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Eva M. Strucken1, Vincent Ducrocq3 and John P. Gibson1 

Abstract 

Background: India is the largest milk producer globally, with the largest proportion of cattle milk production coming 
from smallholder farms with an average herd size of less than two milking cows. These cows are mainly undefined 
multi-generation crosses between exotic dairy breeds and indigenous Indian cattle, with no performance or pedigree 
recording. Therefore, implementing genetic improvement based on genetic evaluation has not yet been possible. 
We present the first results from a large smallholder performance recording program in India, using single nucleotide 
polymorphism (SNP) genotypes to estimate genetic parameters for monthly test-day (TD) milk records and to obtain 
and validate genomic estimated breeding values (GEBV).

Results: The average TD milk yield under the high, medium, and low production environments were 9.64, 6.88, and 
4.61 kg, respectively. In the high production environment, the usual profile of a lactation curve was evident, whereas 
it was less evident in low and medium production environments. There was a clear trend of an increasing milk yield 
with an increasing Holstein Friesian (HF) proportion in the high production environment, but no increase above inter-
mediate grades in the medium and low production environments. Trends for Jersey were small but yield estimates 
had a higher standard error than HF. Heritability estimates for TD yield across the lactation ranged from 0.193 to 0.250, 
with an average of 0.230. The additive genetic correlations between TD yield at different times in lactation were high, 
ranging from 0.846 to 0.998. The accuracy of phenotypic validation of GEBV from the method that is believed to be 
the least biased was 0.420, which was very similar to the accuracy obtained from the average prediction error variance 
of the GEBV.

Conclusions: The results indicate strong potential for genomic selection to improve milk production of smallholder 
crossbred cows in India. The performance of cows with different breed compositions can be determined in different 
Indian environments, which makes it possible to provide better advice to smallholder farmers on optimum breed 
composition for their environment.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
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regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
India is the world’s largest producer of milk, producing 
198.40 ×  109 kg milk per annum, increasing by approxi-
mately 5.68% per annum [1]. Some 49% of milk is pro-
duced by buffaloes and 49% by cattle, of which 57% 
come from crossbreds between indigenous Bos indi-
cus and exotic Bos taurus dairy breeds, with an aver-
age yield of 8.09 kg/day [1], and an average herd size of 
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less than two cows. Crossbred cows are used in India 
to combine the production potential of exotic dairy 
breeds with the adaptation to difficult environments of 
indigenous Bos indicus cattle, and to use the well-doc-
umented heterosis in such crossbreds in tropical envi-
ronments [2–5].

Smallholder indigenous × exotic crossbred dairy cat-
tle in India and elsewhere form populations of con-
tinuous breed composition, with the proportion of 
exotic breed origin ranging from almost 0 to almost 
100%, and with the vast majority of replacement heif-
ers being calves of crossbred cows mated to crossbred 
or purebred bulls. Implementing genetic improvement 
strategies in smallholder crossbred populations faces 
many challenges, the principal being the lack of per-
formance or pedigree recording and the uncertainty 
about what accuracy can be achieved when herd sizes 
are so small and production environments vary widely 
between farms and over time [6]. An obstacle to initiat-
ing genetic improvement in such populations is fund-
ing and action-fatigue because of the long lag time 
between when performance recording is initiated and 
when the amount of pedigree information accumulated 
is sufficient to generate breeding values. However, the 
lag can be reduced from many years to about a year, 
if animals that are performance-recorded are geno-
typed with  a medium or high-density single nucleo-
tide polymorphism (SNP) chip and the information is 
used to generate a genomic relationship matrix (GRM). 
This approach is being applied in East Africa, where a 
pilot program of smallholder recording of about 1200 
cows in Kenya achieved heritabilities of 0.05 to 0.27 
and accuracies of genomic estimated breeding values 
(GEBV) from 0.28 to 0.44 depending on the method [7, 
8].

BAIF Development Research Foundation (BAIF—
http:// www. baif. org. in) is a large NGO that delivers 
livestock development services to over 2.94 million 
farm households in India. BAIF produces more than 
13.5 million frozen semen doses annually for delivery 
to smallholder dairy cattle and buffaloes, and performs 
about 5 million artificial inseminations per year. BAIF 
has initiated a large smallholder dairy recording pro-
gram across six states in India, where recorded cross-
bred cows as well as crossbred and pure-exotic bulls 
in the artificial insemination (AI) stud are genotyped 
to generate estimates of breed composition and GEBV. 
Here, we report the first genetic analyses of this popu-
lation, based on 73,968 test-day (TD) milk records of 
3842 cows with phenotypes and genotypes. Our results 
demonstrate useful levels of heritability and validated 
accuracies of GEBV. We also report estimates of in-situ 

performance of different classes of crossbred animals 
across varying production environments.

Methods
Milk data
The data analysed here originate from the Enhanced 
Genetic Gains (EGP) program of BAIF. Phenotype and 
associated data are from cows in smallholder herds rang-
ing from 1 to 43 cows in size, collected in the States of 
Bihar, Jharkhand, Maharashtra, Odisha, and Punjab 
Uttar Pradesh between February 2016 and May 2019. All 
cows were crossbreds, of unknown breed composition, 
between exotic Bos taurus dairy breeds and local indig-
enous Bos indicus cattle. In the areas that were sampled, 
the only exotic dairy breeds known to have been used in 
the past 50  years of crossbreeding are Holstein/Friesian 
(HF) and Jersey (JR). The available data included TD milk 
yields, calving date, parity, date of birth, age, herd, village, 
CDC (Cattle Development Centre, i.e. a local dairy ser-
vice centre that covers 8 to 10 villages, under which AI 
delivery and recording are organised), district, and State.

A wide variety of quality control (QC) measures were 
explored, resulting in the following sequential QC steps 
being applied to produce data that are suitable for analy-
sis. The first step was to ensure that we had a sufficient 
amount of data on each cow to be able to perform basic 
tests of reliability of the data. In the following steps, rela-
tively high limits were imposed, which reflect the high 
within- and between-cow variability in data from small-
holder systems compared to intensive dairy systems and 
the desire to avoid extreme outliers:

1. Retain cows with four or more monthly TD milk 
yield between 8 and 340 days after calving, in at least 
one lactation.

2. Remove cows with an average TD milk yield greater 
than 4 standard deviations (SD) above the population 
average.

3. Remove cows with SD of TD milk yield greater than 
4 SD above the population average.

4. Remove cows with a coefficient of variation (CV) of 
TD milk yield higher than 0.8.

5. Based on an initial statistical analysis (see below), 
remove individual records for which the residual is 
outside the − 4 to 4 kg/day range, and remove cows 
with a SD of residuals greater than 2.5 kg/day.

6. Data for CDC with less than 10 cows in a given State 
were combined to form a dummy CDC. Any dummy 
CDC with less than 10 cows was deleted.

In total, 8934 crossbred cows with four or more monthly 
milk records between 8 and 340  days after calving were 
retained. After applying all QC steps, 8563 crossbred cows 

http://www.baif.org.in
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with 149,508 TD records in 4277 herds, within 728 villages, 
87 CDC, and 30 districts, remained.

The number of cows per herd ranged from 1 to 43 
(Table 1), and 23% of the cows were in herds of one cow 
and 73% of the cows were in herds with three or less cows. 
The number of cows per CDC ranged from 10 to 349.

In earlier statistical analyses (results not shown), the 
effects of district, CDC, village, herd and animal were fit-
ted as random variables, along with a series of fixed effects. 
District and village explained very little variation and were 
not included in subsequent models. Due to the relatively 
large number of cows in each CDC, CDC were then treated 
as fixed effects and their interaction with lactation curves 
was explored.

Genotypes
In total, 4938 crossbred cows were genotyped, of which 
640 were genotyped with the Illumina 777k BovineHD 
BeadChip (Illumina Inc., San Diego, CA, USA) and 4298 
genotyped with the GeneSeek Genomic Profiler (GGP) 
Bovine 50K BeadChip (Neogen GeneSeek Operations, 
Lincoln, NE, USA). Furthermore, genotype data were avail-
able for 733 animals (cows and bulls) from the BAIF bull 
stud herd, 518 of which were genotyped with the Illumina 
BovineSNP50 array and the remaining genotyped with the 
GGP Bovine 50K array. The stud animals consisted of pure-
bred HF, purebred JR, HF × indigenous crosses and JR × 
indigenous crosses. Autosomal SNPs with a GC (GenCall) 
score higher than 0.15, with a call rate higher than 0.9 and 
a MAF higher than 0.01 were retained. Samples with a call 
rate lower than 0.9 were excluded. Duplicate samples were 
identified based on a correlation between genotypes higher 
than 0.98. All duplicate cow samples were removed because 
it was not possible to assign the correct milk records to the 
genotypes. One copy of each set of duplicates among stud 
animals was retained, because stud animals had no milk 
records and thus their inclusion is not a source of errors in 
the genetic analyses.

Following the application of the genotype QC, all animals 
genotyped with the 50 K chip were then imputed to high-
density (HD) using a reference set of 2961 animals with real 
HD genotypes. The reference set for imputation included 
623 crossbred cows from our dataset, 686 Indian indig-
enous animals, 968 pure Holsteins and 684 pure Jerseys 
sourced from the Bovine HapMap [9]. The Indian indig-
enous reference and HapMap datasets were genotyped on 

the Illumina 777k BovineHD BeadChip and were quality-
controlled. Imputation was performed using the FImpute 
software [10] and resulted in 737,073 SNP genotypes across 
the 29 Bos taurus autosomes. After applying the genotype 
QC and retaining the cows that passed the phenotype QC, 
3842 crossbred cows with genotype and milk records and 
661 stud animals without milk records were available for 
the genetic analyses.

Phenotypic and genetic analyses
The analyses of TD milk data were performed in a two-
stage process. In the first stage, TD records were corrected 
for fixed effects using a fixed effect linear model (Model 1) 
and a mixed linear model (Model 2) to obtain adjusted TD 
records. Then, the adjusted records were used in the second 
stage to obtain estimates of genetic parameters and GEBV 
using a random regression (RR) model. A two-step analysis 
was used because, among the 8563 cows with TD records 
that passed QC, only 3842 had genotypes. Accounting for 
fixed effects is substantially more accurate when including 
all the cows with phenotypes.

Three methods for adjusting TD records for non-genetic 
effects were investigated. The first method adjusted TD 
records for fixed effects using Model 1 as follows:

 where y is the vector of TD records and b is the vector 
of fixed effects, X is the design matrix that links the fixed 
effects to the TD records, and e is the vector of residu-
als. Fixed effects included lactation number, year-month 
(2016–09 to 2019–07), CDC, interaction of year-month 
by CDC, average lactation curve modelled by a 3rd-order 
Legendre polynomial (LP), lactation curves for each par-
ity modelled by the 3rd order LP, and lactation curves for 
each CDC modelled by the 3rd order LP. The 3rd order 
LP was found to be a better fit than the 1st and 2nd 
order LP for modelling the observed high variability of 
curvature.

The other two methods for obtaining adjusted TD 
records involved fitting an animal repeatability model 
(Model 2) as follows:

Model 2 is the same as Model 1 with the addition of 
random effects of animal and herd under a repeatability 

(1)y = Xb+ e,

(2)y = Xb+ Z1a + Z2h + e.

Table 1 Number of herds and crossbred cows in each herd size

Herd size 1 2 3 4 5 6 7 8 9 10 11 12–43

Herds 2005 1294 547 239 78 43 17 13 11 9 5 16

Cows 2005 2588 1641 956 390 258 119 104 99 90 55 258
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model (i.e. individual animal and herd lactation curves 
are not fitted), where a and h are the vectors of random 
animal and herd effects, respectively, and Z1 and Z2 are 
the design matrices that link the random animal and 
herd effects to the TD records, respectively, assuming 
that all the animals are unrelated. The two methods for 
obtaining adjusted TD records from Model 2 were:

Model 2-M1: The estimated animal effects ( ̂a ) were 
added to the corresponding herd effects ( ̂h ) and resid-
ual effects ( ̂e ) to obtain the adjusted TD records. In 
this case, milk records were adjusted only for the fixed 
effects in the mixed model.

Model 2-M2: The estimated animal effects ( ̂a ) were 
added to the corresponding residual effects ( ̂e ) to 
obtain the adjusted TD records. In this case, milk 
records were adjusted for fixed effects plus the random 
herd effect in the mixed model.

Estimation of genetic parameters and GEBV
Genetic parameters and GEBV were obtained using an 
RR model. The analysis included 73,968 TD records 
on 3842 crossbred cows that passed both the pheno-
type and genotype QC, plus 661 bull stud animals that 
passed the genotype QC. The analysis also included 
24,063 TD records for 1575 crossbred cows that passed 
the phenotype QC and do not have genotypes but are 
in the same herds as the cows with genotypes plus phe-
notypes. This was done to improve the accuracy of the 
estimation of herd versus animal effects in herds with 
few cows.

The RR model that was fitted to the adjusted TD 
records obtained from Model 1 and Model 2-M1 
includes the random effects of additive genetic, perma-
nent environment (PE), and herd:

where y∗ are the adjusted TD records, a contains the 
m+ 1 additive genetic regression coefficients for each 
animal, p contains the m+ 1 PE regression coefficients 
for each animal, h contains m+ 1 random regression 
coefficients for each herd, m is the order of LP, e con-
tains the residuals, and Z1 , Z2 , and Z3 are the incidence 
matrices of additive genetic, PE, and herd random regres-
sion coefficients, respectively. Days in milk (DIM) that 
ranged from 8 to 340 were used to generate LP. Residual 
variance was assumed to be homogenous for TD records 
within, but heterogeneous between the eight lactation 
period classes: 8–49, 50–91, 92–133, 134–175, 176–217, 
218–259, 260–301, and 302–340 days post-calving. It was 
assumed that:

(3)y∗ = Z1a + Z2p+ Z3h + e,

where Ka , Kp , and Kh are the (co)variance matrices of 
the additive genetic, PE and herd regression coefficients, 
respectively, R is a diagonal matrix of residual variances, 
G is the genomic relationship matrix constructed using 
the first method of VanRaden [11]. Animals without 
genotypes were assumed to be unrelated to all other ani-
mals with diagonal elements of 1 in G (the average of the 
diagonals of the GRM built from the genotyped cows is 
1).  ⊗ is the direct product operation and I is an identity 
matrix with dimensions equal to the number of levels of 
effects. Variance components and the elements of Ka , Kp , 
Kh , and R were estimated using an Average Information 
Restricted Maximum Likelihood (AI-REML) procedure 
in the Wombat software [12]. First order LP ( α0 and α1 ) 
were fitted to the random additive genetic, PE and herd 
effects. Preliminary analyses indicated that fitting an 
LP higher than the  first order had almost no effect on 
model fit, thus only the results from the first order LP are 
presented.

The variance–covariance matrices of the additive genetic 
( Va ), PE ( Vpe ) and herd ( Vh ) components at the eight DIM 
(28, 70, 112, 154, 197, 238, 280, and 321 days), representing 
the midpoint of the eight TD classes used to group the het-
erogeneous residual variances, were calculated as:

where K is the (co)variance matrix of regression coeffi-
cients ( Ka , Kp , or Kh ), φ is 8× 2 matrix of LP (intercept 
and slope) on selected DIM. In most of the published lit-
erature, herd and its interactions such as herd-year-sea-
son (HYS) is fitted as a fixed effect and hence herd does 
not contribute to the estimate of phenotypic variance 
used to estimate the heritability. Thus, to be able to com-
pare our results with most of those in the literature, we 
estimated the heritability ( h2i  ) at TD i as:

where σ 2
a(i) , σ

2
pe(i) , and σ 2

e(i) are the additive genetic, PE, 
and residual variances at TD i , respectively, i is one of the 
selected eight TD records. The additive genetic correla-
tions ( ra(i,j) ) and PE correlations ( rpe(i,j) ) between TD i 
and j were obtained as:

var





a
p
h
e



 =





G⊗ Ka 0 0
0 I⊗ Kp 0
0
0

0
0

I⊗ Kh

0

0
0
0
R





V = φKφ
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σ 2
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a(i) + σ 2

pe(i) + σ 2
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σ 2
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where σa(i,j) and σpe(i,j) are the additive genetic and PE 
covariance between TD i and j , respectively. In our data, 
the average number of TD milk records per cow over the 
lactation was 7.8. For simplicity, we assumed that each 
cow had one TD record in each heterogeneous residual 
class. Then, the 8× 8 (co)variance matrices ( Va and Vpe ), 
as well as the 8× 8 diagonal residual matrix ( Ve ) were 
used to calculate the heritability ( h2W ) for the whole lacta-
tion period for a typical cow as:

For the adjusted TD records obtained from Model2-
M2, the following RR model (Model 4) was fitted:

Model 4 is the same as Model 3 except that the random 
effect of herd was not included since the data had been 
adjusted for herd in the pre-correction step.

Breed composition and environmental classes
An estimate of the environment that a given cow expe-
riences was obtained as the sum of the estimates of the 
effects of the CDC and herd of that cow, obtained from 
Model 2. These estimates of the cow’s environment were 
then ranked and grouped into the top, middle, and bot-
tom one third, to create a fixed effect for environment 
(ENV) with three levels, high, medium and low produc-
tion environments.

Breed composition for each cow was estimated from 
SNP genotypes using a supervised Admixture analysis 
[13] with four ancestral populations: Holstein, Friesian, 
Jersey and Indian Bos indicus indigenous. The Indian 
ancestral reference population consisted of 94 animals 
selected from the Indian indigenous reference animals, 
which were selected to represent the least related animals 
within a breed, with the highest average kinship with 
unselected animals [14]. The animals selected were in 
proportion with the total number of animals available for 
each breed. The exotic reference population consisted of 
21 pure Holstein and 21 Jersey animals from the bovine 
HapMap [9], and 21 Friesian animals from the Scottish 
Rural University College (SRUC).

The estimates of breed composition were used to 
group cows into four breed composition classes (0–25%, 
25–50%, 50–75%, and 75–100%) based on their pro-
portion of HF ancestry and separately for their propor-
tion of JR ancestry, from which resulted 10 possible 
combinations of HF and JR classes. These 10 possible 

rpe(i,j) =
σpe(i,j)√
σ 2
pe(i).σ

2
pe(j)

,

h2W =

∑
Va∑

Va +
∑

Vpe +
∑

Ve
.

(4)y∗ = Z1a + Z2p+ e.

combinations are four breed combinations between 
the HF class (0–25%) and JR classes (0–25%, 25–50%, 
50–75%, and 75–100%); three breed combinations 
between the HF class (25–50%) and JR classes (0–25%, 
25–50%, and 50–75%); two breed combinations between 
the HF class (50–75%) and JR classes (0–25% and 
25–50%), and one breed combination between the HF 
class (75–100%) and JR class (0–25%). Cows without gen-
otypes were allocated to either an HF cross (HFx) or a JR 
cross (JRx), based on their assignment by enumerators in 
the field using the cow’s appearance and farmer’s infor-
mation. This resulted in 12 classes of breed composition. 
The interaction between breed composition and envi-
ronment was examined by fitting an effect with 36 lev-
els for breed composition (12 classes) by environment (3 
classes). This effect was included either in the phenotype 
analysis used to generate adjusted TD yields for genetic 
analysis, or in the genetic analysis.

Validation of GEBV for crossbred performance
The validation of GEBV in this dataset was performed 
on the genotyped cows, rather than the bulls, because 
SNP-based parentage assignment matched 25% of the 
genotyped cows to a genotyped bull, and most bulls 
that had progeny in the dataset had very few progeny 
(see "Results" section). Validation was performed for the 
GEBV for α0 . No validation for α1 was attempted because 
the genetic variation of α1 was too low to yield a mean-
ingful validation. The validation for α0 was performed by 
identifying a validation set of cows, whose phenotypes 
were then masked in the genetic evaluation. Ten or 11 
non-overlapping sets of validation cows were identified 
and the GEBV were generated separately for each vali-
dation set. Then, the validation GEBV were combined 
across all validation sets and the correlations between the 
GEBV and alternative measures of TD performance of 
each cow were estimated (see below). Cross-validations 
were performed as follows: (A) by random sampling of 
10 non-overlapping subsets of cows from the whole data-
set, and (B) by random sampling of 11 non-overlapping 
subsets of CDC from the data, and allocating all cows in 
the selected CDC to the validation set (11 sets were used 
to approximately balance the size of subsets allowing for 
a large variation in the number of cows per CDC, see 
Table 2). Of these two methods, we expect that method 
B will yield the least biased estimates of accuracy because 
there is minimal sharing of environmental effects on 
phenotype between the validation set and the cows with 
phenotypes used to generate the GEBV. Accuracies from 
method A are expected to be biased upward due to sig-
nificant sharing of phenotype effects between the cows 
in the validation set and those with phenotypes used to 
generate the GEBV.
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The accuracy of prediction was estimated as the corre-
lation between the GEBV for α0 and cow TD phenotypes, 
divided by the 

√

h2 of α0 . Three alternative TD pheno-
types were used: (1) the cows’ average unadjusted TD 
record; (2) the cows’ average adjusted TD record; and (3) 
the cows’ average TD record corrected for CDC. The her-
itability of α0 in this context, for the whole lactation 
period, was 0.217, calculated as the proportion of the 
additive genetic variance relative to the total phenotypic 
variance (i.e. including herd variance). The coefficient of 
the regression of target phenotypes on GEBV for α0× 
0.7071 was calculated to evaluate the bias of predictions, 
where 0.7071 = 0.5×

√
2 is the scaling factor to convert 

α0 to the same scale as TD milk. For comparison with the 
estimates of accuracy from the validation analyses, the 
accuracy of GEBV was also estimated from the GEBV 
analyses as: 

√
1− PEV

σ 2
a

 , where PEV  is the prediction 
error variance estimated from the mixed model equa-
tions and σ 2

a  is the additive genetic variance.

Results
Phenotype analysis
The inclusion of fixed effects in the Step 1 analyses 
explained 52% of the phenotypic variance for Model 1 
and 67% of the variance for Model 2. Least square means 
of CDC effects ranged from 2.97 to 13.36 kg/day, and for 
year-month ranged from 6.58 to 7.10 kg/day. CDC effects 
occur within States and the large range in CDC effects 
reflects large differences in production environments 
between States as well as regional differences within 
States. For example, the average TD yield for the Odisha 
State with the lowest yield was 3.76 kg/day, while that for 
the Maharashtra State with the highest yield was 8.39 kg/
day.

Model selection
The estimates of (co)variances and correlations between 
the first ( α0 ) and second ( α1 ) random regression (RR) 
coefficients obtained from the RR models (Models 3 and 
4) using different methods to adjust TD milk yield are in 
Table 3. The first RR coefficient ( α0 ) corresponds to the 
mean milk yield and the second RR coefficient ( α1 ) cor-
responds to the persistency of yield (the rate of decline 
in milk yield from the first DIM in the analysis; i.e. day 8 

of lactation in our analysis). In Model 3, the estimate of 
the additive genetic variance of α0 was about 14% higher 
when using the adjusted TD from Model 2-M1 (1.256) 
compared to Model 1 (1.097), whereas the estimates of 
the additive genetic variance of α1 were very similar in 
both cases. However, the average of the heterogeneous 
residual variance was smaller when using adjusted TD 
from Model 2-M1 (1.073) compared to Model 1 (1.169). 
For Model 4, in which TD records were adjusted for fixed 
effects and random herd effects from Model 2-M2, the 
estimated additive genetic variance of α0 was significantly 
reduced (0.470) compared to that obtained with Model 
3. For Model 3, the contribution of α0 to the additive 
genetic effect of individual TD yields was much greater 
than that of α1 , the first eigenvalue of the additive genetic 
co-variance matrix explaining ~ 90 to ~ 97% of the addi-
tive genetic variation. In both Models 3 and 4, the cor-
relations between α0 and α1 were negative and moderate, 
ranging from − 0.21 to − 0.36, indicating that higher 
yields are associated with less persistent lactations.

Accounting for breed composition and its interaction 
with environment
Lactation curves for high, medium, and low produc-
tion environments obtained from Model 2 are shown in 
Fig.  1. The predicted average daily milk yield under the 
three environments (high, medium, and low) were 9.64, 
6.88, and 4.61 kg/day, respectively. The lactation curve of 
cows in the high production environment shows a shal-
low peak during early lactation, which was barely present 
in the medium production environment and not present 
in the low production environment.

Breed composition varied markedly across CDC and 
across States (Fig. 2). This means that adjustment of TD 
records for the fixed effect of CDC, when breed compo-
sition is not included in the model, will absorb some of 
the breed composition effects, which potentially leads 
to underestimate the breed composition effects when 
they are included in the genetic analysis. This is seen in 
the results obtained when breed composition is fitted 
in the genetic analysis (Fig.  3) compared to those when 
it is fitted in the phenotype analysis (Fig.  4). Because 
the derivation of ENV is based on estimates of the herd 
random effect plus the CDC fixed effect, when using the 
same adjusted TD data, fitting BC × ENV in the genetic 

Table 2 Number of cows in each CDC validation subset

CDC Cattle Development Centre

Validation 
subset

1 2 3 4 5 6 7 8 9 10 11

Cows 396 400 294 326 370 321 346 380 382 364 250

CDC 6 9 7 5 11 7 4 8 8 11 4
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Table 3 Estimates of variances (diagonals), co-variances (above the diagonal), and correlations (below the diagonal) between the 
random regression coefficients, along with the two eigenvalues (λ) and the relative proportions of variance that they explain (%)

* Average of residual variance estimates for the eight lactation period classes: 8–49, 50–91, 92–133, 134–175, 176–217, 218–259, 260–301, and 302–340 days of 
lactation. The estimates of residual variances are for test-day milk yield in kg/dayay, whereas the genetic, PE, and herd variances are on the LP scale. The standard error 
of the estimates is given in brackets

Additive genetic Herd Permanent environment Average 
 residual*

α0 α1 α0 α1 α0 α1

Model 3 using adjusted TD from Model 1

α0 1.097 (0.210) − 0.093 (0.062) 3.584 (0.171) − 0.349 (0.049) 2.908 (0.194) − 0.357 (0.064) 1.169

α1 − 0.345 (0.211) 0.067 (0.036) − 0.355 (0.04) 0.270 (0.026) − 0.228 (0.038) 0.842 (0.043)

λ (%) 1.11 (94.98) 0.06 (5.02) 3.62 (93.93) 0.23 (6.07) 2.97 (79.15) 0.78 (20.85)

Model 3 using adjusted TD from Model 2-M1

α0 1.256 (0.227) − 0.105 (0.063) 4.063 (0.185) − 0.357 (0.048) 2.854 (0.204) − 0.331 (0.063) 1.072

α1 − 0.357 (0.195) 0.069 (0.033) − 0.364 (0.043) 0.237 (0.023) − 0.229 (0.040) 0.734 (0.038)

λ (%) 1.27 (95.50) 0.06 (4.50) 4.10 (95.26) 0.20(4.74) 2.90 (80.95) 0.68 (19.05)

Model 4 using adjusted TD from Model 2-M2

α0 0.470 (0.105) − 0.094 (0.048) – – 2.321 (0.102) − 0.299 (0.048) 1.073

α1 − 0.346 (0.158) 0.158 (0.042) – – − 0.210 (0.031) 0.867 (0.043)

λ (%) 0.50 (78.98) 0.13 (21.02) – – 2.38 (74.64) 0.81 (25.36)

Model 3: BC*ENV in the genetic analysis

α0 1.562 (0.233) − 0.149 (0.066) 2.875 (0.151) − 0.303 (0.043) 2.575 (0.200) − 0.289 (0.063) 1.072

α1 − 0.459 (0.184) 0.068 (0.033) − 0.369 (0.046) 0.235 (0.023) − 0.211 (0.043) 0.734 (0.038)

λ (%) 1.58 (96.75) 0.05 (3.25) 2.91 (93.54) 0.20 (6.46) 2.62 (79.16) 0.69 (20.84)

Model 3: BC*ENV in the phenotype analysis

α0 0.642 (0.170) − 0.091 (0.057) 1.010 (0.081) − 0.088 (0.031) 3.034 (0.165) − 0.293 (0.058) 1.073

α1 − 0.388 (0.214) 0.085 (0.034) − 0.182 (0.062) 0.228 (0.023) − 0.199 (0.037) 0.719 (0.038)

λ (%) 0.66 (90.30) 0.07 (9.70) 1.02 (82.33) 0.22 (17.67) 3.07 (81.83) 0.68 (18.17)

Fig. 1 Lactation curves in high, medium, and low production 
environments

Fig. 2 Distribution of Holstein/Friesian (HF) and Jersey (JR) 
proportions for the genotyped animals for each state and CDC. Each 
bar represents a CDC and each state is represented by a different 
colour
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analysis substantially reduces the herd variance to 2.875, 
compared to 4.063 when BC × ENV is not fitted in the 
genetic analysis (Table 3). For the same comparison, fit-
ting BC × ENV in the genetic analysis increased the esti-
mated additive genetic variance of α0 from 1.256 to 1.562 
compared to not fitting BC × ENV, while the PE variance 
decreased slightly from 2.853 to 2.575, and the residual 
variance was hardly affected.

As expected, fitting BC × ENV in the phenotype analy-
sis absorbed a large part of the CDC and herd variances 
and caused a substantial drop in the animal variance 
(result not shown). Consequently, in the subsequent 
genetic analysis (last row of Table  3), there was a 49% 
drop in the estimated additive genetic variance of α0 
(from 1.256 to 0.642) and a 75% drop in the estimated 

herd variance of α0 (from 4.063 to 1.01). However, the 
estimate of PE variance was not much affected, going 
from 2.854 to 3.034.

In the high production environment, there was a strong 
upward trend in yield as HF ancestry increased, when BC 
× ENV effects were estimated in the phenotype analysis 
(Fig. 4) and a substantially smaller trend when included 
in the genetic analysis (Fig. 3). Trends were less clear in 
the medium and low production environments, although 
the cows with more HF blood still tended to have higher 
yields than those with less HF blood. This population had 
a lower average and less variable proportion of Jersey 
breed compared to the proportion of HF breed, leading 
to larger SE of the estimates of Jersey breed composition 
classes. If the estimates with very high SE were ignored, 

Fig. 3 Estimated effects of breed composition by environment when fitted in the genetic model. Error bars represent the standard error of 
the estimates. Within each environment, the average breed composition estimate for that environment was subtracted from each of the breed 
composition estimates and the average milk yield for that environment was then added. C1 to C4 are the four classes of HF or JR breed composition 
as estimated from SNP genotypes, and HFx and JRx are ungenotyped animals classified as HF or JR crosses in the field

Fig. 4 Estimated least-square (LS) means of breed composition by environment when fitted in the pre-adjustment phenotype model. Error bars 
represent the standard error of the estimates. Breed classes identical to Fig. 3
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there was a general trend for higher grade Jersey classes 
to yield more than the lower grade classes in the medium 
and low production environments, although the differ-
ences are small with regards to the errors of estimation 
(Fig. 3).

Variance components and heritability estimates for DIM
Genetic parameters for TD yields across the lactation 
were estimated using Model 3, in which the fixed effect 
of BC × ENV was fitted along with the random addi-
tive genetic, herd, and PE effects. The estimates of addi-
tive genetic, herd, and PE variances for the eight DIM 
(28, 70, 112, 154, 197, 238, 280, and 321), the midpoints 
of the eight DIM classes used to group the heterogene-
ous residual variances, are shown in Fig. 5. The additive 
genetic variance steadily decreased from 1.09 on DIM 
28 to 0.63 by DIM 321 and the herd variance followed a 
similar decline from 2.17 to 1.25. However, the PE vari-
ance declined from 2.58 on DIM 28 to its lowest value of 

1.23 on DIM 197, and then increased to 1.71 on DIM 321. 
The estimates of heritability for the eight test days ranged 
from 0.193 to 0.250 with an average of 0.230 (Fig. 5 and 
Table 4) and a peak on DIM 112. The estimated herita-
bility for average yield across the eight DIM records was 
0.361.

Genetic and permanent environment correlations 
between DIM
The additive genetic correlations between the eight DIM 
decreased as the interval increased but were always high, 
ranging from 0.846 to 0.998 (Table 4). The high positive 
genetic correlation observed across all DIM is useful in 
these systems, where cows may have milk records only 
for part of the lactation period, which means that the 
ability to select for increased full lactation yield does not 
depend highly on when during the lactation period the 
data is available for a given cow. PE correlations between 
DIM followed the same trend as the genetic correlations 

Fig. 5 Left plot: Additive genetic (G), herd (H), permanent environmental (PE), and residual (R) variance estimates; and right plot: heritability 
estimates derived from the left plot

Table 4 Genetic (below the diagonal) and permanent environment (above the diagonal) correlations and heritabilities (on the 
diagonal) for selected DIM

DIM Days in milk

Day 28 70 112 154 197 238 280 321

28 0.210 0.992 0.958 0.882 0.749 0.576 0.382 0.204

70 0.998 0.241 0.987 0.935 0.828 0.676 0.497 0.328

112 0.992 0.998 0.250 0.98 0.908 0.787 0.631 0.477

154 0.979 0.99 0.997 0.246 0.973 0.893 0.772 0.641

197 0.959 0.975 0.988 0.997 0.245 0.973 0.898 0.802

238 0.931 0.952 0.971 0.986 0.996 0.240 0.975 0.918

280 0.893 0.919 0.944 0.966 0.984 0.996 0.222 0.983

321 0.846 0.877 0.908 0.936 0.962 0.982 0.995 0.193
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(Table  4) but with much larger changes as the interval 
increased, ranging from 0.204 to 0.992.

Accuracy and bias of GEBV
Of the 3842 genotyped cows and the 661 genotyped bulls, 
970 cows (25%) were identified as daughters of 122 bulls 
(Fig. 6). The number of daughters per bull ranged from 1 
to 87, with a median of 3. Because 25% of the genotyped 
cows were assigned to sires and most bulls had no or very 
few daughters in the dataset, the validation of GEBV was 
performed on the genotyped cows, rather than on the 
bulls.

Validation was undertaken for GEBV âα0 obtained 
from Model 3 (adjusted TD from Model 2-M1) when BC 
× ENV was included in the genetic analysis. The results 
of the validation of GEBV are in Table  5 for method B 
(i.e. random selection of CDC to form the validation set), 
which is the method expected to yield the least biased 
estimates of accuracy. The estimates of the achieved 
accuracy were 0.196 when validating âα0 with the average 
unadjusted TD, and 0.420 and 0.363, when validating âα0 
with the average adjusted TD and average TD corrected 
only for CDC, respectively.

The estimate of the achieved accuracy using unad-
justed TD is expected to be heavily biased downwards 
due to the target phenotypes of the validation cows 
not being adjusted for fixed effects, which inflates the 

variance of the target phenotypes. The adjusted TD 
were adjusted for all fixed effects, so that the expected 
variance of the phenotypes of the validation cows were 
the same as for the training population. The achieved 
accuracy (0.420) using adjusted TD was close to the 
average of the estimates of accuracy of each GEBV 
derived from their PEV (0.413). Using the TD of vali-
dation cows adjusted for CDC resulted in a slightly 
lower accuracy than the average estimated accuracy 
based on the PEV. Because the TD adjusted for CDC 
are not adjusted for other fixed effects, the trait vari-
ance is inflated in relation to the variance of the target 
phenotype, creating a downward bias in the estimate of 
the achieved accuracy of the GEBV. The slopes of the 
regressions of the adjusted TD or the TD adjusted for 
CDC on the âα0 , were slightly higher than 1.0, indicat-
ing that the absolute values of the GEBV slightly under-
estimated the true breeding values.

GEBV âα0 were also obtained from the genetic analysis 
(Model 3) when BC × ENV was included in the pheno-
type analysis, and were validated with adjusted TD. The 
validation accuracy was very similar (0.426) to the valida-
tion accuracy obtained when the BC × ENV was included 
in the genetic analysis (0.420). However, the regression 
coefficient of TD corrected for CDC on GEBV for âα0 
was 1.863, which indicated that the absolute GEBV were 
largely underestimated.

Fig. 6 Number of offspring identified to parents. Each bar represents a parent

Table 5 Achieved accuracies (SE) and regression coefficient (SE) of GEBV for method B

SE Standard error, TD Test-day, CDC Cattle development centre

Target phenotypes

Unadjusted TD Adjusted TD TD corrected for CDC

Achieved accuracy 0.196 (0.016) 0.420 (0.015) 0.363 (0.015)

Regression coefficient 0.703 (0.123) 1.156 (0.095) 1.013 (0.095)



Page 11 of 14Al Kalaldeh et al. Genet Sel Evol           (2021) 53:73  

The estimates of the achieved accuracy when method 
A was used (i.e. random selection of the cows included 
in the validation sets) (Table 6), were, as expected, sub-
stantially higher than those from method B (Table  5). 
The slope of the regressions for the adjusted TD and the 
TD adjusted for CDC were also substantially higher than 
those obtained from method B, whereas the slope of the 
regression of unadjusted TD was substantially lower.

Discussion
The average TD yield of 7.12  kg/day observed in this 
study is slightly lower than the official national average 
of 8.09  kg/day reported for crossbred cows in India [1]. 
The average TD yield of the high, medium and low pro-
duction environment classes were 9.64, 6.88, and 4.61 kg/
day, respectively, and the estimates of herd effects ranged 
from − 4.35 to 6.81  kg/day, which illustrate the wide 
range of production environments across smallholder 
farms. This shows that it is unwise to think of small-
holder farms as being a defined system. Rather, the range 
of environments in which smallholder farms exist and 
create for their cows is large. The average yields that we 
observed here are higher than those reported for simi-
lar smallholder crossbred systems in Kenya [5, 8, 15, 16], 
which suggest better production environments on Indian 
farms, but also may indicate a difference in the milk pro-
duction potential of indigenous cattle in India versus 
Kenya. The average yield was lower than that reported by 
Pereira et al. [17] for Girolando (Holstein × Gyr crosses) 
in Brazil. However, Madalena et  al. [18] reported that 
most of the published research in Brazil does not repre-
sent commercial practice, and that average commercial 
yields of most of the crossbred dairy cattle in Brazil are 
about the same as those observed for our low production 
environment class of farms.

A striking feature of our results is the lack of a typi-
cal lactation curve for the low and medium production 
environment classes. A very similar result was found for 
similar smallholder crossbred cattle in Kenya [8]. For 
purebred and crosses between Bos taurus dairy breeds in 
Kenya, Wahinya et al. [19] also reported a lack of a typi-
cal lactation curve but it occurred at substantially higher 
production levels. This raises the question: to what extent 
is the response of the shape of the lactation curve to a 

lower input environment a function of the genotype of 
cow?

We present the first results of the genetic evaluation 
of smallholder crossbred cows in India, in the absence of 
a structured genetic testing program. The results show 
genetic variation and heritabilities that can allow genetic 
improvement of these cows. These results are supported 
by validation accuracies of GEBV that are almost iden-
tical to those predicted by the PEV of the GEBV. These 
results agree with the results of a similar but substantially 
smaller study of genetic parameters of smallholder cross-
bred cattle in Kenya [7]. In both cases, it is a remarkable 
finding that valuable levels of genetic variation exist in 
spite of the many challenges due to the data originating 
from smallholder systems.

Some of the main challenges in smallholder systems 
include: very small herd sizes (on average, two cows per 
herd in the current data); unreliable assignment of age 
and parity when initiating recording on cows of all ages 
in a system where farmers (mostly) do not keep farm data 
records, where there is no pedigree recording and inac-
curate milk recording with low yields leading to high 
coefficients of variation; and where the environments 
experienced by the cows vary enormously as feed sup-
ply and quality fluctuate widely in both the short and 
long terms. These challenges substantially limit the abil-
ity of analyses to account for non-genetic effects in ways 
that are routine in intensive dairy systems. For example, 
very small herd sizes mean that the usual practice of fit-
ting herd-year-season effects to account for short- and 
longer-term shared environment effects [20–23] is not 
feasible. It should be noted that the average herd size 
reported here overestimates the herd size compared to 
that normally considered in genetic evaluations because 
it is based on the number of cows in a given herd that 
occur in the dataset at some point in time but not nec-
essarily at the same time as other cows under recording. 
More than 50% of the TD records are for herds with two 
cows recorded on that day and 20% of the TD records 
are for herds with a single cow recorded on that day. The 
data limitations of smallholder systems also prevent the 
use of more exact genetic models that are often applied 
in intensive dairy systems. For example, the unreliable 
assignment of age and parity, coupled with the fact that 

Table 6 Achieved accuracies (SE) and regression coefficient (SE) of GEBV for method A

SE Standard error, TD Test-day, CDC Cattle development centre

Target phenotypes

Unadjusted TD Adjusted TD TD corrected for CDC

Achieved accuracy 0.143 (0.016) 0.455 (0.014) 0.404 (0.015)

Regression coefficient 0.489 (0.118) 1.214 (0.091) 1.086 (0.092)



Page 12 of 14Al Kalaldeh et al. Genet Sel Evol           (2021) 53:73 

few cows have data for multiple lactations prevent the 
application of multi-trait models that treat different lac-
tations as different traits [24–26]. However, as the data 
accumulate over time, young cows will enter the record-
ing program and will then be followed from first to later 
lactations, allowing such analyses in the future.

Fitting herd as a random effect rather than a fixed 
effect, as was done here, improves the accuracy of genetic 
evaluations when herd sizes are small [21, 27–29]. It 
becomes critical to fit herd as a random effect when the 
herd size is very small, because a fixed herd effect would 
take a very high proportion of the available degrees of 
freedom and absorb out a high proportion of the phe-
notypic variation, including the underlying genetic vari-
ation. When herd is fitted as a random effect, as long as 
some cows in the data are related, the relationship matrix 
separates the additive genetic variance from the herd var-
iance, even if there is only one cow per herd, by provid-
ing genetic linkages between herds [30]. As the number 
of relationships becomes larger, the efficiency of the rela-
tionship matrix to separate genetic from herd variation 
increases. In this regard, an accurate genomic relation-
ship matrix will always contain more and more accurate 
relationships, and hence be more powerful than the use 
of a pedigree relationship matrix. With small herd sizes, 
there will be particular value in having a genomic rela-
tionship matrix rather than an initially sparse pedigree 
relationship matrix. This substantial advantage should 
persist long after pedigree data begin to accumulate. 
The immediate value of a genomic relationship matrix, 
as used here, is that it allows genetic analyses and GEBV 
to be produced as soon as phenotype data are available 
rather than waiting for pedigree information to accu-
mulate. The arguments above suggest that genomic rela-
tionships may also have longer-term advantages when 
recording is initiated in smallholder populations versus 
populations with larger herd sizes, where the large num-
ber of cows per herd allows the separation of genetic 
and herd effects, even with sparse pedigree relationship 
matrices. This has unexplored implications for the rela-
tive value of pedigree recording versus continued geno-
typing over time in smallholder genetic improvement 
programs.

In studies such as ours, there is not one compelling 
piece of evidence that proves a particular model to be 
superior to the others. The most appropriate model 
might also depend on how the information is used. 
In the present case, we presented a subset of a much 
larger number of phenotypic and genetic models that 
were explored. Among those presented here, we believe 
that the most suitable model for the estimation of 
GEBV is Model 3, based on adjusted TD from Model 
2-M1, and including BC × ENV as a fixed effect in the 

genetic analysis. In contrast, when advising farmers on 
the most suitable breed composition for their environ-
ment, the BC × ENV estimates obtained from the phe-
notype analysis are more appropriate.

As justification for these assertions, Model 2-M1 
includes random effects for herd and animal (assumed 
to be unrelated) in the phenotype analysis, which would 
be expected to reduce the absorption of animal effects 
into estimates of the fixed effects. When the adjusted 
TD were created from the sum of the residuals and ran-
dom animal effects, excluding the random herd effects, 
we hypothesised that herd might absorb a proportion 
of the genetic variance. This was confirmed in the sub-
sequent genetic analysis that yielded a very large drop 
in additive genetic variance of α0 from 1.256 to 0.470, 
compared to the adjusted TD that included the ran-
dom herd estimates. Then, we examined the relevance 
of including BC × ENV effects in the genetic analysis. 
This was based on the expectation that there are large 
non-additive genetic effects on the milk production of 
crosses between Bos taurus × Bos indicus cattle in the 
tropics [2]. Including BC × ENV in the genetic analy-
sis led to a further increase in the estimated additive 
genetic variance of α0 from 1.256 to 1.562, with a con-
comitant reduction of the PE variance, as expected if 
including BC × ENV allows to better account for non-
additive crossbreeding effects in the data. The valida-
tion analyses of the GEBV from this analysis showed 
that the GEBV were unbiased and gave validation accu-
racies almost identical to those derived from the PEV of 
the GEBV, which gives confidence that this model gen-
erates reliable GEBV. The achieved accuracies are much 
lower than those obtained in intensive dairy industries 
[31], which reflect the much denser data and denser 
relationships in intensive dairy systems. Our validation 
accuracies were similar to those obtained by Brown 
et  al. for a similar smallholder system in Kenya, and 
those obtained by Powell et  al. [32] from a simulation 
of a smallholder dairy system with an average herd size 
of 1.58.

As hypothesised and then demonstrated by our results, 
when breed composition effects are not included in the 
phenotype models, CDC effects absorb a proportion of 
the differences in breed composition because of the vari-
ation in breed composition between CDC. Thus, the esti-
mates of BC × ENV effects in the genetic analysis result 
in underestimates of the differences in breed composi-
tion. For advising farmers on the most suitable breed 
composition, it is better to use the estimates obtained 
from the phenotype analysis, in which breed composition 
and CDC effects are fitted simultaneously.

The two-step analysis undertaken here is justified by 
the large loss of information about non-genetic effects if 
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the data on cows with phenotype but no genotype data 
are not used. In the absence of any pedigree informa-
tion, a one-step analysis could, in principle, be applied 
[33] by assuming that the 4721 ungenotyped cows are 
unrelated to each other and to the 3842 genotyped cows, 
and that they all have an average breed composition. The 
impact on parameter estimates would likely be substan-
tial. However, we were unable to obtain solutions when 
this was attempted, perhaps because of the very high 
degree of confounding between herd, PE and additive 
genetic effects, and because the software that we used 
could not accommodate the combination of fixed and 
random effects applied here. The use of a two-step pro-
cess requires a series of trade-offs in the analyses which 
means that no set of analyses is ideal. Thus, the goal 
should be to obtain genotype information on all the cows 
with phenotypes so that genetic parameters or GEBV and 
fixed effects can be obtained simultaneously.

The estimates of breed composition effects showed a 
general trend of increasing yield as the proportion of HF 
blood increased, and that yields did not increase above 
intermediate classes (25–50% and 50–75% HF) in the 
medium and low production environments, which sug-
gests the expression of some heterosis. The estimates 
for the proportion of Jersey blood had higher SE and the 
trend of higher yields as the proportion of Jersey blood 
increased was much weaker than for Holstein. The rela-
tively weak expression of heterosis compared to that 
expected from the reviews of tropical dairy crossbreed-
ing by Cunningham and Syrstad [2] may reflect that the 
literature is based on defined crosses such as F1, F2 and 
first backcross, whereas smallholder crossbreds pre-
dominantly result from many generations of crossing. 
After analysing published data, Rutledge [34] concluded 
that Bos taurus × Bos indicus dairy crosses exhibited a 
much larger loss of heterosis in second and later genera-
tion crosses than expected from the loss of heterozygo-
sity caused by recombination. He postulated that this 
was due to the breakup of epistatic interactions that had 
evolved within Bos taurus and within Bos indicus. We are 
currently undertaking a range of alternative analyses of 
breed composition effects, including analyses that explic-
itly fit heterosis, to better understand the effects of breed 
composition and their interaction with production envi-
ronments in Indian smallholder systems.

Our results are a first attempt to obtain useful GEBV 
and breed composition effects for these complex and 
diverse smallholder systems. While the estimates that we 
obtained should be sufficiently reliable to initiate genetic 
improvement, many issues require further explora-
tion to improve these estimates as the data accumulate. 
Apart from the obvious need to extend these results to 
other traits that affect the profitability and sustainability 

of these systems, we expect that substantial genotype-
by-environment interactions (G × E) may be present. We 
acknowledged this when fitting breed composition effects 
for three production levels but there is no allowance for 
G × E that affect additive genetic effects contributing 
to the estimation of GEBV. In addition, while produc-
tion level as defined here effectively integrates multiple 
environmental influences on production, there are other 
environmental factors, such as heat stress, that vary 
over time and location that could significantly affect the 
genetic merit of different animals for production in dif-
ferent environments [35]. A full optimisation of genetic 
analyses and genetic improvement in these systems will 
require many years of substantial research investment, as 
has already been the case for the intensive dairy systems 
worldwide.

Conclusions
Our results show that, in spite of the many challenges of 
smallholder systems and data, there is substantial addi-
tive genetic variation for milk production in smallholder 
crossbred dairy systems in India. A combination of small-
holder data recording and SNP genotyping can be used 
to generate GEBV, allowing immediate genetic improve-
ment of bulls entering AI. Using the same data, the per-
formance of the cows of different breed compositions 
can be determined in different production environments, 
which makes it possible to provide better advice to small-
holder farmers on optimum breed composition for their 
environment. In the same way that genetic improvement 
in intensive dairy systems has benefited greatly from 
the large volume of research since progeny testing first 
allowed effective genetic improvement to be achieved, 
a much deeper understanding of smallholder systems, 
along with the genetics and value of traits in such sys-
tems, will enable more effective genetic improvement in 
smallholder systems to evolve in the future.
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