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Abstract

The recent model of the interstellar radiation field as a Maxwell field
is improved by considering separately the different frequencies at the
stage of the fitting. Using this improved procedure: (i) It is checked in
detail that the model does predict extremely high values of the spectral
energy density (SED) on the axis of a galaxy, that however decrease
very rapidly when ρ, the distance to the axis, is increased from zero.
(ii) The difference between the SED values (with ρ = 1 kpc or 8 kpc),
as predicted either by this model or by a recent radiation transfer
model, is reduced significantly. (iii) The slower decrease of the SED
with increasing altitude z, as compared with the radiation transfer
model, is confirmed. We also calculate the evolutions of the SED
at large ρ. We interpret these evolutions by determining asymptotic
expansions of the SED at large z, and also ones at large ρ.

1 Introduction

One constraint over the interstellar radiation field (ISRF) in a galaxy, is
that it should be a solution of the Maxwell equations. However, the existing
models for the ISRF do not consider the electromagnetic field with its six
components: instead they consider the stellar emissivities, the light inten-
sities, and the dust opacity, and they focus on the radiative transfer (e.g.
[1, 2, 3, 4, 5, 6]). Therefore, those models cannot take that constraint into
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account. In a recent work [7], we proposed a model applicable to the relevant
ideal case of an axisymmetric galaxy, and that provides for the ISRF such
an exact solution of the Maxwell equations. This is indeed needed to study
the relevance of a possible candidate for dark matter that emerges [8] from
an alternative, scalar theory of gravity. As a step in checking the model
proposed in Ref. [7], its application to predict the variation of the spectral
energy density (SED) in our Galaxy has been subjected to a first test [9]. To
this purpose, the model has been adjusted by asking that the SED predicted
for our local position in the Galaxy coincide with the SED determined from
spatial missions [10, 11, 12, 13]. It has been found in that most recent work
[9] that the spatial variation of the SED thus obtained with our model does
not differ too much in magnitude from that predicted by the recent radia-
tion transfer model of Ref. [6], but that the SED predicted by our model:
(i) is extremely high on the axis of the Galaxy — i.e., on the axis of the
axial symmetry that is assumed for the model of the Galaxy; (ii) has rather
marked oscillations as function of the wavelength; and (iii) seems to decrease
more slowly when the altitude z increases (or rather when |z| increases), as
compared with the radiation transfer model.

The aim of this paper is to present an improved numerical scheme to
operate that “Maxwell model of the ISRF” and to apply this improved scheme
to check the findings (i)–(iii) above.

2 Short presentation of the model

This model has been presented in detail in Ref. [7]. An axisymmetric galaxy
is modelled as a finite set of point-like “stars”, the azimuthal distribution of
which is uniform. Those points xi (i = 1, ..., imax) are obtained by pseudo-
random generation of their cylindrical coordinates ρ, φ, z with specific prob-
ability laws, ensuring that the distribution of ρ and z is approximately that
valid for the star distribution in the galaxy considered, and that the set {xi}
is approximately invariant under azimuthal rotations of any angle φ [7]. In
the present work, as in Refs. [7, 9], 16 × 16 × 36 triplets (ρ, z, φ) were thus
generated, so that imax = 9216, and the distribution of ρ and z is approxi-
mately that valid for the star distribution in the Milky Way.

The ISRF is also assumed axisymmetric, and thus depends only on ρ
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and z. Since we want to describe, not the field inside the sources and in
their vicinity, but instead the smoothed-out field at the intragalactic scale,
we search for a solution of the source-free Maxwell equations. In the axisym-
metric case, any time-harmonic source-free Maxwell field is the sum of two
Maxwell fields: (i) one deriving from a vector potential having just the axial
component Az non-zero, with Az obeying the standard wave equation, and
(ii) one deduced from a solution of the form (i) by electromagnetic (EM)
duality [14]. We consider for simplicity a model ISRF that has a finite fre-
quency spectrum (ωj)j=1,...,Nω , hence we may apply the foregoing result to
each among its time-harmonic components (j), and then just sum these com-
ponents. Moreover, we envisage the ISRF as being indeed an EM radiation
field, thus excluding from consideration the purely magnetic part of the in-
terstellar EM field [15]. Hence the ISRF is made of “totally propagating” EM
waves, i.e., ones without any “evanescent” component [7, 17]. Specifically,
we assume that the two scalar potentials Aj z and A′j z that define the de-
composition (i)-(ii) of each time-harmonic component (j), mentioned above,
are themselves totally propagating. In that case, both Aj z and A′j z have the
explicit form [16, 17]:

ψωj Sj
(t, ρ, z) = e−iωjt

∫ +Kj

−Kj

J0

(
ρ
√
K2
j − k2

)
eik z Sj(k) dk, (1)

with ωj the angular frequency, Kj := ωj/c, J0 the first-kind Bessel func-
tion of order 0, and where Sj is some (generally complex) function of k ∈
[−Kj,+Kj]. For a totally propagating, axisymmetric EM field, but other-
wise fully general, the two potentials Aj z and A′j z may be different, i.e., may
correspond with different “spectra” in Eq. (1), say Sj and S ′j [14].

To determine these potentials, that is, to determine the spectrum func-
tions Sj, we use a sum of potentials emitted by the “stars”. We assume that
every “star”, each at some point xi, contributes to the global potential Aj z
of a given frequency ωj (j = 1, ..., Nω) by a spherically symmetric scalar wave
of the same frequency ωj, whose emission center is its spatial position xi —
in order that all the directions starting from the star be equivalent. Now a
time-harmonic spherically symmetric solution of the wave equation can be
either an outgoing wave, an ingoing wave, or a mixing of the two, but (up
to an amplitude factor) only the following purely outgoing wave satisfies the
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Sommerfeld radiation condition:

ψω (t,x) =
ei(Kr−ωt)

Kr
, K :=

ω

c
, r := |x| . (2)

Thus the contributions of the i-th star to the potentials Aj z and A′j z can
differ only in amplitude, since both must be a multiple of

ψxi ωj
(t,x) := ψωj

(t,x− xi) =
ei(Kjri−ωjt)

Kjri
, (3)

where Kj :=
ωj

c
, ri := |x− xi|. But there is no apparent physical reason

to affect different amplitudes to the contribution of the i-th star to Aj z and
to A′j z, hence we assume both of them to be equal to ψxi ωj

. To determine the
global potentials Aj z and A′j z (j = 1, ..., Nω), that generate the axisymmetric
model ISRF with a finite frequency spectrum (ωj), the sum of the spherical
potentials (3) emanating from the point stars is fitted to the form (1). As
noted in Ref. [7], this is not assuming that the ISRF is indeed the sum of the
radiation fields emitted by the different stars (which is not correct, due to the
radiation transfers) — because (a) the equalities (4), (20) or (21) below are
not exact equalities but ones in the sense of the least squares, and (b) nothing
is really assumed regarding the EM field of the “star” itself, in particular we
actually do not need to assume that it has the form (i)-(ii) above (e.g. the
one corresponding with two equal potentials Ai j z = A′i j z = ψxi ωj

).

In the previous works [7, 9], this fitting was done for all frequencies at
once. That is, the following least-squares problem was considered:

Nω∑
j=1

imax∑
i=1

wjψxi ωj
∼=

Nω∑
j=1

ψωj Sj
on G, (4)

where the sign ∼= indicates that the equality is in the sense of the least squares
(the arguments of the functions varying on some regular spatio-temporal grid
G), and where the numbers wj > 0 are the weights affected to the different
frequencies. In view of the axial symmetry, the spatial position x is restricted
to the plane φ = 0, so x = x(ρ, z) and

G = {(tl, ρm, zp), 1 ≤ l ≤ Nt, 1 ≤ m ≤ Nρ, 1 ≤ p ≤ Nz}. (5)

Since the contributions of the i-th star to Aj z and to A′j z have both been
assumed to be equal to ψxi ωj

, there is no possibility to distinguish between
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Aj z and A′j z, either — whence ψωj Sj
= Aj z = A′j z on the r.h.s. of (4). The

unknowns of the problem are the spectrum functions Sj, j = 1, ..., Nω. We
determine Sj by the (generally complex) values

Snj := Sj(knj) (n = 0, ..., N), (6)

where
knj = −Kj + nδj (n = 0, ..., N), (7)

with δj := 2Kj/N , is a regular discretization of the interval [−Kj,+Kj]
for k in the integral (1). Calculating those integrals with the “Simpson 3
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composite rule”, (4) becomes the computable least-squares problem

Nω∑
j=1

imax∑
i=1

wjψxi ωj
∼=

Nω∑
j=1

N∑
n=0

fnj Snj on G, (8)

with

fnj(t, ρ, z) = anj J0

(
ρ
√
K2
j − k2nj

)
exp [i (knjz − ωj t)] . (9)

The Snj ’s are the solved-for parameters in the least-squares problem (8). In
Eq. (8), N must be a multiple of 3, and in Eq. (9) we have

anj = (3/8) δj (n = 0 or n = N), (10)

anj = 2× (3/8) δj (mod(n, 3) = 0 and n 6= 0 and n 6= N), (11)

anj = 3× (3/8) δj otherwise. (12)

Part (i) of the decomposition of the model ISRF then obtains as follows [7]:

Eφ = Bρ = Bz = 0, (13)

Bφ(t, ρ, z) =
N∑
n=0

Nω∑
j=1

Rn J1

(
ρ
ωj
ω0

Rn

)
Re [Fnj(t, z)] +O

(
1

N4

)
, (14)

Eρ(t, ρ, z) =
N∑
n=0

Nω∑
j=1

c2

ω0

knRn J1

(
ρ
ωj
ω0

Rn

)
Re [Fnj(t, z)] +O

(
1

N4

)
, (15)
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Ez(t, ρ, z) =
N∑
n=0

Nω∑
j=1

(
c2

ω0

k2n − ω0

)
J0

(
ρ
ωj
ω0

Rn

)
Im [Fnj(t, z)] +O

(
1

N4

)
,

(16)
with Rn =

√
K2

0 − k2n and

Fnj(t, z) =

(
ωj
ω0

)2

an exp

[
i

(
ωj
ω0

knz − ωj t
)]

Snj. (17)

(Here kn and an (0 ≤ n ≤ N) are as knj and anj in Eqs. (7) and (10),
replacing Kj by K0 = ω0

c
, with ω0 some (arbitrary) reference frequence.)

Since we assume Aj z = A′j z for the global potentials generating the model
ISRF, part (ii) of its decomposition is deduced from the first part by the EM
duality:

E′ = cB, B′ = −E/c. (18)

It follows from this and from (13) that the model ISRF, sum of these two
parts, has the components (14)–(16), and that the other components are just

Eφ = cBφ, Bρ = −Eρ/c, Bz = −Ez/c. (19)

3 Frequency-by-frequency fitting of the po-

tentials

Equation (4) may be split into the different frequencies (marked by the index
j), simply by removing the sum on j from both sides of either equation. The
same is true for Eq. (8). Naturally, also the weight wj may then be removed
from the l.h.s., by entering the inverse 1/wj into the unknown spectrum
function Sj on the r.h.s. Equation (8) thus becomes

imax∑
i=1

ψxi ωj
∼=

N∑
n=0

fnj Snj on G (j = 1, ..., Nω). (20)

At this point, one notes that both ψxi ωj
[Eq. (3)] and fnj [Eq. (9)] have the

same dependence on time, exp(−iωjt), which we can hence remove also, to
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obtain a least-squares problem with merely the spatial variables ρ and z:

imax∑
i=1

eiKjri

Kjri
∼=

N∑
n=0

gnj Snj on G′ (j = 1, ..., Nω), (21)

where G′ = {(ρm, zp), 1 ≤ m ≤ Nρ, 1 ≤ p ≤ Nz} is the spatial grid, and

gnj(ρ, z) = anj J0

(
ρ
√
K2
j − k2nj

)
exp (iknjz) . (22)

The separation, into the different frequencies, of the fitting of the sum of the
potentials emitted by the “stars”, is consistent with the linearity of the wave
equation and the Maxwell equations. Moreover, the elimination of the time
variable from the fitting represents an appreciable gain in computing time.
We recall that, for the EM field in a galaxy, the arguments of the Bessel
function J0 and the angular exponential, e.g. in Eq. (22), have the huge
magnitude |x| /λ ∼ 1025, which enforces us to use a precision better than
quadruple precision in the computer programs, thus leading to slow calcu-
lations [7]. Note that the “separate fitting”, i.e. the least-squares problem
(21), is not exactly equivalent to the “grouped fitting”, i.e. the least-squares
problem (8) (this will be confirmed by the numerical results below): the two
are slightly different ways of adjusting the global potentials (1). 1 However,
equations (13)–(19) apply with the separate fitting as well — although the
relevant values Snj are different. The separate fitting is more appropriate,
because solutions corresponding with different frequencies behave indepen-
dently in the Maxwell equations, and each frequency can be treated with
more precision by considering it alone. Indeed a very important point is
that, by switching to the separate fitting, we improve the situation regarding
the “overfitting”, i.e., we decrease the ratio R of the number of parameters
Npara to the number of data Ndata: now, for each value of the frequency in-
dex j, we have to solve the least-squares problem (21), with Npara = N + 1
unknown parameters and Ndata = Nρ × Nz data (the “data” are the values
of the l.h.s. of (21) on the spatial grid G′). Whereas, with the formerly
used grouped fitting, we had to solve just one least-squares problem (8) with
Npara = (N + 1)×Nω unknown parameters and Ndata = Nt ×Nρ ×Nz data.

1 If Eq. (20), or equivalently Eq. (21), were an exact equality instead of being an
equality in the sense of the least squares, then of course it would imply Eq. (8) (with
wj ≡ 1) as an exact equality.
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On the other hand, through the processes of radiative transfer, there are
indeed transfers of radiation intensity from some frequency domains to other
ones, e.g. the interaction with dust leads to a transfer from higher to lower
frequencies (see e.g. Fig. 3 in Ref. [4]). But these processes are not directly
taken into account by the present model: not any more with the grouped
fitting than with the separate fitting. They are indirectly taken into account
through the adjustment of the energy density [9], which we briefly recall now.

The time-averaged volumic energy density of an EM field having a finite
set of frequencies, (ωj)j=1,...,Nω , is given by [9]

U(x) :=
δW

δV
(x) =

Nω∑
j=1

uj(x), uj(x) :=
1

4

6∑
q=1

αq

∣∣∣C(q)
j (x)

∣∣∣2 , (23)

where the complex numbers C
(q)
j (x) (q = 1, ..., 6) are the coefficients in the

expansion, in time-harmonic functions, of each among the six components of
the EM field:

F (q)(t,x) = Re

(
Nω∑
j=1

C
(q)
j (x)e−iωjt

)
(q = 1, ..., 6); (24)

and where αq = ε0 for an electric field component, whereas αq = ε0c
2 for

a magnetic field component (here ε0 is the vacuum permittivity, with ε0 =
1/(4π × 9× 109) in SI units). For an axisymmetric EM field, it is enough to
consider the plane φ = 0, thus x = x(ρ, z), and we have

C
(q)
j = C

(q)
j (ρ, z), uj = uj(ρ, z). (25)

Using in that case the decomposition (i)-(ii), the expressions of three among

the C
(q)
j coefficients follow directly from the expressions (14)–(16) of the cor-

responding components of the EM field [9]. Moreover, in the special subcase
(18) considered here, the other components are given by (19), whence in the

same way the three remaining C
(q)
j coefficients.

Now note that, in the least-squares problem (21), that we use to determine
the values Snj allowing to compute the EM field (14)–(16) and (19), no data
relative to the intensity of the fields emitted by the point-like “stars” has
been used until now. Hence, we may multiply the l.h.s. of (21) by some
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number ξj > 0, thus obtaining now new values S ′nj = ξjSnj (n = 0, ..., N)
as the solution of (21). 2 Therefore, to adjust the model, we determine
the numbers ξj (j = 1, ..., Nω) so that the values uj(xloc) of the SED for
our local position xloc in the Galaxy and for the frequencies ωj, as given
by Eq. (23), coincide with the measured values, as determined from spatial
missions. We take the measured local values fxloc

(λj) as plotted in Ref. [13]
(see Appendix A), and we take ρloc = 8 kpc and zloc = 0.02 kpc, see e.g.
Ref. [18]. The model thus adjusted then allows us to make predictions:
in particular, predictions of the spatial variation of the SED in the Galaxy.
Such predictions may then be compared with predictions of the mainstream
models of the ISRF, which models are very different from the present model.

4 Results: maximum energy density

In the foregoing work [9], the same adjustment just described was used in the
framework of the “grouped fitting” (i.e. the least-squares problem (8)). A
surprising result was that found for the values of the maximum of the energy
density uj(x) in the Galaxy — thus, owing to the axial symmetry (25), for
the values of

ujmax = Max{uj(ρm, zp); m = 1, ..., Nρ, p = 1, ..., Nz}, (26)

found for the different spatial grids investigated, all having ρ varying regularly
from ρ0 = 0 to ρmax ' 10 kpc and z varying regularly from z0 = 0 or z0 =
−zmax to zmax ≤ 1 kpc. 3 These maximum values, which are always found at
ρ = 0, thus on the axis of symmetry, are extremely high for lower wavelengths
λj, with ujmax ' 1027 eV/cm3. Moreover, the value of uj(ρ = 0, z) depends
little on z in the domain investigated. These surprisingly high values occur
in a larger or smaller range of wavelengths, depending on the settings of
the calculation. Therefore, the question arises whether these extremely high
values are a physical effect or a numerical artefact. However, the dependence
on the settings is governed by the “amount of overfitting”: less overfitting

2 We might even affect different weights ξij to the radiations of frequency ωj emitted
by the different stars (i). However, given that our aim is to determine the spectra Sj , each
of which characterizes according to Eq. (1) the axisymmetric radiation of frequency ωj in
the galaxy, we feel that this would not likely change the results very significantly.

3 Precisely: ρ0 := ρm=1 ; ρmax := ρm=Nρ with, in this subsection, ρmax = 10 kpc×Nρ−1
Nρ

;

z0 := zp=1 and zmax := zp=Nz with, in this paper, zmax = 1 kpc and z0 = −zmax.
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increases the range of the high values [9]. This makes it plausible that the
high values might be a true prediction of the model. We will now try to
check whether this is indeed the case.

4.1 Robustness of the high values on the axis

In the present work based on the separate fitting (which, we argued, is more
appropriate), we investigated rather systematically the question which we
just asked. Since the influence of the spatial grid was found weak in the
foregoing work [9], only two grids were tried: an (Nρ = 10, ρ0 = 0)× (Nz =
21, z0 = −1 kpc, zmax = 1 kpc) grid (hereafter “rough grid”), and an (Nρ =
20, ρ0 = 0)×(Nz = 23, z0 = −1 kpc, zmax = 1 kpc) grid (hereafter “fine grid”).
However, we investigated the influence of the fineness of the frequency mesh
(Nω) and the influence of the discretization number N quite in detail. [That
integer N is used to compute the integrals over the wavenumber k, e.g. the
integral (1) approximated to

∑N
n=0 fnj Snj, see Eq. (8).] The effect of choos-

ing Nω = 23, Nω = 46, or Nω = 76, was studied simultaneously with the
effect of choosing N = 12, or N = 24, 48, 96, 192, 384, and this was done for
the two different grids.

Figures 1 to 4 show these effects. The most salient result is that the ex-
tremely high values of ujmax are now found with all calculations and in the
whole domain of λ — except that on some curves, abrupt oscillations toward
lower values of the energy density are present for some wavelengths. By
looking at the set of these figures, it is manifest that such abrupt oscillations
occur when an inappropriate choice of parameters is done: essentially, the
discretization number N has to be large enough. (This is certainly expected,
and this expectation is confirmed by the validation test in Ref. [7].) Indeed,
for a given value of Nω, those oscillations are maximum for the lowest value
of N in the trial (N = 12) and progressively disappear when N is increased.
What is a “large enough” value of N is not strongly dependent of the fine-
ness of the spatial grid (i.e., of whether the “rough” one or the “fine” one is
used) and that of the frequency mesh (Nω). However, when using the finest
frequency mesh (Nω = 76) for the “rough” spatial grid (Fig. 3), increasing N
does not allow us to eliminate the abrupt oscillations toward lower values: it
even happens then, that increasing N from 192 to 384 actually deteriorates
the ujmax = f(λj) curve. We interpret this as due to the fact that, when us-
ing a rougher spatial grid G′ for the fitting, less data are provided (the values
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taken on the grid G′ by the l.h.s. of Eq. (21)) to determine the unknowns Snj
on the r.h.s. of (21) — while, of course, increasing N increases the number
of unknowns and thus asks for more data. On the other hand, it is seen that
(for the relevant values of N , say N = 192 or N = 384, so that little or
no oscillations are present), the levels of ujmax depend quite little on Nω i.e.
on the fineness of the frequency mesh: compare the bottom figures between
Figs. 1, 2, and 3, and compare the three figures in Fig. 4. Also, the levels of
ujmax depend quite little on whether the rough or the fine spatial grid is being
used (see e.g. Fig. 5). We also checked that the results are little dependent
of the pseudo-random “draw” of the set of point-like “stars”: another draw
of 16× 16× 36 triplets (ρ, z, φ) gives very similar curves ujmax = f(λj) (Fig.
6). In summary, we now find that, for the relevant values of N , say N = 192
or N = 384, ujmax decreases smoothly from ' 1027 to ' 1021eV/cm3 when λj
varies in the domain considered, i.e., from λ ' 0.11µm to ' 830µm. We note
moreover that, for the low values of λj, the values of ujmax calculated using
the present “separate fitting” have the same (extremely high) magnitude as
those calculated with the former “grouped fitting” [9]. These observations
lead us to conclude that: (i) the extremely high values of ujmax (in the whole
domain of λ considered) are really what the “Maxwell model of the ISRF”
predicts for this model of the Galaxy. (ii) Somewhat surprisingly, it is the
low values of ujmax obtained for the higher values of λ when the “grouped
fitting” was used [9] that were a numerical artefact.

4.2 Decrease of the energy density away from the axis

Recall that the maxima of the uj ’s, which are extremely high, are always
obtained for ρ = 0, i.e. on the axis of the (model of the) Galaxy, and that
the energy density for ρ = 0 depends little on z in the domain investigated.
The next questions are therefore: which is the extension around ρ = 0 of the
domain of the very high values? Do such values imply that “too much EM
energy” would be contained there? To answer these questions, we calculated
the SED with successive lower and lower values of ρmax (see Note 3), starting
from its value for the calculations shown on Figs. 1 to 3, i.e., ρmax = 9 kpc,
and decreasing it to 1, 10−1, ..., 10−14 kpc, using the “rough grid” parameters
(see above), i.e., in particular, Nρ = 10, and using the Snj ’s obtained with
this rough grid with ρmax = 9 kpc — so that, for ρmax 6= 9 kpc, those cal-
culations are not ones on the fitting grid. We looked in detail to the values
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uj(ρm=2, zp=1) = uj(ρmax/9, z = 0). The main results are shown on Fig. 7:
even for very small values of ρ 6= 0, the values of uj are much smaller than
ujmax. That is, uj(ρ, z) decreases very rapidly when ρ is increased from 0.
Actually, we found on the example of the smallest wavelength, corresponding
with j = 1, that, from ρ = 1 kpc down to ρ = 10−15 kpc, we have to a good
approximation u1(ρ, z = 0) ' B/ρ, with

B = u1(ρ = 1 kpc) ' 10−0.45 (eV/cm3).kpc. (27)

This behaviour is not valid until ρ = 0, because for ρ → 0, u1(ρ, z = 0)
tends towards u1(0, 0) <∞, so we may assume u1(ρ, 0) . B/ρ. On the other
hand, Fig. 7 shows that there is nothing special to j = 1: we have uj . u1,
moreover for ρ & 10−15 kpc, uj depends only moderately on λj. We observed
in our calculations that, for ρ ≤ 1 kpc, uj(ρ, z) depends quite little on z with
|z| ≤ zmax = 1 kpc. Thus we may give the following approximation (which is
likely an overestimate) to uj: for all j, and for |z| ≤ zmax = 1 kpc, we have

uj(ρ, z) ' B/ρ for 10−15 kpc ≤ ρ ≤ 1 kpc, (28)

uj(ρ, z) ' uj(ρ) . B/ρ for ρ ≤ 10−15 kpc, (29)

with uj(ρ) a decreasing function of ρ. According to Eq. (51) of the Appendix,
this implies that, for |z| ≤ zmax = 1 kpc, we have also

fx(ρ,z)(λ) ' B/ρ for 10−15 kpc ≤ ρ ≤ 1 kpc, (30)

fx(ρ,z)(λ) . B/ρ for 0 ≤ ρ ≤ 10−15 kpc, (31)

independently of λ in the band

λ(1) := 0.1µm ≤ λ ≤ λ(2) := 830µm. (32)

With this approximation, we can assess the total EM energy (53) contained
in some disk

D(ρ1) : (0 ≤ ρ ≤ ρ1, 0 ≤ φ ≤ 2π, |z| ≤ zmax), (33)

with ρ1 ≤ 1 kpc, and in the wavelength band [λ(1), λ(2)]. This energy is
bounded, owing to (30)–(31), by

W1−2, D(ρ1) . Log
λ(2)

λ(1)
×
∫
D(ρ1)

B

ρ(x)
d3x = Log

λ(2)

λ(1)
×
∫
D(ρ1)

B

ρ
ρ dρ dφ dz,

(34)

12



i.e.

W1−2, D(ρ1) . Log
λ(2)

λ(1)
×B ρ1 × 2π × 2zmax. (35)

But consider, instead of the disk D(ρ1), the ring R(ρ0, ρ1) : (ρ0 ≤ ρ ≤
ρ1, 0 ≤ φ ≤ 2π, |z| ≤ zmax), with ρ0 ≥ 10−15 kpc. (Thus a ring with a very
narrow aperture.) Using this time only (30), the same calculation gives

W1−2, R(ρ0,ρ1) ' Log
λ(2)

λ(1)
×B (ρ1 − ρ0)× 2π × 2zmax. (36)

Taking ρ0 = 10−15 kpc, the conjunction of (35) and (36) shows that the
contribution of the domain with 0 ≤ ρ ≤ ρ0 is totally negligible, hence we
may write

W1−2, D(ρ1) ' Log
λ(2)

λ(1)
×B ρ1 × 2π × 2zmax. (37)

We can calculate the contribution δU that it gives to the average density of
the EM energy in some disk D(ρ2) of the Galaxy, with ρ2 ≥ ρ1, making a
volume V2 = πρ22zmax:

δU :=
W1−2, D(ρ1)

V2
' 4 Log

λ(2)

λ(1)
× B ρ1

ρ22
. (38)

(Note that we may leave B in (eV/cm3).kpc and ρ1 and ρ2 in kpc.) To
give figures, let us first take ρ1 = ρ2 = 1 kpc, so that the corresponding
value of δU is just the average volumic energy density 〈U〉D(1 kpc) in the disk
D(ρ1 = 1 kpc). Then (38) with (27) give us

〈U〉D(1 kpc) ' 51 eV/cm3. (39)

Note that this value is not very high. Another interesting application of
Eq. (38) is to assess the effect, on that average value in the same domain
D(1 kpc), of the domain of the “very high” values of the SED, say the domain
for which uj ≥ 106 eV/cm3 — i.e., from (27) and (28), ρ ≤ ρvh, with

ρvh = 10−6.45 ' 3.55× 10−7 kpc ' 1.1× 1010 km, (40)

which is almost twice the average distance Sun-Pluto, but still very small on
a galactic scale. Taking to this effect ρ1 = ρvh and ρ2 = 1 kpc in Eq. (38),
the numerical values (27), (32) and (40) give us δU ' 4.54 × 10−6 eV/cm3.
In summary, the “very high” values of the SED are confined to the close
neighborhood of the Galaxy’s axis and contribute negligibly to the average
energy density (39) in the disk D(1 kpc).
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5 Results: spatial variation of the SED &

comparison with the literature

This model’s prediction for the spatial variation of the SED in the Galaxy
was investigated, using again the separate fitting and the adjustment of the
local SED on the measured values (both being described in Sect. 3). It was
shown by using two different types of representations.

First, we plotted the SED at four different points in the Galaxy, and we
compared the results with those obtained by Popescu et al. [6], who used a
radiation transfer model built by them. (Their model also assumes axisym-
metry.) Figures 8–11 show this comparison, our model being used here with
N = 192 and Nω = 76. (Other choices of parameters that we tried gave
similar figures.) It can be seen that the predictions of the present model do
not differ very significantly from those of the radiation transfer model of Ref.
[6]. The main difference is that our calculations oscillate somewhat strongly
with the wavelength. The comparison of Figs. 8–11 here with Figs. 2-5
in Ref. [9] shows that the difference between the results of the two models
is significantly smaller now than it was in our previous work, in which the
calculations were based on the grouped fitting [9]: the difference in log10(uj)
between the results of our model and Ref. [6] is here . 1, whereas it went be-
yond 3 and even 4 in the previous calculations. However, the new calculations
oscillate with the wavelength also at higher wavelengths. Whereas, when the
grouped fitting was used, there was virtually no oscillation for λ & 10µm at
the two positions at ρ = 8 kpc. (There were oscillations in the whole range of
λ for the two positions at ρ = 1 kpc.) In order to check if those calculations
inside the spatial domain of small values of the SED could be “polluted” by
the extremely high values on the galaxy’s axis, we investigated the effect of
doing the fitting on a “shifted” grid with ρ ≥ 1 kpc. This did not lead to less
oscillations.

Second, we plotted the radial and vertical profiles of the radiation fields at
three wavelengths close to the ones considered in Fig. 7 of Popescu et al. [6]
(“K, B , UV”). Figures 12 and 13 show these profiles as they are calculated
at points (ρ, z) belonging to the “logarithmic” grid on which the fitting was
done for this calculation (see the legend). Those profiles of the radiation fields
obtained with the present model on the fitting grid are relatively similar to
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those that are predicted with the very different model of Ref. [6], both in the
levels and in the rough shape of the profiles. The most important difference
is seen on the vertical profiles of Fig. 13: according to the Maxwell model of
the ISRF, the energy density level decreases more slowly when the altitude
z increases — or even, for the λ = 2.29µm radiation at ρ = 0.059 kpc or
the λ = 0.113µm radiation at ρ = 7.5 kpc, the level of the SED does not
decrease in the range considered for z. A similar lack of decrease is found
on the radial profiles of Fig. 12, for the λ = 2.29µm radiation, either at
z ' 0 or at z = 1.25 kpc. Using that same fitting done on a logarithmic grid,
we also calculated and plotted the radial and vertical profiles of the same
radiations, but this time for regularly spaced values of ρ (or respectively
z), and in a larger range for ρ (or respectively z), Figs. 14 and 15. The
radial profiles of Figs. 12 and 14 are consistent, although, in contrast with
Fig. 12, Fig. 14 plots the SED at points (ρ, z) which were not involved in
the fitting, and which moreover involve an extrapolation to a larger range
for ρ as compared with the fitting. The vertical profiles of Fig. 15, which
also correspond with points which were not involved in the fitting, and also
involve an extrapolation to a larger range for z as compared with the fitting,
show an oscillating behaviour without any tendency to a decrease at large z.

6 Asymptotic behaviour at large ρ and at

large z

To help understanding the behaviours just noted, in this section we study the
asymptotic behaviour of the expressions of the components of the EM field
and of the SED, as they are given by the Maxwell model of the radiation field.
The expressions (14)–(16) that are implemented in the numerical model,
are deduced from the exact integral expressions of the EM field for a given
angular frequency ω, after the summation over the frequencies, and after the
discretization (7) is done. Hence, we begin with the exact integral expressions
of the EM field for a given angular frequency. These expressions, which are
valid for any totally propagating, axisymmetric, time-harmonic EM field, are
(Eqs. (13)–(15) in Ref. [7]):

Bφω S = Re
[
e−iωt

∫ +K

−K

√
K2 − k2 J1

(
ρ
√
K2 − k2

)
S(k) eikzdk

]
, (41)
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Eρω S = Re
[
−i
c2

ω
e−iωt

∫ +K

−K

√
K2 − k2 J1

(
ρ
√
K2 − k2

)
ik S(k) eikzdk

]
,

(42)

Ez ω S = Re
[
ie−iωt

∫ +K

−K
J0

(
ρ
√
K2 − k2

) (
ω − c2

ω
k2
)
S(k) eikzdk

]
, (43)

where K := ω/c — the other components being obtained by the duality (18)
from the components (41)–(43), with in the most general case an other spec-
trum function S ′(k).

The dependence in ρ of the components (41)–(43) is determined by that
of the Bessel functions J0 and J1, and by the form of the integrals which
involve them. At large x we have the asymptotic expansion [19]

Jα(x) =

√
2

πx
cos
(
x− απ

2
− π

4

)
+O

(
x−

3
2

)
. (44)

However, the argument of the Bessel functions in Eqs. (41)–(43) is x =
ρ
√
K2 − k2. Hence, as ρ → ∞, x does not tend towards ∞ uniformly, de-

pending on the integration variable k: we even have x ≡ 0 independently of
ρ, for k = ±K. Therefore, it is not obvious to see if the integrals (41)–(43)
do have an expansion at fixed z as ρ→∞.

As to the behaviour at fixed ρ and at large z: up to the real part, and
for a fixed value of ρ, the components (41)–(43) are expressions of the form
e−iωtI(z), with

I(z) =

∫ b

a

f(k)eizg(k) dk, (45)

and where, specifically, a = −K, b = +K, and the phase function is simply
g(k) ≡ k, which has no stationary point. (The regular function k 7→ f(k)
depends on the component being considered, and also on ρ as a parameter.)
In that case, we have the asymptotic expansion [20]

I(z) =
f(K)

iz
eizK − f(−K)

iz
e−izK +O

(
1

z2

)
. (46)
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So at large z and for a fixed value of ρ, all components of any totally propagat-
ing, axisymmetric, time-harmonic EM field are order 1

z
(unless the coefficient

of 1
z

in this expansion is zero, which is true only in particular cases — then
the relevant component is higher order in 1

z
). This applies indeed to the part

(i) of the decomposition (i)-(ii), that is given by Eqs. (41)–(43), but also to
the part (ii), since it is obtained from (41)–(43) by applying the EM duality
(18) (with, in the most general case, a different spectrum function S ′(k)).
Hence the SED (23) is order 1

z2
at large z, for any fixed value of ρ — when

the C
(q)
j (x) coefficients correspond with the exact expressions (41)–(43). [The

explicit expression of the coefficient of 1
z2

, depending on ρ , K, S(K), S(−K)
(and, in the most general case, of the values S ′(K), S ′(−K) of the spectrum
function S ′ corresponding to the part (ii) of the decomposition (i)-(ii)) might
easily be obtained from (23), (41)–(43), and (46).] The foregoing result ap-
plies to a general spectrum function S(k) (and S ′(k)). By summation on the
frequency index j, it extends to an EM field having a finite set of frequencies.

Let us now investigate the asymptotic behaviour of the EM field and the
SED, still in the totally propagating case with axial symmetry, but now after
the summation over the frequencies and the discretization (7). After the

discretization, each among the C
(q)
j coefficients in the expansions (24) of the

components of the EM field has the form [9]:

C
(q)
j = C

(q)
j (ρ, z) =

N∑
n=0

R′ (q)n Jα

(
ρ
ωj
ω0

Rn

)
Gnj(z) (α = 0 or α = 1),

(47)

where R′
(q)
n > 0 (except for R′

(q)
0 and R′

(q)
N , both of which turn out to

be zero) are constant numbers, and where Gnj(z) = exp (iωj t)Fnj(t, z) is
just the function Fnj in Eq. (17) hereabove, deprived of its periodic time-
dependence (and thus is a periodic function of z). Together with (44), Eq.

(47) shows that, at a given value of z, we have C
(q)
j = O(1/

√
ρ) as ρ → ∞.

The SED for an EM field having a finite set of frequencies is given by Eq. (23).

For any given frequency (j), uj is a quadratic form of the C
(q)
j coefficients,

hence

uj(ρ, z) = O

(
1

ρ

)
(ρ→∞). (48)

This is compatible with the curves shown on Fig. 14.
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Passing to the behaviour at large z: in Eq. (47), the dependence in z
is entirely contained in the functions Gnj(z) which, we noted, are periodic.

Hence, the coefficients C
(q)
j (ρ, z), each of which involves a linear combination

of these functions (with coefficients that depend on ρ), are almost-periodic
functions of z [21], and the same is true for the components (24) of the EM
field. Moreover, for any given value of ρ, each uj in Eq. (23) is hence the
sum of the square moduli of periodic complex functions of z. Therefore [21],
the SED is an almost-periodic function of z, too. This result allows us to
understand the lack of a decrease with z, observed on the vertical profiles of
Fig. 15, which involve an extrapolation to a larger range for z as compared
with the domain used for the fitting: an almost-periodic function f does not
tend towards zero at infinity, unless f ≡ 0. 4 As to Figs. 12 and 13, they
involve no extrapolation, thus the relevant coefficients result from the fitting
done on the very domain to which the curves belong. Hence the asymptotic
behaviour of uj (whether at large z or at large ρ) is not relevant to them.

7 Discussion and conclusion

In this paper, we developed an improved numerical scheme to adjust the
Maxwell model of the ISRF in a galaxy, which was proposed in a foregoing
work [7]. Namely, at the stage of fitting the radiations emitted by the many
different point-like “stars” which make the model galaxy, we are now consid-
ering each time-harmonic component separately, which is more precise. This
allows us as a bonus to eliminate the time variable at this stage, Eq. (21) —
thus reducing the computer time.

We used that “separate fitting” procedure, first, to check if the extremely
high values of the spectral energy density (SED), which were predicted by
this model on the axis of our Galaxy with the former “grouped fitting” [9],
are a physical prediction or a numerical artefact. A rather detailed investi-

4 This results from the most common definition of an almost-periodic function f [21]:
the existence, for any ε > 0, of a relatively dense set of ε almost-periods. I.e., for any
ε > 0, there exists a length lε such that, for any x ∈ R, there is at least one number
T ∈ [x, x+ lε[ such that for any t ∈ R, |f(t+ T )− f(t)| ≤ ε. If f is not identically zero,
let a ∈ R, such that f(a) = α 6= 0. Taking ε = α

2 in the definition above, we thus have
|f(a+ T )− f(a)| ≤ α

2 , hence |f(a+ T )| ≥ α
2 . Since x can be taken arbitrarily large and

since T ≥ x, this proves that f does not tend towards zero at infinity.
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gation led us to conclude that these extremely high values are indeed what
the model predicts — see Sect. 4.1. However, we find also that the SED
decreases very rapidly when one departs from the galaxy’s axis, see Fig. 7.
Moreover, the average energy density of the EM field in, for example, a disk
of diameter 1 kpc and thickness 2 kpc, is not very high, Eq. (39). The ex-
tremely high values of the SED on the axis of our Galaxy (and likely also in
many other galaxies) are a new and surprising prediction for the ISRF. Recall
that our model is adjusted so that the SED predicted for our local position
in the Galaxy coincide with the SED determined from spatial missions, and
thus is fully compatible with what we see of the ISRF from where we are. As
we mentioned in the Introduction, the existing (radiation-transfer) models
for the ISRF do not consider the EM field with its six components coupled
through the Maxwell equations. These models consider paths of photons
or rays and do not take into account the nature of the EM radiation as a
field over space and time, subjected to specific PDE’s. The prediction of the
present model may be interpreted as a kind of self-focusing of the EM field.
It is difficult to assess the degree to which this prediction depends on the
specific assumptions of the model, in particular the axial symmetry.

Second, we studied the spatial variation of the SED predicted by our
model with the new procedure, and compared it with the predictions of a
recent radiation transfer model [6]. The difference between the results of the
two models is much smaller now than it was [9] with the older procedure.
However, the SED predicted by our model still oscillates as function of the
wavelength (or the frequency) also with the new, “separate fitting” proce-
dure, although the different frequencies are then fully uncoupled. We also
plotted the radial and vertical profiles of the radiation fields at three wave-
lengths. We confirm the slower decrease at increasing altitude z as compared
with the radiation transfer model of Ref. [6], indicated by the previous work
[9]. Actually, when the vertical profiles of the radiation fields are calculated
and plotted in a domain that involves an extrapolation to a (three times)
larger domain of z, a slightly oscillating behaviour without a decrease at
large z is observed. This is explained by our study of the asymptotic be-
haviour of the analytical expressions of the EM field and the corresponding
SED: we show that the SED calculated by the implemented model, that in-
volves a discretization of the wave number, is a quasi-periodic function of z
— although the exact SED obtained from the integral expressions (41)–(43)
is order 1/z2 at large z. Thus, extrapolation on the domain of z should be

19



used parsimoniously with the current numerical implementation based on a
discretization of the wave number.

A Appendix: Discrete vs. continuous de-

scriptions of the spectral energy density

The SED, u or rather ux (it depends on the spatial position x), is normally
a continuous density with respect to the wavelength or the frequency: the
time-averaged volumic energy density of the EM field at some point x and
in some wavelength band [λ(1), λ(2)] is given by

U1 2(x) :=
δW1 2

δV
(x) =

∫ λ(2)

λ(1)
ux(λ) dλ. (49)

However, in many instances, including the present work, one is led to consider
a discrete spectrum, thus a finite set of frequencies, (ωj) (j = 1, ..., Nω),
hence a finite set of wavelengths. It leads also to a discrete energy density,
Eq. (23). This raises the question of how to relate together these discrete
and continuous descriptions of the SED. To answer this question, we note
first that the uj ’s in Eq. (23) are indeed volumic energy densities. Whereas,
ux in Eq. (49) has physical dimension [U ]/[L], i.e., it is

fx(λ) := λux(λ) (50)

which is a volumic energy density. And it is indeed fx that is being consid-
ered by Popescu et al. [6], when plotting the SEDs at different places in the
Galaxy, or when plotting the radial or axial profiles of the radiation field at
some selected wavelengths.

As is more apparent with the “separate fitting” used now (see Sect. 3),
the discrete set of frequencies ωj, considered in the Maxwell model of the
ISRF, represents just a finite sampling of the actual continuous distribution.
The link between the two descriptions is hence given simply by the following
relation:

uj(x) = fx(λj) = λjux(λj). (51)

Consider a bounded spatial domain D. The total EM energy contained in
the domain D and in the wavelength band [λ(1), λ(2)] is given, according to
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Eq. (49), by

W1−2, D :=

∫
D

δW1 2

δV
d3x =

∫
D

(∫ λ(2)

λ(1)
ux(λ) dλ

)
d3x, (52)

i.e., using (50):

W1−2, D =

∫
D

(∫ λ(2)

λ(1)
fx(λ) d (Logλ)

)
d3x. (53)

If we are using a model considering a fine-enough finite set of wavelengths
(λj), j = 1, ..., Nω, with λ1 = λ(1) and λNω = λ(2), we may use (51) to
estimate the integral over λ in Eq. (53) as a finite sum, e.g. a Riemann sum:

∫ λ(2)

λ(1)
fx(λ) d (Logλ) '

Nω−1∑
j=1

fx(λj)(Logλj+1−Logλj) '
Nω−1∑
j=1

uj(x)(Logλj+1−Logλj)

(54)
or a better approximation (trapezoidal, Simpson,...).
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Figure 1: Effect of discretization number N for: Nω = 23, rough grid
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Figure 3: Effect of discretization number N for: Nω = 76, rough grid
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Figure 4: Effects of discretization number N and number of frequencies Nω,
fine grid
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Figure 8: SED at (ρ = 1 kpc, z = 0)
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Figure 9: SED at (ρ = 1 kpc, z = 1 kpc)
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Figure 10: SED at (ρ = 8 kpc, z = 0)

33



-1 -0.5 0 0.5 1 1.5 2 2.5 3

log
10

(λ
µ m

)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

1
0
(u

e
V

/c
m

3
)

Predicted energy density at ρ = 8 kpc, z = 1 kpc

(N
ρ
=10,ρ

0
=0)×(N

z
=21,z

0
=-1kpc,z

max
=1kpc) grid, N

ω

=76, N=192

Popescu et al. 2017

Figure 11: SED at (ρ = 8 kpc, z = 1 kpc)
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Figure 12: Radial profiles of radiation fields. Fitting done on a logarithmic
grid: ρ1 = ρmax, ρm = ρm−1 × q (m = 2, ..., Nρ); z1 = zmax, zk = zk−1 ×
q (k = 2, ..., Nz); q = 0.5. SED values at (ρm, zNz) (m = 1, ..., 10), then at
(ρm, z4) (m = 1, ..., 10), are plotted.
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Figure 13: Vertical profiles of radiation fields. Fitting done on the same
logarithmic grid as for Fig. 12. SED values at (ρ10, zk) (k = 1, ..., Nz), then
at (ρ3, zk) (k = 1, ..., Nz), are plotted.
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Figure 14: Radial profiles of radiation fields. Fitting done on the same
logarithmic grid as for Fig. 12. SED values at regularly spaced values of ρ,
starting at 0.1 kpc, and for z = 0, then z = 1.25 kpc, are plotted.
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Figure 15: Vertical profiles of radiation fields. Fitting done on the same
logarithmic grid as for Fig. 12. SED values at regularly spaced values of z,
starting at 0, and for ρ = 0.1, then ρ = 7.5 kpc, are plotted.

38


	Introduction
	Short presentation of the model
	Frequency-by-frequency fitting of the potentials
	Results: maximum energy density
	Robustness of the high values on the axis
	Decrease of the energy density away from the axis

	Results: spatial variation of the SED & comparison with the literature
	Asymptotic behaviour at large  and at large z
	Discussion and conclusion
	Appendix: Discrete vs. continuous descriptions of the spectral energy density

