of the random angles γ and γ ∗ obeying the distri-
bution function Eq. (25) may be carried out according to the following
process,

• Angle γ is a sample according to the Normal distribution:

Pγ θð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔγ2

p exp
−θ2

2Δγ2

" #
, θ∈ −

π
2
,
π
2

h i
ð28Þ

• Angle γ ∗ is a sample from the Normal distribution:
Pγ∗ φjθ ¼ γð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVar γ∗jθ ¼ γð Þp exp −

φ−μγ∗ ∣θ¼γ

� �2
2Var γ∗jθ ¼ γð Þ

2
64

3
75 ð29Þ

where

φ∈ −
π
2
,
π
2

h i
, μγ∗∣θ¼γ ¼ Δγ∗ργγ∗ γ

Δγ
,

Var γ∗jθ ¼ γð Þ ¼ 1−ρ2
γγ∗

� �
Δγ∗2

ð30Þ



Fig. 10. PDFs of thefirst angleγ seen by incident particles computed fromdeterministic simulations (DS) for anisotropicwalls characterized by normal vector angle standard deviationsΔξ
andΔζ and using the effective Sommerfeld distribution (ES) given by Eqs. (31) and (32)with Δγ given by Eq. (26), for particle vertical incident angleαp

−=− 2.5°,−12.5° or−32.5° and
transverse incident angle βp

− = 0° (left column) or 60° (right column). Angle γ is in degrees.
From Eq. (30), if ργγ ∗ ≠ 0, then μγ ∗∣θ=γ is a linear function of angle γ.
Also if ργγ ∗ ≠ 0, the variance of the conditional distribution of γ ∗, given
angle γ, is smaller than the variance of the marginal distribution of γ ∗.

To account for the shadow effect whichmay become very important
for small particle vertical incident angles αp

− (of the order ofΔξ andΔζ),
we extend the 3D isotropic approach proposed by Radenkovic and
Simonin [29] assuming that the angle γ is obeying an effective distribu-
tion givenby Sommerfeld andHuber [8] conditioned by the particle ver-
tical incident angle αp

−:
if γ ≤ αp
−:

Peff γjα−
p

� �
¼ 0 ð31Þ

if γ > αp
−:

Peff γjα−
p

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πΔγ2
p sin α−

p −γ
� �

sin α−
p

� � exp −
γ2

2Δγ2

� �
g α−

p ,Δγ
� �

ð32Þ



Fig. 11. PDFs of the first angle γ ∗ seen by incident particles, conditioned by the angle γ. PDFs are computed from deterministic simulations (DS) and using statistical model (SM) given by
Eq. (29) for anisotropic walls characterized by normal vector angle standard deviations Δξ= 2.5° and Δζ = 7.5° (left column) and Δξ= 7.5° and Δζ = 2.5° (right column), for particle
vertical incident angle αp

− = −2.5°, −12.5∘ or−32.5° and transverse incident angle βp
− = 0°. Angle γ ∗ is in degrees.
with

g α−
p ,Δγ

� �
¼ 1=

Z π=2

α−
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔγ2

p sin α−
p −γ

� �
sin α−

p

� � exp −
γ2

2Δγ2

� �
dγ ð33Þ

where Δγ follows from Eq. (26).
The angle γ ∗ is obeying the distribution given by Eq. (29), condi-

tioned by the angle γ.
Verification of the proposed statistical model, given by Eqs. (29),

(31) and (32), is shown in Figs. 10, and 11.
PDFs of the first angle γ computed with deterministic simulation

and the effective Sommerfeld distribution Eqs. (31) and (32), for
different particle incident angles αp
− and βp

− are shown in Fig. 10.
The agreement between the PDFs shown is very good for all particle
incident angles. It can be seen that at large particle vertical incident
angles αp

− (∣αp
− ∣ ≫ Δξ and Δζ), angle γ obeys a Normal distribution

with variance Var(γ) = Δγ2 given by Eq. (26). As the absolute value
of angle αp

− decreases, the distribution of angle γ is modified owing
to the shadow effect.

For incident particles in a vertical plane alignedwith one of the prin-
cipal directions of anisotropic rough surface, βp

− ∈ {0°,90°} (or in oppo-
site directions βp

− ∈ {−90°,180°}) or in the case of isotropic rough
surface, the proposed assumption concerning the conditional distribu-
tion of γ ∗ according to γ leads to an effective PDF of γ ∗ which is not de-
pending on αp

− and is simply the zero mean Normal distribution with



Fig. 12. Probability that particles with bouncing angle αp
+ experience only one particle-wall collision computed from deterministic simulations and using the analytical model 2DRWCM

given by Eq. (34) from Konan et al. [9] with ψ=2 and Δγ(βp
+) computed from Eq. (35). Deterministic simulations are carried out for different particle incident angles αp

− and βp
− and for

two different anisotropic roughness distributions characterized by the virtual normal angle standard deviations Δξ and Δζ.

Fig. 13. Stochastic procedure for calculation of the 3D rebound of a particle from an
anisotropic rough wall in a Lagrangian framework.
variance Var(γ ∗) = Δγ ∗2 given by Eq. (26). This result is confirmed in
Fig. 11 showing the PDF of γ ∗ conditioned by the angle γ, computed
from the deterministic simulation and statistical model Eq. (29) with
different particle incident angles αp

− and βp
− = 0° or 60°.

Therefore, for any particle vertical incident angle αp
−, the stochastic

modelling of the random angles γ and γ ∗ may be carried out according
to the following process:

• Angle γ is sampled according to the effective Sommerfeld distribution
given by Eqs. (31) and (32), with Δγ that follows from Eq. (26).

• Angle γ ∗ is sampled according to the Normal Distribution Eq. (29).
This PDF is not modified by the shadow effect.

In practical calculation, the rejection method can be used for sam-
pling from Eq. (32).

3.5. Modelling of multiple particle collisions with the virtual wall

Multiple particle-wall collisions may significantly change the statis-
tics of near-wall particles and a large accumulation of particles in the
near-wall viscous sublayer can exist if such an effect is not accounted
for [28].

According to Konan et al. [9] and Radenkovic and Simonin [29], from
the deterministic simulationwith 2D roughwall and 3D isotropic rough
wall, respectively, the PDF of bouncing particles which undergo multi-
ple particle-wall collisions is nearly the same as the ones that undergo
only one collision, so the stochastic procedure may compute selectively
bouncing particles that undergo only one collision.

As reported byKonan et al. [9], the probability of particles to undergo
only one collision calculated from the deterministic simulation is given
by the following analytical form:

P∗ n ¼ 1jαþ
p

� �
¼ tanh ψ

αþ
p

Δγ

� �
if αþ

p ≥0

0 if αþ
p<0

8><
>: ð34Þ

where ψ = 1.5 and Δγ is the standard deviation of virtual wall inclina-
tion angle.

Radenkovic and Simonin [29] found that Eq. (34) may also be used
for modelling multiple collision effects of the 3D particle rebound
from an isotropic rough wall with Δγ = Δξ = Δζ. Such an approach
may be extended directly to the anisotropic rough wall by computing
the probability of only one rebound using Eq. (34) with Δγ measured
in the plane of the first particle rebound. In a manner similar to the der-
ivation of Eq. (26), we may write:
177
Δγ βþ
p

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2 βþ

p

� �
Δξ2 þ sin 2 βþ

p

� �
Δζ2

r
ð35Þ

In contrast to the probability of only one rebound from the isotropic
rough wall, which does not depend on the particle transverse rebound
angle βp

+, the probability of only one rebound from the anisotropic
wall depends on the angle βp

+ through Eq. (35).



4. Applications

In this section, the reboundof spherical glass particles of diameterDp

= 500μm from a rough wall made of steel, which is an experimental
case reported by Sommerfeld and Huber [8], is analysed. In the frame
of particle-wall collision modelling, this combination of particle size
and real wall structure is equivalent to the virtual wall normal vector
angle standard deviation in the main flow direction Δξ = 3.8°.

In all numerical simulations for which results are presented in this
section, the particle linear velocity in the particle incident plane is de-
fined also according to [8]: the particle horizontal incident velocity pro-
jection up

− obeys a Normal distribution with mean value 5.91m/s and
standard deviation 1.16m/s. In order to isolate the influence of aniso-
tropic roughness on particle bouncing transverse deviation angles, the
particle incident rotation is neglected.

Particle collisions with a rough wall are inelastic, with friction: the
restitution coefficient and coefficient of wall friction depend on the par-
ticle vertical incident angle and they are defined as in [8]:

ew α−
p

� �
¼

eh−1
αe

∣α−
p ∣þ 1 if ∣α−

p ∣∈ 0,αe½ �
eh if ∣α−

p ∣>αe

8<
: ð36Þ

and

μw α−
p

� �
¼

μh−μ0

αμ
∣α−

p ∣þ μ0 if ∣α−
p ∣∈ 0,αe½ �

eh if ∣α−
p ∣>αe

8<
: ð37Þ

If the following condition holds:

v−p <
−2

7μw 1þ ewð Þ ∣U∣ ð38Þ

where the intensity of the velocity ∣U∣ between the particle and thewall
at the contact point is

∣U∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−
p þ Dp

2
ω−

pz

� �2

þ w−
p −

Dp

2
ω−

px

� �2
s

ð39Þ

Fig. 12 shows a comparison of the probability Eq. (34), with ψ = 2  
and Δγ calculated from Eq. (35), that particles undergo only one 
particle-wall collision with the probability calculated from the deter-
ministic simulation of the impact of particles on anisotropic surfaces 
with different degrees of roughness and different particle incident an-
gles αp

− and βp
−. As can be seen, the agreement is very good. The value 

ψ = 2 resulted in better agreement with the results of deterministic 
simulations than the original value ψ = 1.5 used by Konan et al. [9]. 
This difference in agreement due to different values of ψ is a conse-
quence of the different virtual wall generators used in the present 
work and by Konan et al. [9].

3.6. Stochastic procedure for calculation of the 3D rebound of a particle 
from an anisotropic rough wall with low roughness in a Lagrangian 
framework

In a Lagrangian framework, the motion of particles is governed by 
forces that act on a particle and to account for the particle rebound 
from an anisotropic rough wall, when the particle surface reaches a 
macroscopic smooth plane wall boundary, a stochastic procedure as 
shown in Fig. 13 should be applied. This procedure is a direct extension 
of a stochastic procedure proposed by Radenkovic and Simonin [29] for  
the rebound of particles from an isotropic rough wall.
a non-sliding particle-wall collision is calculated with the equations

uþ
p ¼ 5

7
u−
x −

Dp

5
ω−

pz

� �
ωþ

px ¼
2w−

p

Dp

vþp ¼ −ew v−p ωþ
py ¼ ω−

py

wþ
p ¼ 5

7
w−

p þ Dp

5
ω−

px

� �
ωþ

pz ¼ −
2u−

p

Dp

ð40Þ

If the condition from Eq. (38) is not fulfilled, a sliding collision of a
spherical particle with the wall is calculated with the equations

uþ
p ¼ u−

p þ εx μw 1þ ewð Þv−p ωþ
px ¼ ω−

px−5εz μw 1þ ewð Þ v
−
p

Dp

vþp ¼ −ew v−p ωþ
py ¼ ω−

py

wþ
p ¼ w−

p þ εz μw 1þ ewð Þv−p ωþ
pz ¼ ω−

pz þ 5εx μw 1þ ewð Þ v
−
p

Dp

ð41Þ

where εx and εz are given by

εx ¼ 1
∣U∣

u−
p þ Dp

2
ω−

pz

� �
and εz ¼ 1

∣U∣
w−

p −
Dp

2
ω−

px

� �
ð42Þ

Other experimental details can be found in [8].
Deterministic and stochastic simulations of the impact of particles

on a roughwall are carried out for virtualwall normal vector angle stan-
dard deviation Δξ = 3.8° while the standard deviation Δζ is varied, so
that different virtual walls are examined:

• Δζ = 0° for 2D roughness,
• Δζ = 3.8° for isotropic roughness and
• Δζ = 7.5° for roughness with high anisotropy (Δξ < Δζ).

The present stochastic model (SM) reduces to the 2D multiple
particle-wall collision model of Konan et al. [9] if the correlation length
scale in the z direction is significantly larger than that in the x direction
(cL, z ≫ cL, x) and to the 3D stochastic model of Radenkovic and Simonin
[29] if the correlation length scales in the x and z directions are the same,
cL, z = cL, x.

In this section, particle rebound characteristics are examined using
deterministic and stochastic simulations for different types of rough-
ness and for different particle vertical incident angles αp

− and particle
transverse incident angle βp

− = 0°. Particle rebound characteristics are
also analysed for different particle vertical incident angles αp

− and parti-
cle transverse incident angle βp

− = 60°. Finally, the mean (expected)
value and standard deviation of the generated particle rebound trans-
verse deviation angles, E(βp

+− βp
−) andΔβp

+, respectively, are analysed
for anisotropic surfaces, for different particle incident anglesαp

− and βp
−.

10,000 particle impacts on a virtual rough wall are sufficient to ob-
tain converged statistics.

4.1. PDFs of particle rebound angles for particle transverse incident angles
βp
− = 0° or βp

− = 60°

The particle rebound angle αp, xy
+ in the x− y plane (Fig. 5) is linked

to the rebound angle αp
+ according to

αþ
p,xy ¼ arctan

tan αþ
p

� �
cos βþ

p

� �
0
@

1
A ð43Þ

In Fig. 14, for three different types of roughness (2D, isotropic and
roughness with high anisotropy), particle rebound angles obtained



Fig. 14. PDFs of rebound angles αp, xy
+ and βp

+, computed using deterministic simulation (DS) and using the stochastic model (SM). Spherical glass particles of diameter Dp = 500μm
rebound from a steel wall for particle vertical incident angle αp

− = −5°, −15° or−25° and transverse incident angle βp
− = 0°. Three different types of rough walls are examined: 2D

(Δξ = 0∘), isotropic (Δζ = Δξ) and strongly anisotropic roughness (Δζ ≈ 2Δξ) with the standard deviation of virtual wall normal vector angle Δξ = 3.8°. Experimental values are
from Sommerfeld and Huber [8]. Angles αp, xy

+ and βp
+ are in degrees.
from numerical simulations are compared with experimental measure-
ments of Sommerfeld and Huber [8], whereas in the y− z plane only re-
sults of deterministic and stochastic simulations are compared because
experimental results are not available in this plane. It can be seen that
the standard deviation of the virtual wall normal vector angle Δζ has a
weak influence on the PDF of the particle rebound angle αp, xy

+ , when
the particle transverse incident angle is βp

− =0°. In the y− z plane, the
transverse reboundangleβp

+obeys aNormal distributionwith a standard
deviation that increaseswith increase in theabsolutevalueof the incident
angle ∣αp

−∣. For 2D roughness, the standard deviation of angle βp
+ is ap-

proximately zero for all vertical incident anglesαp
− (not shown in Fig. 14).
When the particle transverse incident angle is βp
− = 60°, the effects

of the virtual normal vector angle standard deviation Δζ on the particle
rebound angle αp

+ are large, as can be seen in Fig. 15. The PDF of the
transverse deviation angle βp

+ − βp
− is not symmetric as in the case of

particle rebound from an anisotropic surface for particle transverse
angle βp

− = 0° or in the case of particle rebound from an isotropic sur-
face at any particle transverse angle βp

−.
The agreement between deterministic simulation and the stochastic

model is very good in all numerical simulations. Also, the agreement be-
tween numerical simulations and the available experimental results is
good.



Fig. 15. PDFs of rebound angles αp
+ (left column) and transverse deviation angle βp

+ − βp
− (right column), computed using deterministic simulation (DS) and using the stochastic model

(SM). Spherical glass particles of diameter Dp = 500μm rebound from a steel wall for particle vertical incident angle αp
− =− 5°,−15° or−25° and transverse incident angle βp

− = 60°.
Three different types of rough walls are examined: 2D (Δξ= 0°), isotropic (Δζ= Δξ) and strongly anisotropic roughness (Δζ≈ 2Δξ) with the standard deviation of virtual wall normal
vector angle Δξ = 3.8°. Angles αp

+ and βp
+ − βp

− are in degrees.
4.2. Mean value and standard deviation of the particle transverse deviation
angle for particle rebound from an anisotropic roughwall, for different par-
ticle incident angles αp

− and βp
−

Fig. 16 shows the mean value and standard deviation of the gener-
ated particle transverse deviation angle, E(βp

+ − βp
−) and Δβp

+, respec-
tively, in terms of particle transverse incident angle βp

− ∈ [0°,90°] and
particle vertical incident angle αp

− = −15°, −25° or −45°, for a wall
with 2D roughness (with standard deviations of virtual wall normal
vector angles Δξ = 3.8° and Δζ = 0°) and a wall with high roughness
anisotropy (with standard deviations of virtual wall normal vector an-
gles Δξ = 3.8° and Δζ = 7.5°).
It can be seen, that for both types of roughness, if the particle vertical
incident plane is collinear with one of the two principal directions of
roughness, the mean value of the particle transverse deviation angle E
(βp

+ − βp
−) is zero.

Although the examined particle collisions with a rough wall are in-
elastic, with friction, if the particle vertical incident plane is not collinear
with one of two principal directions of roughness, then particles in
translation rebound towards the principal direction of low roughness,
as described at the end of Section 3.2 for the case of ideally elastic parti-
cle collisions with a rough wall: the mean transverse deviation angle is
positive for 2D roughness (particles are “pushed” towards the principal
of low roughness collinear with the z-axis) and negative for high



Fig. 16.Dependence of the mean value and standard deviation of the particle transverse deviation angle, E(βp
+ − βp

−) andΔβp
+, respectively, on the particle transverse incident angle βp

−,
for particle vertical incident angles αp

− = −15°,−25° or −45°. DS denotes results from deterministic simulation and SM denotes results from the application of the stochastic model.
Spherical glass particles of diameter Dp = 500μm rebound from a steel wall with virtual wall normal vector standard deviations Δξ = 3.8° and Δζ = 0° for 2D roughness and Δζ =
7.5° for high roughness anisotropy. Values on the axes are in degrees.
roughness anisotropy (particles are “pushed” towards the principal di-
rection of low roughness collinear with the x-axis). The magnitude of
the mean value of the particle transverse deviation angle E(βp

+ − βp
−)

increaseswith increase in the absolute value of the particle vertical inci-
dent angle ∣αp

−∣.
For particle vertical incident angle αp

− ∈ [−45°,0°] andwith the par-
ticle vertical incident plane non-collinear with one of the two principal
directions of roughness, a particle after rebound from an anisotropic
Fig. 17. Influence of the absolute value of the particle vertical incident angle ∣αp
−∣ for a given tran

deviation angle, E(βp
+− βp

−) andΔβp
+, respectively. DS denotes deterministic simulation and SM

from a steel wall with virtual wall normal vector standard deviationsΔξ=3.8° andΔζ=0° for
the axes are in degrees.
surface has a small magnitude of the mean transverse deviation angle,
of the order of a few degrees. This effect could be important if one of
the two principal directions of roughness is not collinear with the
mean gas flow direction. Then, since the transverse deviation effect oc-
curs for every bounce of the particle from the wall, the particle flow
transverse angle could become significant with respect to the mean
gas flow direction. The influence of this effect on particle-laden flows
depends on many parameters, such as particle and flow properties,
sverse angleβp
−=60° on themean value and standard deviation of the particle transverse

denotes the stochasticmodel. Spherical glass particles of diameter Dp= 500μmrebound
a 2D roughwall andΔζ=7.5° for a wall with high roughness anisotropy (HRA). Values on



5. Conclusion

This paper describes a procedure to generate an anisotropic rough
wall, according to Garcia and Stoll [30], and a link of this procedure to
virtual rough wall modelling was found. Deterministic simulations of
ideally elastic particle rebound from an anisotropic rough wall support
statistical modelling of the virtual wall normal vector angles “seen” by
particles.

Virtual rough wall normal vector angles are modelled using wall in-
clination angles, γ and γ ∗, defined in the particle incident plane and the
orthogonal plane, respectively. It is found that at large particle vertical
incident angles αp

− (∣αp
− ∣ ≫ Δξ and Δζ) and any particle transverse

angle βp
−, particles “see” a pair of angles γ and γ ∗ that obey a Bivariate

Normal distribution. At small particle vertical incident angles αp
− (of

particle-wall collision frequency, inter-particle collisions, particle inci-
dent angles etc.

For both virtual rough walls examined (2D roughness and high 
roughness anisotropy), the magnitude of the mean transverse deviation 
angle E(βp

+ − βp
−), for given particle vertical incident angle αp

−, depends 
on the particle transverse incident angle βp

−: for  βp
− ∈ [0°,50°] the mag-

nitude of the mean transverse deviation angle increases, whereas fur-
ther increase of βp

− (up to 90∘) leads to a decrease of this magnitude.
For 2D roughness, the standard deviation of the particle transverse 

deviation angle Δβp
+ increases with increase in the transverse incident 

angle βp
−. In contrast, for a virtual wall with high roughness anisotropy 

there is a weak dependence of the standard deviation of the transverse 
deviation angle Δβp

+ on the transverse incident angle βp
−.

Sommerfeld and Huber [8] carried out measurements of particle re-
bound angles αp,

+ 
xy for particle vertical incident angles with ∣αp

− ∣ ∈ [0°, 
50°], since the channel was narrow. However, the absolute value of the 
particle vertical incident angle ∣αp

−∣ is expected to be larger for example 
in particle-laden flow in a pipe bend. Therefore, Fig. 17 shows mean 
values and standard deviations of the generated transverse deviation 
angle in the case of anisotropic surfaces (2D roughness and roughness 
with high anisotropy), for ∣αp

− ∣ ∈ [0°,90°]. The particle transverse inci-
dent angle is chosen to be βp

− = 60°, so that the particle vertical incident 
plane is not collinear with either of the two principal directions of 
roughness. The mean values of the transverse deviation angle for isotro-
pic surfaces are zero and this case is not shown in Fig. 17.

For the rebound of particles from the examined rough walls, the 
mean value and standard deviation of the particle transverse deviation 
angle, E(βp

+ − βp
−) and  Δβp

+, respectively, increase with increase in 
the absolute value of the particle incident angle ∣αp

−∣. This increase is 
greater for larger particle vertical incident angles αp

− (∣αp
− ∣ ≫ Δξ and 

Δζ).
For the rebound of particles from a 2D rough wall, the mean value of 

the transverse deviation angle E(βp
+ − βp

−) is positive for every particle 
vertical incident angle αp

−. This mean value is of the order of a few de-
grees for ∣αp

− ∣ ∈ [0°, 60°]. On the other hand, for the case of a virtual 
wall with high roughness anisotropy, the mean value of the transverse 
deviation angle E(βp

+ − βp
−) is negative for every particle vertical 

incident angle αp
−. The mean value of the transverse deviation angle 

for a wall with high roughness anisotropy is of the order of a few de-
grees up to the absolute value of the particle vertical incident angle 
∣αp

− ∣ = 45°.
Fig. 17 also shows that for particles bouncing from a wall with high 

roughness anisotropy there is a more pronounced increase in the 
mean value and standard deviation of the particle transverse deviation 
angle, E(βp

+ − βp
−) and  Δβp

+, respectively, for larger particle vertical in-
cident angles αp

− (∣αp
− ∣ ≫ Δξ and Δζ) in comparison with that for parti-

cles bouncing from a 2D rough wall, for the same virtual wall normal 
vector angle standard deviation in the flow direction, Δξ, of these two 
walls and the same particle incident angles.

The agreement between the stochastic and deterministic simula-
tions is very good in all numerical simulations.
the order of Δξ and Δζ) the angle γ is influenced by the shadow effect
whereas the angle γ ∗ is not directly influenced by this effect. Themech-
anism of multiple particle-wall collisions is accounted for using a direct
extension of the modelling approach proposed by Konan et al. [9].

A stochasticmodel in a Lagrangian frame for the rebound of particles
from an anisotropic rough wall is proposed. The proposed model is of
general character: it reduces to the 2D model of Konan et al. [9] (if the
roughness is 2D) and also to the case of 3D particle rebound from an iso-
tropic wall according to Radenkovic and Simonin [29] (if the roughness
is isotropic). The proposed stochastic model for particle rebound from
an anisotropic rough wall is compared with deterministic simulations
and the experimental results of Sommerfeld and Huber [8].

Deterministic and stochastic simulations show that, when a particle
impacts on an anisotropic wall, if the particle vertical incident plane is
collinear with either of the two principal directions of an anisotropic
rough wall, the mean value of the bouncing particle transverse devia-
tion angle E(βp

+− βp
−) is zero for any particle incident angle αp

−. In con-
trast, if the particle vertical incident plane is not collinearwith one of the
two principal directions of roughness, then the mean value of the
bouncing particle transverse deviation angle is not zero and represents
a deflection of the particle path towards the principal direction of low
roughness. This effect could be important in pneumatic conveying in
narrow channels if the principal direction of wall roughness is not col-
linear with themean gas flow direction, considering that the transverse
deviation angle occurs for every particle rebound from a wall and may
lead to a significant transverse deviation of the particle flow with re-
spect to the mean gas flow direction. To investigate such an effect, a
DNS/DPS study of such particle-laden channel flows is suggested, in ad-
dition to experimental investigations.

In futurework, the joint effect of incident particle rotation and aniso-
tropic roughness on the properties of particle transverse deviation an-
gles should be examined.The link between roughness parameters,
particle diameter and standard deviation of virtual wall normal vector
angles seen by particles will be investigated. Numerical studies of
particle-laden flows in pipes are also suggested to investigate the influ-
ence of rough wall anisotropy in such flows.
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