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Abstract 

Historical energy system modelling as well as the current 

mainstream approaches are closed and proprietary. Yet, 

open energy modelling can be of particular interest in the 

building simulation community. This article presents the 

Open and Reproducible Use Cases for Energy (ORUCE) 

methodology, thought as a transferable workflow to make 

open energy modelling principles and advantages 

accessible. After underlining open energy modelling 

importance and best practices, the ORUCE methodology 

is presented for the first time, and applied for the energy 

design and operation of a dwelling photovoltaic self-

consumption system. Finally, the quantitative results of 

the application as well as the qualitative results of the 

methodology are discussed.  

Key Innovations 

 ORUCE methodology: an easy to apply workflow for 

district scale open energy modelling whatever the 

model or framework, underlining the importance of 

use cases for open knowledge capitalisation. 

 A dwelling photovoltaic self-consumption system 

open design and operation; making this study case 

reproducible, transferable and available for 

benchmark. 

Practical Implications 

Building simulation practitioners should consider using 

open data and models capitalised as ORUCE in order to 

collaborate and to maintain optimal performances on the 

whole building life cycle. 

Introduction 

In the current context of struggle against climate change, 

it is crucial to reduce the environmental impact of our 

energy use (Edenhofer et al. 2014), about a third of which 

comes from the building sector. Energy modelling can be 

put to good use at district level for understanding and 

sizing new energy systems with low carbon sources, as 

well as managing weather-dependent renewable energy 

flows with variable consumption profiles. It is now 

essential for the scientific community to study resilient 

and sustainable energy systems, but it is similarly 

important to do so openly.  

In the building sector, many tools and projects put into 

practice Open Source principles for district scale energy 

studies, among which TEASER for urban energy 

modelling (Remmen et al. 2018), and oemof, Calliope, 

URBS or OseMOSYS for multi-scale energy systems 

(Grimoldi 2018). The aim of this article is to show the 

interests of open energy modelling for the building sector 

energy transition, and to propose a tool-independent 

methodological approach for building stakeholders to 

easily apply open energy modelling process and 

principles. The methodology focuses on use cases that 

appear to be good vectors for openness and 

reproducibility. Thus they are at the heart of the proposed 

Open and Reproducible Use Cases for Energy (ORUCE) 

methodology.  

After underlining the importance of open energy 

modelling, this article will present the ORUCE 

methodology as well as the used open energy modelling 

tools, before applying the methodology on a dwelling 

photovoltaic (PV) self-consumption use case. 

Open energy modelling 

The importance of open energy modelling 

Historical energy system modelling as well as the current 

mainstream approaches are closed and proprietary, even 

if open energy modelling has a promising emergence 

(Pfenninger et al. 2018). “Open” here refers to models 

code and data that can be freely accessible, used, 

modified, and shared by anyone for any purpose (Open 

Knowledge Foundation 2015).  

Generally speaking, open energy models and data lead to 

an improved quality of science through transparency and 

peer reviewing, thus preventing errors (Pfenninger et al. 

2017), biases (Morrison 2018) or even fraud. The open 

energy models are useful, i.e. they are easily adapted and 

extended to new energy systems complexity, and they 

lower the barriers to adoption relative to conventional 

proprietary solutions, making the models accessible to 

stakeholders without the funds for commercial options 

(Bazilian et al. 2012). Moreover, open energy modelling 

reduces parallel efforts and improves collaboration 

between all contributing parties, in addition to improving 

studies comprehensibility (Cao et al. 2016). In the 

building sector, such practices can gather the variety of 

stakeholders around accessible models, from the 

buildings design to their renovation or end of life in order 

to maintain optimal performances on the whole building 

life cycle.  

An open and reproducible research enables to share 

methods and quantitative work with policy makers 

(Pfenninger et al. 2017), when institutions are 



increasingly asking for transparency and open science 

practices: in Europe with the deployment of the Open 

Science Policy Platform (Glinos 2019), and recently in the 

world with the Joint Appeal for Open Science (UNESCO 

2020). Energy systems studies outcome are often used  to 

shape energy policies, affecting general public: openness 

provides trust and legitimacy for scientific arguments in 

the public debate over the energy transition (Morrison 

2018), and can also permit citizen involvement (Barnes 

2010), which is essential to achieve successful energy 

transition projects.  

Open energy modelling tools meet high standards and 

levels of maintainability, with little or no difference in 

quality relative to proprietary software (Bazilian et al. 

2012). Remaining challenges to get to the functionalities 

of closed source tools exist, especially regarding 

optimisation solvers (Morrison 2018). 

The aforementioned practices gather modellers in 

communities such as The Open Energy Modelling 

Initiative (openmod), which promotes the ideas and 

practices of open energy modelling. 

Key principles and best practices 

Open energy modelling covers a number of key 

principles, among which (Morrison 2018): 

 Public transparency, i.e. the model is fully 

documented  and datasets are available for inspection. 

It is necessary but insufficient for reproducibility. 

 Reproducibility, i.e. the available code and data enable 

to reproduce the work and to achieve the same results 

with similar conclusions, 

 Open development, i.e. the use of internet mediated 

open source development techniques and practices. 

Open energy modelling is also important or even 

necessary to evaluate the quality of models, data, and 

recommendations, i.e. the suitability of the used methods 

and tools to answer a given research question (Hülk et al. 

2018). 

Best practices in open energy modelling first consist in 

having a full open workflow as presented by Morrison 

(2018); Pfenninger et al. (2018) and Hülk et al. (2018): 

open energy data are processed with open source code and 

used in models developed with free and open source 

software, leading to results also processed and made 

available openly. The study aim and assumptions should 

be transparent and made available explicitly. Finally, 

interpretations are provided in open access in the form of 

articles or statements. Determining what to publish 

openly is an essential step: some elements should 

obviously remain private for security, ethical or 

intellectual property reasons, abiding by the European 

Union guidelines on open access: “as open as possible, as 

closed as necessary”. Open or not, data sets should still 

comply with the FAIR (Findable, Accessible, 

Interoperable Reusable) principles for them to be reusable 

(Wilkinson et al. 2016). Apart from the aforementioned 

exceptions, every element of the workflow should be open 

legally, i.e. properly licensed, and technically, i.e. actually 

accessible and in keeping with recognized standards.  

Self-assessment is particularly recommended to qualify 

and improve the openness of studies: Cao et al. (2016) 

propose a transparency checklist, focusing on both 

models and study results comprehensibility, at least by 

experts. Hülk et al. (2018) apply this method and propose 

fact sheets for the framework, models and scenarios of the 

studies, in order to provide a publicly available, clear and 

concise representation of these, since well documented 

open source projects can still cause information overload 

issues.  

Finally, open digital platforms making energy data and 

models available can help to meet the challenges of 

transparency and reproducibility (Pfenninger et al. 2018). 

Versioned open source tools with appropriate 

documentation and form is a basis, while tutorials will 

enable the functionalities and uses of the models to be 

quickly grasped. An execution environment will allow 

direct use of the tools (Boettiger 2015). Finally, means of 

synchronous or asynchronous socialisation, such as 

forums, if used by a sufficiently broad community, make 

it possible to link communities of designers and users of 

energy models and thus to capture and disseminate both 

explicit and tacit knowledge. Such platforms enable the 

creation of communities, transparency and legitimacy of 

studies and participation.  

Based on the previous literature review, we propose in 

this article a methodology centred on use cases in order to 

easily apply open energy modelling best practices in the 

building sector. 

ORUCE methodology 

The Open and Reproducible Use Cases for Energy 

(ORUCE) methodology is presented for the first time in 

this article. It is thought as a transferable workflow to 

make open energy modelling principles and advantages 

accessible, whatever the energy model or framework. It is 

proposed by the authors based on the literature on open 

energy modelling best practices, with a focus on use cases 

as good vectors for reproducibility in district energy 

studies. A simple example of the methodology use is 

provided in the next section. 

A diagram of the ORUCE methodology, as well as 

associated workflow and stakeholders is presented in the 

Figure 1. First, data points should be collected from open 

data sources such as public institutions, research institutes 

or public crowdsourcing as suggested by Bazilian et al. 

(2012). Associating data points with metadata is key, 

especially to make data FAIR. It puts data into context, 

with: administrative (who collected, where, permissions, 

etc.), descriptive, structural (organisation, formats), 

reference, provenance and statistical metadata. The data 

sets are the inputs in the ORUCE methodology, and can 

enrich laboratories open databases. Since the whole 

workflow is open, both energy modellers and building 

sector stakeholders (design offices, architects, public 

authorities, lessors, users, etc.) can choose the aim and 

assumptions of the study, depending on the life stage of 

the building, from its design to its end of life.  



 

Figure 1: ORUCE methodology diagram with associated workflow and stakeholders 

The assumptions are clearly stated and affect the input and 

output data processing as well as the model. This clear 

statement makes the assumptions influence on results 

transparent: the assumptions are propagated the same way 

uncertainties can be.  

The raw datasets need to be processed for them to serve 

as model inputs: this process is made available as open 

source code. It is then the energy modellers’ expertise as 

well as the commonly chosen aim and assumptions of the 

study that will lead to a choice of method (direct or 

indirect problem, optimisation method choice, etc.), free 

and open source software and finally, open model. The 

raw model output is then also processed through open 

source code to provide the study results and interpretation. 

This process from input to results is not actually linear but 

generally needs several iterations before accessing final 

results.  

The proposed ORUCE methodology emphasis on the use 

case, i.e. the open process going from the original raw 

data sets to the results and interpretation on a given study. 

Capitalising use cases enable to keep track of the whole 

analysis story and to link open energy modelling practices 

in a comprehensive and reusable way. Not only the results 

and interpretation of a study are provided, but also the 

way they were obtained: the open data sets and processing 

are available, as well as the open model in the version in 

which it was used, with the aim and all of the assumptions 

of the study. The use cases are capitalised in Jupyter 

Notebooks (hereinafter referred simply as notebooks), i.e. 

code files detailed by means of text or image, and directly 

shareable, usable and modifiable by web application with 

no need for local environment whatever the model is. 

Beyond capitalisation, such notebooks can be used as 

intermediary object to collaborate around the use cases, 

thanks to the intermediate level of complexity notebooks 

can have compared to model or framework code and 

documentation. This tackles the information overload 

issue of open source, while retaining access to exhaustive 

information for all stakeholders. It should be noted that if 

perfect openness and quality levels are hardly reachable 

for a use case: offering a notebook for exchanges and 

collaboration enables continuous improvement on both 

those aspects. 

Finally, articles as well as statements based on the results 

and interpretation of the study should be provided in open 

access, and linked to the use case notebooks, thus 

benefitting from the aforementioned advantages and 

facilitating peer review, model comparison and generally 

speaking, reproducibility. The transferability and use of 

an ORUCE for other studies serve the extension of the 

methodology.  

Open energy modelling tools: OMEGAlpes & 

NoLOAD 

In the following part of this article, we present an 

application of the ORUCE methodology, where two free 

and open source energy modelling tools are used. First 

NoLOAD, an optimisation tool developed for the design 

of energy components and systems using automatic 

differentiation. In the study, it enables to achieve non-

linear optimisation using Sequential Quadratic 

Programming algorithm for the sizing of the energy 

system. Then, OMEGAlpes (Pajot et al. 2019) is a linear 

optimization tool designed to easily generate multi-carrier 

energy system models. Its purpose is to assist in 

developing district energy projects by helping the 

generation of MILP optimisation models for design and 

operation in pre-studies phases. Here, it allows to figure 

the optimal battery management out and to observe the 

dynamic of the energy flows. 

Both are developed in Python in the G2Elab with the 

licence Apache 2.0. Thus, the models are directly 

available and modifiable to lead various optimisations 



depending on users’ assumptions, objectives and 

constraints. The users can also tap and distribute their 

results and contribute to the code open development, 

making way for scientific reproducibility in the energy 

field.  

A dwelling photovoltaic energy self-

consumption use case 

Interest of self-consumption  

In their review of  PV self-consumption in buildings, 

Luthander et al. (2015) suggest that “an important further 

step for the research in this area is to make more 

comparable studies for more representative samples of 

buildings and end users”. This, in addition to the rather 

emblematic aspect of photovoltaic (PV) self-consumption 

in district scale energy modelling, its interests regarding 

the energy transition, and the current favourable political 

context with new European regulations defining citizen 

energy communities makes PV self-consumption in 

buildings a relevant use case for applying the ORUCE 

methodology. 

Increasing the share of renewable energies covering our 

energy consumption has been identified as one of the 

pillars of an energy transition to combat climate change 

(Edenhofer et al. 2014). The installation of PV panels on 

energy consumption sites makes it possible to increase the 

self-consumption rate of this photovoltaic electricity, i.e. 

the share of production consumed locally. Self-

consumption enables to reduce the constraints on the 

distribution networks due to the deployment of 

decentralised production sources, to reduce electricity 

transmission and distribution losses and to improve the 

profitability of grid-connected PV systems. Moreover, it 

tends to make producers aware of their electricity 

consumption through potentially virtuous behavioural 

responses to PV systems installation (Luthander et al. 

2015). Self-consumption operations thus encourage the 

general deployment of photovoltaic energy sources. 

However, the PV panels and power electronics, as well as 

the potentially associated batteries, have environmental 

impacts at different stages of their life cycle, from the 

extraction of raw materials to end-of-life management. 

Thus, a trade-off becomes necessary between self-

consumption rates and environmental impact. Moreover, 

the optimal battery management must be addressed in 

order to access representative power flows relative to the 

operational objectives.  

In the following sections, we present a dwelling PV self-

consumption use case from an early stage design 

perspective. First we carry out a two-objective 

optimisation in order to maximise the coverage of local 

consumption by photovoltaic electricity on the one hand, 

and to minimise the environmental impact of the energy 

system over its entire life cycle on the other hand. Then, 

an optimal power flows management is applied to the 

                                                           
1 Grafana visualisation platform: https://mhi-

srv.g2elab.grenoble-

inp.fr/grafana/d/VnkHFo6mk/dashboard 

obtained energy system design. The study focuses on one 

single representative building with PV panels and battery 

storage within the framework of a self-consumption 

operation. It does not explore other relevant means to 

improve self-consumption rates, such as Demand Side 

Management, or other storage technologies ranging from 

other battery chemistries, to hydrogen for inter-seasonal 

storage, to heat storage. 

Origin and processing of the data sets 

All the input data for the energy model comes from open 

databases, and is therefore directly accessible: 

 The annual electricity consumption profile is 

modelled using the so-called "RES1" typical profiles 

of the residential sites for the year 2019, available on 

the website of the French Distribution System 

Operator Enedis. We consider an average electricity 

consumption of 4586 kWh per year and per 

household, calculated from the number of households 

connected to the French power system according to 

the French Energy Regulatory Commission (CRE), 

and the final electricity consumption of the French 

residential sector.  

 The direct and diffuse solar irradiance data for the year 

2019 are extracted from a weather station located on 

the roof of the GreEn-ER building in Grenoble, which 

houses the G2Elab laboratory and the ENSE3 

engineering school. These data are made available on 

a server and a visualization platform1. From these 

irradiance profiles, as well as the surface, azimuth and 

tilt values of the PV panels, it was possible to calculate 

the photovoltaic production profiles with the model 

presented by Nguyen et al. (2019). 

These data sets are also grouped together and made 

available with the source code. 

In order to reduce the number of optimisation variables, a 

clustering process was carried out on the aforementioned 

annual consumption and irradiance profiles. Here, 

clustering enables to extract representative days and 

associated weights from a set of data over a whole year. It 

is a method adapted to the reduction of the study period 

and therefore of the number of variables for energy 

optimisation on a building scale (Sayegh et al. 2019). The 

typical days obtained from the irradiance data in Grenoble 

and average French consumption in 2019 are the 4th of 

January, 29th of August and 27th of November with 

weights of 50, 180 and 135 days respectively. These days 

are typical of a winter day, a summer day, and a day in the 

spring or autumn close to winter. 

Energy and environmental models 

The aim of this study is to apply the ORUCE methodology 

with open and usable energy models, allowing users to 

vary the data, hypotheses and objectives, or to refine the 

model. Thus, a simplified model with low computation 

time was preferred for the system design with NoLOAD: 

https://mhi-srv.g2elab.grenoble-inp.fr/grafana/d/VnkHFo6mk/dashboard
https://mhi-srv.g2elab.grenoble-inp.fr/grafana/d/VnkHFo6mk/dashboard
https://mhi-srv.g2elab.grenoble-inp.fr/grafana/d/VnkHFo6mk/dashboard


first, clustering was used to simply provide three 

representative days for irradiance and consumption 

profiles, and then, the battery control dynamics were not 

considered here because of the periodic evolution of the 

profiles, considering a charge-discharge cycle per day. 

The energy stored over a day is then considered as a scalar 

calculated for each typical day, where the PV power and 

consumption are time series at hourly time steps. Imports 

and exports to and from the power grid are thus calculated 

for each typical day as follows: 

𝑒𝑥𝑝 =  ∑ max (𝑃𝑃𝑉(ℎ) − 𝑃𝑙(ℎ), 0) − 𝑒𝑓𝑓𝑠𝑡𝑜 ∗ 𝑒𝑠𝑡𝑜

23

ℎ=0

 (1) 

𝑖𝑚𝑝 =  ∑ max (𝑃𝑙(ℎ) − 𝑃𝑃𝑉(ℎ), 0) − 𝑒𝑓𝑓𝑠𝑡𝑜 ∗ 𝑒𝑠𝑡𝑜

23

ℎ=0

(2) 

with exp and imp respectively the exports and imports on 

the power grid over a single day, PPV and Pl respectively 

the PV and load powers at hourly time steps, effsto the 

storage efficiency, considered identical for the charge and 

discharge, and esto the storage energy charged for the 

export calculation, and discharged for the import one. 

Imports and exports are constrained to take positive or 

zero values. 

The battery capacity will then be determined as the 

maximum esto value for the different typical days, 

integrating the limits of depth of discharge, here 

considered equal to 50% (lead-acid technology). 

The used coverage indicator is the Load Cover Factor 

(LCF), i.e. the share of electricity consumption covered 

by local production (Salom et al. 2014). In our case, the 

LCF is calculated for each typical day as follows: 

𝐿𝐶𝐹 =  
𝐸𝑙𝑜𝑎𝑑 − 𝑖𝑚𝑝

𝐸𝑙𝑜𝑎𝑑

     (3) 

with Eload the energy in Watt-hours consumed by the 

household during one day. Using the LCF indicator alone 

will maximise the PV production to cover the local 

consumption. A "non-LCF" indicator has been defined as 

an objective to be minimised for the design optimisation 

model. It includes the LCF indicator over the various 

typical days, representative of a full year: 

     𝑛𝑜𝑛 − 𝐿𝐶𝐹 =  ∑
𝑤𝑑

365
∗ (1 − 𝐿𝐶𝐹𝑑)      (4)

0≤𝑑<𝑛𝑏 𝑑𝑎𝑦𝑠

 

where nb_days is the number of typical days, wd the 

weight of each typical day, i.e. the number of days the 

typical day represents, LCFd the Load Cover Factor for 

each typical day. 

The optimisation variables of the model are the surface 

area of the PV panels and their tilt and azimuth that will 

enable to calculate the PV output, and the energy stored 

for each typical day, which will give the value of the 

                                                           

2 To access the notebook from OMEGAlpes Gitlab 

repository: https://gricad-gitlab.univ-grenoble-

alpes.fr/omegalpes/omegalpes_examples/-

/blob/BS2021_last_review/notebooks/article_2021_BS_

ORUCE.ipynb  

battery capacity. The panel areas are constrained between 

1 and 21m² and the stored energy is constrained to be less 

than 1 kWh. 

In the MILP energy model used with OMEGAlpes, the 

dynamic behaviour of the battery is considered but its 

sizing is fixed: the only optimisation variables are the 

battery charging and discharging powers over the 

considered study period. The objectives are to minimize 

battery losses and the imports from the power grid. The 

OMEGAlpes model is accessible via the study notebook2, 

and the MILP formulation can be found in OMEGAlpes 

online and open source code and documentation. 

The environmental impact indicator chosen for this case 

study is the Global Warming Potential (GWP) expressed 

in kilograms of CO2 equivalent (kg CO2eq), which takes 

into account the radiative forcing effects accumulated 

over a given time horizon, related to greenhouse gases 

(GHG) emissions into the atmosphere over the entire life 

cycle of the energy system components (Stocker et al,  

2013). The functional unit considered for this study is 

defined as follows: consuming electricity according to a 

given profile for 30 years, with a 4586 kWh yearly 

consumption, using electricity from the grid and from a 

PV panel and battery system. The GWP indicator is 

therefore calculated as follows: 

𝐺𝑊𝑃 = 𝐺𝑊𝑃𝑃𝑉 ∗ 𝑎𝑟𝑒𝑎𝑃𝑉 ∗
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑙𝑖𝑓𝑒𝑒𝑠𝑝𝑎𝑛𝑃𝑉
   

             +𝐺𝑊𝑃𝑏𝑎𝑡 ∗ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡 ∗
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑏𝑎𝑡
             (5) 

            +𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑔𝑟𝑖𝑑 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑠𝑔𝑟𝑖𝑑    

with: 

 GWP the Global Warming Potential of the energy 

system (kg CO2 eq.), 

 GWPPV  the GWP of PV panels, inverters and 

connectors per unit of PV area (710 kg CO2eq/m²)3, 

 areaPV the PV panel area (m²), 

 duration the study duration, here 30 years, 

 lifespanPV the PV panels lifespan (30 years), 

 GWPbat the GWP of the batteries per capacity unit 

(0.146 kg CO2 eq./Wh)3,  

 capacitybat the battery capacity (Wh), 

 lifespanbat the battery lifespan (3 years), 

 emissionsgrid the GHG emissions due to the electricity 

consumption from the power grid over the whole 

study, per consumed energy unit (kg CO2eq/kWh). To 

guard against the particular French electricity mix and 

CO2 emissions, the average European grid electricity 

emissions (0.296 kg CO2eq/kWh)4 are considered. 

 importsgrid the grid electricity consumption of the 

dwelling for 30 years (kWh). 

PV electricity injected into the grid is not understood here 

as GHG emission removal because it goes beyond the 

3 LCA open data base:  https://www.base-

inies.fr/iniesV4/dist/consultation.html 
4 European Energy Agency: https://www.eea.europa.eu/ 

data-and-maps/daviz/co2-emission-intensity  

https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes_examples/-/blob/BS2021_last_review/notebooks/article_2021_BS_ORUCE.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes_examples/-/blob/BS2021_last_review/notebooks/article_2021_BS_ORUCE.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes_examples/-/blob/BS2021_last_review/notebooks/article_2021_BS_ORUCE.ipynb
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes_examples/-/blob/BS2021_last_review/notebooks/article_2021_BS_ORUCE.ipynb
https://www.base-inies.fr/iniesV4/dist/consultation.html
https://www.base-inies.fr/iniesV4/dist/consultation.html
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity


functional unit, for which we stand from a consumer's 

point of view. The GWP values presented are subject to 

strong uncertainties: they allow a relative and non-

quantitative study for the minimisation of GHG emissions 

from the energy system. Generally speaking, the GWP 

objective takes into account the environmental impact of 

the PV panels and batteries compared to grid electricity 

emissions in the system sizing: it is complementary to the 

sole LCF objective that tends to maximise PV and battery 

sizing for local energy coverage. 

Results of the study case 

Before accessing the final results to communicate, several 

iterations from raw data to results were necessary. Such 

iterations, mentioned in the ORUCE methodology, 

enabled to choose relevant: 

 optimisation parameters: precision, number of 

iterations; 

 objectives: Load or Supply Cover Factor, GWP or 

other environmental indicator; 

 limits on variables: PV panels area, battery capacity. 

 

Figure 2: Pareto curve where non-LCF and GWP 

indicators are minimised for a dwelling PV self-

consumption study case 

The Figure 2 presents the results in the form of a Pareto 

curve between the GWP on the y-axis and the non-LCF 

indicator on the x-axis. The optimisation variable e_sto 

corresponds to maximal storage energy of typical days. A 

slight bend can be observed when the non-LCF indicator 

falls below a value of about 0.65. It is noticeable that it is 

from this point that the capacity of the batteries and the 

surface area of the PV panels increase both. In addition, 

the azimuth values here remain relatively constant with a 

South - South-East orientation, which would therefore be 

optimal for covering the consumption profiles with PV 

production.   

In the end, the compromise between self-consumption 

and GWP for a self-consumption operation depends on 

the user’s choice. The following sizing is arbitrarily 

chosen for the energy system: a PV panel surface of 

12.2 m² with a tilt of 25.4° and an azimuth of 23.8°, with 

e_sto equals to 434 Wh, i.e. a battery capacity of 868 Wh. 

After implementing this design in the OMEGAlpes model 

of the study, the results of the battery management over a 

chosen period of time can be put in place, and the energy 

flows of the system can be observed. For study periods 

higher than 3 months, the used CBC open source solver 

does not perform well and the computing time is too long: 

professional solvers should be used. Figure 3 presents the 

energy flows in the dwelling energy system on the typical 

august day work week of 2019. If the battery management 

here is somewhat trivial, the OMEGAlpes model is 

accessible for more intricate studies on this energy 

system.  

 

Figure 3: Dwelling energy flows diagram from 

OMEGAlpes 

The notebook for this study has been developed, and can 

be updated depending on the study case progress. It can 

be accessed online without installation of an environment, 

via the Mybinder public service to directly use and 

potentially adapt the code and input data. The ORUCE 

methodology offers here the possibility to adapt the case 

study to different situations, e.g. by varying the battery or 

PV panel technologies, or selecting input data depending 

on the new study characteristics and taking into account 

uncertainties. It also enables to benchmark different 

energy models, methods of study period or model 

reduction, and optimisation techniques. 

Regarding the limits and perspectives of this case study, a 

more refined analysis of the clustering results could be 

carried out, and time steps below one hour would give 

more accurate results. More refined modelling hypotheses 

could also be adopted over the 30 years considered for the 

design, such as the ageing of batteries and PV panels or 

changes in energy mixes. In addition, part of the power 

demand could be managed to reflect a possible adaptation 

of consumption to local production. Future work could 

also include a battery management depending on dynamic 



power grid GHG emissions. It would also be interesting 

to carry out the study at the neighbourhood scale in order 

to qualify and quantify the consequences on the energy 

networks, to evaluate the relevance of the sizing with the 

indicators presented here, and to integrate energy 

community issues. Such limits and perspectives are 

further arguments for the appropriation of the use case and 

collaboration with the ORUCE methodology. Finally, it is 

obvious that this example is a very simplified one that 

does not take into consideration stakeholders. Actual 

district scale energy projects involve complex energy 

systems and actors’ interactions, with potentially closed 

data or models. The ORUCE approach in such case allows 

for transparency on data sources and availability, in 

addition to providing an intermediary object for 

discussion in the stakeholder group, inviting to adopt open 

energy modelling practices with the show of its interests.  

Discussion 

Various limits and numerous perspectives have been 

identified for the ORUCE methodology, and generally 

speaking, open energy modelling. 

Regarding, open energy modelling, it has a few pitfalls, 

particularly in the academic world (Morrison 2018): the 

principle of open and regular availability of research 

results runs counter to research habits where teams tend 

to want to preserve their academic reputation by only 

giving access to perfectly finalised work. Moreover, the 

methods of research funding can make it difficult to 

promote work based on the open work of other research 

teams. Finally, a more widespread use of open methods 

faces a certain institutional inertia in the absence of 

incentives. The lock-in to proprietary models as well as 

the lack of awareness and practical knowledge regarding 

open practices are additional issues (Pfenninger et al. 

2018), that this article aims at tackling. 

Compared to closed approaches, the ORUCE 

methodology presented in this article enables to go 

beyond the results alone: it puts the data and models in the 

use case context, underlining the dependencies of the 

results. It fosters trust and collaboration between 

stakeholders, and enables to avoid errors and biases. The 

use cases are accessible, usable and transferable for 

possible future work and benchmark.  

The ORUCE methodology is a first proposal and needs to 

be put into practice to a greater extent, which would 

enable to qualify its transferability process and interests. 

Stakeholders’ roles and interactions in the workflow 

could also be better defined. The formalism regarding the 

linkage between open access publications and notebooks 

needs to be addressed, with the issue of the durability of 

the hosting platforms.  

Further work will focus on setting an open and 

collaborative platform up to provide a library of ORUCE, 

as well as questioning its design with social experiments 

based on a Sociology of User Experience Approach.  

Conclusion 

This article underlines the importance of open energy 

modelling for district scale studies, in a context where it 

is increasingly needed and asked for. It presents open 

development best practices, and provides the ORUCE 

methodology, illustrated with a dwelling PV self-

consumption example to show its actual application. The 

ORUCE methodology is a workflow from open data to 

open model formulation and solving, which capitalises 

the study as a use case, an intermediate object for the 

stakeholders to collaborate. Clearly stated assumptions, 

open data and open energy models collected in the use 

case make the studies easily reproducible and 

transferable. It shows easy to apply practices in order to 

make open energy modelling common within the building 

simulation community. Beyond transparency and open 

science regulation, such practices can entail to seize open 

science advantages for relevant and useful collaborations.  
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