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This paper presents an averaged state model and the de-
sign of nonlinear observers for an on/off pneumatic actu-
ator. The actuator is composed of two chambers and four
on/off solenoid valves. The elaborated averaged state
model has the advantage of using only one continuous
input instead of four binary inputs. Based on this new
model, a high-gain observer and a sliding-mode observer
are designed using the actuator position and the pres-
sure measurements in one of the chambers. Finally, their
closed-loop performances are verified and compared on
an experimental benchmark.

1 INTRODUCTION
Pneumatic actuators are widely used in the automa-

tion of different industrial production lines, robotics and
medical applications. These systems present many ad-
vantages: reliability, velocity, low cost and effort/input
energy ratio, which allow building light and powerful ac-
tuators. Depending on the technique used to deliver and to
extract compressed air from the pneumatic chambers, we
can distinguish two types of pneumatic actuators: actua-
tors with servo-valves and actuators with on/off solenoid
valves. The first type of pneumatic actuators can deliver
an airflow rate, depending on the control voltage and the
upstream pressure, ranging from 0% to 100%. The sec-
ond type of pneumatic actuators are only able to deliver
either 0% or 100% of the available mass flow depend-
ing on the binary input voltage of the valves. We focus
in this paper on this second type: pneumatic actuators
with on/off solenoid valves. The dynamics of pneumatic
actuators are nonlinear due mainly to the air compress-
ibility and the behavior of the airflow rate through the

components delivering compressed air to the chambers
(servo-valves or on/off solenoid valves). In addition to
that, actuators with on/off solenoid valves present other
fundamental challenges. From an operating point of view
and due to their binary inputs, the pneumatic actuators
equipped with on/off solenoid valves belong to the class
of switched systems with nonlinear dynamics.

In contrast to the rich literature and different control
techniques of pneumatic actuators with servo-valves, see
for instance [1–6], the literature on pneumatic actuators
equipped with on/off solenoid valves remains limited due
to the challenges mentioned earlier. The control of these
systems was traditionally carried out using hybrid and se-
quential control, see for instance [7, 8] and the references
within. However, from a theoretical point of view, there
is no general theory able to characterize the stability of
these switched systems in the general case using those
approaches.

The recent development of high frequency switching
on/off valves has open new perspectives in terms of mod-
eling and control of switched pneumatic actuators. For in-
stance, by considering that the fast on/off valves are sim-
ilar, from an operating point of view to electric switches,
we can use the rich literature of power converters. In
power electronics, the concept of switching systems with
discrete inputs is well known and averaging techniques
are widely used to model power converters. Averaging
techniques are used to create one unique model with one
continuous input called duty cycle. The control design is
then carried out using this new continuous model. Once
the continuous input is obtained (as an output of a de-
signed controller), it is converted to discrete inputs (1 or
0) by using a Pulse Width Modulation (PWM) to control



the switched system.
In pneumatic actuators with on/off solenoid valves

systems, the valves are controlled with a PWM controller
to determine their state: open or close. The average mod-
eling techniques can be used to characterize the equiva-
lent continuous dynamics of the nonlinear system. For
instance, the authors of [9] proposed a linear controller
based on loop shaping techniques to control the position
of the piston. Sliding mode control (see [10–14]) has also
been considered as a promising control strategy for pneu-
matic systems due to its ability to account for the system
nonlinearities as well as its dynamic uncertainties. The
authors of [15–19] use averaging techniques to derive a
nonlinear model which they use to design sliding-mode
controllers to control the actuator position.

The different control strategies presented so far re-
quire the measurement of all the state variables (position,
velocity and pressures of the two chambers) and four sen-
sors are required to implement the previous control strate-
gies. To reduce the implementation costs, we are inter-
ested in designing observers to estimate the state variables
and hence reducing the number of sensors. In the liter-
ature of pneumatic systems with on/off solenoid valves,
observer design has been considered in automotive ap-
plications and precisely in the control of clutch systems.
The authors of [20] propose a reduced-order observer to
estimate the pressure which is used afterwards to control
the clutch position using an internal pressure controller.
In [21], the authors consider the design of a switched ob-
server for an electro-pneumatic clutch actuator with a po-
sition sensor. This observer is used in [22] to obtain a dual
mode switched controller for the clutch actuator position.

We consider in this paper the derivation of an aver-
aged model, for pneumatic systems with on/off valves,
which will be suitable for an easy stability analysis, con-
trol and observer designs. Within these objectives, the
different previous results suffer from several limitations.

• In modeling and control design: the models of [9,
15–19] are output averaged models. In other words,
they are partially averaged model as only the actua-
tor position is averaged while the two pressures are
still governed by switched dynamics. Therefore, the
existing averaged models have two parts: continu-
ous and switched. This will not allow the elaboration
of controllers and observers with simple proofs with-
out requiring tools from hybrid system and sequential
control theory.

• In observer design: the observers designed in [20–
22] use reduced-order models and have switching dy-
namics due to the binary inputs of the on/off solenoid
valves. As it was mentioned earlier, there is no gen-

eral theory to guarantee the stability of switched sys-
tems in the general case. Therefore, some extra con-
ditions are required to derive stability proofs. For in-
stance, the authors of [21, 22] require a persistence
assumption on the velocity signal (persistently ex-
citing condition) for their observation error stability
proofs to hold.

Paper contributions
We extend our previous results presented in [23]

where a full-state averaged model to describe the on/off
pneumatic system behavior was elaborated. Our contri-
butions can be summarized as follows.

1. Averaged Model Validity: A validity analysis of the
on/off pneumatic system full-state averaged model is
performed by defining an appropriate criterion and
using a well-chosen signal.

2. Position Control design: A nonlinear sliding-mode
controller is designed based on the full-state aver-
aged model. Conditions on the different control gains
are derived to ensure the asymptotic convergence of
the tracking errors.

3. Nonlinear observer design: The design of nonlinear
observers (high gain and sliding modes) using the ob-
tained state averaged model with two outputs. Con-
ditions on the different observer gains are derived to
ensure the convergence of the observation errors.

4. Experimental Validation: The performance of the
proposed nonlinear observers in closed-loop with the
designed sliding-mode controller is validated experi-
mentally on a dedicated benchmark.

Paper outline
The remainder of this paper is as follows. Sec-

tion 2 presents the modeling of a pneumatic actuator with
four on/off solenoid valves together with the paper objec-
tives. Section 3 presents the principles of average model-
ing with an illustrative example from power electronics.
Those principles are adjusted and used in Section 4 to
derive a full-state averaged model of the switched pneu-
matic actuator and validity analysis of this new model is
presented. A robust sliding-mode controller is designed
in Section 5 to control the actuator position. Section 6
presents the design of a high-gain observer and a sliding-
mode observer. The performances of these observers in
closed-loop with the designed sliding-mode controller are
verified experimentally in Section 7 with performance
comparison. Conclusions and perspectives are drawn in
Section 8.



Fig. 1. Pneumatic actuator benchmark

2 MODELING AND PROBLEM FORMULATION
We consider a pneumatic actuator with one degree of

freedom composed of two pneumatic chambers as illus-
trated in Fig. 1. Each chamber is connected to a pressure
source and an exhaust pressure using two on/off solenoid
valves. Each valve i is controlled with a discrete binary
input Ui.

To model the airflow dynamics in a cylinder, we
adopt the following assumptions usually considered in the
literature of pneumatic systems and fluid power systems.

• The air is a perfect gas, and its kinetic energy is neg-
ligible in each chamber.

• The pressure, the temperature and the density of the
air are homogeneous in each chamber.

• The evolution of the air inside each chamber is poly-
tropic.

• The supply and the exhaust pressures are constant.

The complete modeling can be divided into three
parts: piston dynamics, air dynamics in each chamber
and valves dynamics. Using Newton’s second law and
the first principle of thermodynamics, the piston dynam-
ics and the air evolution inside each pneumatic chamber
are given by [9, 15, 16, 19]

mÿ = (APPP −ANPN )− bv ẏ + fext

ṖP =
k

(l/2 + y)AP
(rTQP −APPP ẏ)

ṖN =
k

(l/2− y)AN
(rTQN +ANPN ẏ)

(1)

where l is the total length of the pneumatic chamber, m is
the mass of the piston and the load connected to it and bv
is the viscosity coefficient. y is the piston position and
fext is the disturbance force. PP , AP and QP (respec-
tively PN , AN and QN ) are the air pressure, the cylinder
area and the input mass-flow rate in chamber P (respec-
tively chamber N ). r is the perfect gas constant and k is
the polytropic constant. T is the air temperature.

QP and QN are the input mass-flow rates in each cham-
ber and are given by{

QP = U1Q(PS , PP )− U2Q(PP , PE)
QN = U3Q(PS , PN )− U4Q(PN , PE)

(2)

where Ui with i = {1, 2, 3, 4} is the binary input voltage
of each valve i. The pressures PS and PE are the supply
and the exhaust pressures, respectively.

The air flow inside each valve depends on the up-
stream pressure (Pu) and temperature (Tu); and on the
downstream pressure (Pd) and temperature (Td). The air
flow inside each valve depends also on the valve charac-
teristics such as the mass-flow rate constant Cval and the
critical pressure ratio bcrit. The air flow is given by

Q(Pu, Pd) = CvalPu
√
T/Tu × . . .

· · · ×



√√√√√√√1−


Pd
Pu
− bcrit

1− bcrit


2

if
Pd
Pu

> bcrit

1 if
Pd
Pu
≤ bcrit

(3)

Note that the external disturbance fext represents
non-measurable forces affecting the piston dynamics.
Subsequently in this paper, the term fext will be dropped
from ÿ to have a design model with full parametric knowl-
edge1. Thereafter, the global model of Eqn. (1) becomes

ÿ =
1

m
(APPP −ANPN − bv ẏ)

ṖP = krT
U1Q(PS , PP )− U2Q(PP , PE)

(l/2 + y)AP
− . . .

· · · − k PP
l/2 + y

ẏ

ṖN =krT
U3Q(PS , PN )− U4Q(PN , PE)

(l/2− y)AN
+ . . .

+k
PN

l/2− y
ẏ

(4)

Each binary input voltage Ui can have two physical
states either ”on” or ”off” and every chamber can be in
one of the following three states.

• Pressurizing: connected to the supply pressure (for
the chamber P : U1 = 1, U2 = 0);

1Note that the obtained model will be used to design controllers and
observers with robustness properties which will consider neglected and
non-modelled dynamics such as fext.



Table 1. The nine operating modes of the pneumatic actuator

M1 M2 M3 M4 M5 M6 M7 M8 M9

U1 0 1 0 0 0 1 0 1 0

U2 0 0 1 0 0 0 1 0 1

U3 0 0 0 1 0 0 1 1 0

U4 0 0 0 0 1 1 0 0 1

• Venting: connected to the exhaust pressure (for the
chamber P : U1 = 0, U2 = 1);

• Close: both of the valves are closed (for the chamber
P : U1 = 0, U2 = 0).

From these three states and depending on the input
vector U = (U1 U2 U3 U4)T , nine modes can be ob-
tained for the two chambers as shown in Table 1. How-
ever, modes 8 and 9 are functionally redundant since the
actuator will not be able to move as there is no pressure
difference between chamber P and chamber N . There-
fore, only modes 1 to 7 are kept in the sequel of this paper.
For each of these modes, we define UMj

as

• Mode 1: UM1
= (0 0 0 0)T

• Mode 2: UM2
= (1 0 0 0)T

• Mode 3: UM3 = (0 1 0 0)T

• Mode 4: UM4
= (0 0 1 0)T

• Mode 5: UM5 = (0 0 0 1)T

• Mode 6: UM6
= (1 0 0 1)T

• Mode 7: UM7
= (0 1 1 0)T

(5)

Problem statement
Let the pneumatic actuator of Eqn.(4) with four bi-

nary inputs U1, U2, U3 and U4 operating with the seven
modes given by Eqn. (5), the objectives of this paper are
summarized as follows.

• Derive an equivalent model (with one continuous in-
put) able to represent the behavior of the switched
system (4);

• Given a desired piston position yd and using the ob-
tained continuous model, design an observer-based
controller and determine the conditions ensuring the
convergence of tracking and observation errors.

3 AVERAGED MODELING IN POWER ELEC-
TRONICS
In power converter literature where the models have

switching dynamics, averaging techniques are used to

create one unique model with one single continuous in-
put. By evaluating all the different p modes of a switched
system within a PWM period, average modeling consists
in merging all these modes resulting in a model where the
PWM duty cycle will act as the continuous input.

Consider a switching system with p modes such that{
Ẋ = FMj

(X)
W = HMj

(X)
j = 1, . . . , p

whereX is the state vector, FMj andHMj are the dynam-
ics and the state-output mapping of mode j. Note that in
each of the previous modes, the switching input is con-
stant and hence the notations FMj

(X) and HMj
(X) in-

stead of the usual notations FMj
(X,U) and HMj

(X,U).
Due to the input variations within a PWM period,

the system can switch between several modes. A duty
ratio dMj

is associated to each mode j. Note that
each dMj

is normalized with respect to the total dura-
tion of the PWM period and the different dMj

satisfy∑p
j=1 dMj

= 1.
The averaged model will represent all the FMj (X)

and HMj (X) within a switching period and the averaged
model is given by

Ẋa =

p∑
j=1

dMj
FMj

(Xa)

Wa =

p∑
j=1

dMj
HMj

(Xa)

(6)

whereXa andWa represent the averaged state vector and
the averaged output vector, respectively.

Remark 1. At a first glance, one may link Eqn. (6)
to the T-S fuzzy modeling [24, 25]. However, the aver-
age modeling and T-S modeling are fundamentally differ-
ent. The T-S modeling does not require the mathematical
modeling of the system. Instead, the T-S modeling approx-
imates this system by an interpolation of several local lin-
ear models (obtained by using simple input-output rules)
and combines them using activation functions. Therefore,
the T-S modeling can be seen as creating and combing
artificial modes to approximate the nonlinear behavior
of the system. However, as this technique does not take
advantage of the mathematical models, the relevance of
the resulting model depends on its ability to represent the
actual nonlinear system which is a limitation of the T-S
modeling. This is fundamentally different from averaging
techniques used in this paper which will reflect the nonlin-
ear behavior. Averaging techniques use the mathematical
modeling of the different modes of the nonlinear system.



Fig. 2. Buck converter

Fig. 3. Mode 1 : buck con-
verter with a closed switch

Fig. 4. Mode 2 : buck con-
verter with an open switch

Then, these modes are combined together to obtain one
single model averaging all the modes.

Example
To illustrate the average modeling, we consider the

buck converter. Fig. 2 shows a buck converter and its
components: a capacitance and an inductor controlled
with a single switch and a diode. Depending on the posi-
tion of the switch, two modes could be considered.

• Mode 1 (Fig. 3): The switch is closed. The
diode is reverse biased by Vi and no current is
passing through. The voltage across the inductor
is VL = Vi − Vo and the current IL inside the induc-
tor is increasing.

• Mode 2 (Fig. 4): The switch is open. The diode
is forward biased. The voltage across the inductor
is VL = −Vo and the current IL is decreasing.

Let us consider IL and Vo as the state vari-
ables X = (IL Vo)

T while we consider Vi as the input
and Vo as the output (denoted W ). The dynamics of each
mode can be written as

• Mode 1



Ẋ =

 0 − 1

L
1

C
− 1

CR


︸ ︷︷ ︸

A1

X +

(
1

L
0

)
︸ ︷︷ ︸
B1

Vi

W =
(
0 1

)︸ ︷︷ ︸
C1

X +

(
0
0

)
︸︷︷︸
D1

Vi

• Mode 2



Ẋ =

 0 − 1

L
1

C
− 1

CR


︸ ︷︷ ︸

A2

X +

(
0
0

)
︸︷︷︸
B2

Vi

W =
(
0 1

)︸ ︷︷ ︸
C2

X +

(
0
0

)
︸︷︷︸
D2

Vi

In order to obtain an averaged state model, we de-
fine dM1 and dM2 as the duty ratios associated to mode 1
and mode 2, respectively. Then, the averaged state model
is given by

Ẋa =

2∑
j=1

dMj
(AjXa +BjVi)

Wa =

2∑
j=1

dMj (CjXa +DjVi)

(7)

where Xa is the averaged state variable vector and Wa is
the averaged output. This averaged state model has two
inputs dM1

and dM2
satisfying dM1

+ dM2
= 1. Hence,

by choosing d = dM1
, then dM2

= 1−d and the averaged
model of Eqn. (7) rewrites after some rearrangements as

Ẋa =

 0 − 1

L
1

C
− 1

CR


︸ ︷︷ ︸

Aa

Xa +

(
Vi
L
0

)
︸ ︷︷ ︸
Ba

d

Wa =
(
0 1

)︸ ︷︷ ︸
Ca

Xa +

(
0
0

)
︸︷︷︸
Da

d

(8)

This model has one continuous input d and is suit-
able for simple control strategies since we do not have to
deal with any binary inputs. Once the controller is de-
signed and implemented, the input d can be computed
and a PWM technique can be used to determine the state
(open or closed) of the switch.

4 PNEUMATIC ACTUATOR AVERAGE MODEL-
ING AND ANALYSIS
We present in this section the derivation of the state

averaged model for the pneumatic actuators of Eqn. (4).
Then, we analyze the accuracy of this new model com-
pared to the switched model of Eqn. (4).



4.1 Pneumatic actuator state averaged model
In the model presented in Eqn. (4), the pressure dy-

namics ṖP and ṖN depend explicitly on the binary dis-
crete inputs Ui. Meanwhile, the piston dynamic ÿ de-
pends implicitly on Ui through the pressures PP and PN .

We can apply averaging techniques, as described in
the previous section, on the two pressure dynamics ṖP
and ṖN . However, the resulting model will be a partial
averaged state model since the piston dynamics ÿ are not
directly averaged. Therefore, to obtain a full averaged
state model for the pneumatic actuator, the translation dy-
namic must depend explicitly on the binary discrete in-
puts Ui.

After introducing the third-order derivative of the po-
sition y, the model of Eqn. (4) becomes

...
y = − k

m

(
APPP
l/2 + y

+
ANPN
l/2− y

)
ẏ − bv

m
ÿ + . . .

· · ·+ krT

m

U1Q(PS , PP )− U2Q(PP , PE)

(l/2 + y)
− . . .

· · · − krT

m

U3Q(PS , PN )− U4Q(PN , PE)

(l/2− y)

ṖP = krT
U1Q(PS , PP )− U2Q(PP , PE)

(l/2 + y)AP
− . . .

· · · − k PP
l/2 + y

ẏ

(9)

with PN =
APPP −mÿ − bv ẏ

AN
.

As it can be seen in Eqn. (9), the dynamics
...
y and ṖP

change according to the input UMj
of Eqn. (5). Using the

following notations

X=

x1

x2

x3

x4

=

 y
ẏ
ÿ
PP

 , FMj
(X)=


f1
f2

f3Mj

f4Mj

=


x2

x3...
y |UMj

ṖP |UMj


where the dynamics f3Mj

and f4Mj
correspond to the dy-

namics
...
y and ṖP evaluated for the input UMj

. The model
of Eqn. (9) rewrites then as

Ẋ = FMj
(X) j = 1, . . . , 7. (10)

The seven modes of Eqn. (5) can be used to produce
the piston movements (positive and negative direction) or
to keep its current position (no movement) using three
different schemes (or operating configurations).

• Scheme 1 (three-mode configuration): It uses modes
1, 6 and 7 to produce the piston movements such that:
mode 1 for no movement, mode 6 for movement in
the positive direction and mode 7 for movement in
the negative direction.

• Scheme 2 (five-mode configuration): It uses modes
1, 2, 5, 6 and 7 to produce the piston movements
such that: mode 1 for no movement, modes 2 and
6 for movement in the positive direction and modes
5 and 7 for movement in the negative direction.

• Scheme 3 (seven-mode configuration): it uses all the
modes to achieve no movements and movements in
both directions.

As Scheme 3 has more operating modes, the resulting
averaged model will be more accurate compared to those
obtained from Scheme 2 and Scheme 1. Therefore, if we
use the seven-mode averaged model to design a position
controller, the tracking error will be small compared to the
tracking error resulting when using controllers obtained
from Scheme 2 and Scheme 1. However, the implemen-
tation of the resulting controller (obtained from the seven-
mode model) will be laborious due to the model high
complexity. The same arguments are valid when com-
paring Scheme 2 and Scheme 1. Therefore, to facilitate
the position control design, we will consider Scheme 1
with its three basic modes. Note that with a high PWM
switching frequency, those basic modes are sufficient to
represent the behavior of the switched system as will be
illustrated later in this section.

Following the approach of Section 3, we define
x1a

x2a

x3a

x4a

 =


ya
ẏa
ÿa
PPa


where ya, ẏa, ÿa and PPa

are the averaged position, the
averaged velocity, the averaged acceleration and the aver-
aged pressure in chamber P . After considering ya as the
output, the three-mode averaged model corresponding to
the model of Eqn. (10) is given by

Ẋa =
∑
j

dMjFMj (Xa) j ∈ {1, 6, 7}

Wa = x1a

(11)

with Xa = (x1a x2a x3a x4a)T .
The model of Eqn. (11) has three continuous inputs:

dM1 , dM6 and dM7 with dM1 + dM6 + dM7 = 1. As
our control objective is to design a robust controller en-
suring that the actuator position tracks a desired posi-



tion yd and in order to be able to apply single-input single-
output (SISO), we are interested in transforming the pre-
vious model with three continuous inputs into a model
with one continuous input. For this purpose, the previous
three modes can be merged depending on the movement
direction as follows.

• For a movement in the negative direction, that is from
chamber N to chamber P (see Fig. 1), the modes 1
and 7 can be modulated together while mode 6 is not
used.

• For a movement in the positive direction, that is from
chamber P to chamber N (see Fig. 1), the modes 1
and 6 can be modulated together while mode 7 is not
used.

To take into account the previous movement
direction-based merging, we introduce a new continuous
input u such that

• no actuation, that is mode 1 corresponding to u = 0;
• full actuation in the positive direction, that is mode 6

corresponding to u = 1;
• full actuation in the negative direction, that is mode

7 corresponding to u = −1.

and the merging of modes 1, 6 and 7 is as follows.

• For a movement in the negative direction, mode 6 is
not used. The input u is negative and its absolute
value corresponds to the duty ratio of mode 7 while
the duty ratio of mode 1 is the complementary mode,
that is 

dM1 = 1− |u|
dM6 = 0

dM7 = |u|
u ∈ [−1, 0[ (12)

• For a movement in the positive direction, mode 7 is
not used. The input u is positive and its absolute
value corresponds to the duty ratio of mode 6 while
the duty ratio of mode 1 is the complementary mode,
that is 

dM1
= 1− |u|

dM6
= |u|

dM7
= 0

u ∈ [0, 1] (13)

The model averaging the three-basic modes
(mode 1, 6 and 7) with one continuous input is thus
given by

Ẋa = FM1
(Xa) + . . .

· · ·+
{

(FM1(Xa)− FM7(Xa))u, u ∈ [−1, 0[
(FM6(Xa)− FM1(Xa))u, u ∈ [0, 1]

(14)

By considering the averaged position as the output,
the state averaged model of (11) becomes
Ẋa=

(
A1 0
0 A2

)
Xa+


0
0

ϕ1(Xa)
ϕ2(Xa)

+


0
0

g1(Xa)
g2(Xa)

u

Wa = x1a

(15)

with u ∈ [−1, 1] and

A1 =

0 1 0
0 0 1
0 0 0

 A2 = 0

ϕ1(Xa)=− k
m

(
APx4a

l/2 + x1a

+
ANψ(Xa)

l/2− x1a

)
x2a −

bv
m
x3a

g1(Xa)=
krT

m


(
Q(PS , x4a)

(l/2 + x1a
)

+
Q(ψ(Xa), PE)

(l/2− x1a
)

)
u ≥ 0(

Q(x4a
, PE)

(l/2 + x1a)
+
Q(PS , ψ(Xa))

(l/2− x1a)

)
u < 0

ϕ2(Xa) = −k x4a

l/2 + x1a

x2a

g2(Xa) = krT


krT

Q(x4a
, PE)

(l/2 + x1a)AP
if u ≥ 0

krT
Q(PS , x4a

)

(l/2 + x1a
)AP

if u < 0

and ψ(Xa) = (Apx4a −mx3a − bvx2a)/AN .

Remark 2. In contrast with the switched model of
Eqn. (4) with four binary discrete inputs, the averaged
model of Eqn. (15) has the advantage of using only one
continuous input u ∈ [−1, 1]. Furthermore, the dynamics
g1(Xa) and g2(Xa) correspond to the variation of ac-
tuation between FM6

(Xa) and FM7
(Xa), which is per-

formed gradually and smoothly contrary to the switched
model of Eqn. (4). This behavior is similar to a pneumatic
actuator equipped with servo valves where a part of the
dynamics of Eqn. (15) depends on the sign of the input u:
if u ≥ 0, chamber P is charging while chamber N is
discharging and vice versa.

4.2 Analysis of the averaged state model
The use of the averaged model is justified by the

high-switching frequency of the solenoid valves. In other



words, the dynamics of these valves are much faster (2 ms
according to the data sheets) than the other dynamics
of the model. Since the PWM period determines the
switching events of the valves, the validity of the aver-
aged model is directly affected by the PWM period. For
this reason, the switched model of Eqn. (4) and the aver-
aged state model of Eqn. (15) are compared using their
respective outputs y and ya.

Since the closed-loop ensures some robustness
against the variation of the PWM period, the comparison
will be carried out in an open-loop configuration using an
excitation signal. Nevertheless, as there are integrators in
its open loop, the system is unstable as any bounded in-
put will result in an unbounded output. Therefore, this
excitation input must be well chosen. Keeping in mind
that we are operating in an open-loop configuration, this
signal must have a relatively small amplitude for the two
outputs not to reach the actuator position limits +l/ and
−l/2. Moreover, this signal must result in movements in
both directions (positive and negative) to excite the differ-
ent modes used in each movement. For these reasons, the
chosen input is a sinusoidal signal with 10 mm amplitude
and 10 Hz frequency.

To compare the averaged model and the switched
model, we consider the normalized root-mean-square-
output difference (NRMSOD) given by

NRMSOD =
1

ēd

√
eTd ed (16)

where ed = y − ya with y and ya being the positions in
the switched model and the averaged model respectively
and ēd being the maximal value of ed.

Fig. 5 shows the NRMSOD for different PWM fre-
quencies. The NRMSOD of Eqn. (16) tends toward zero
when the PWM frequency increases. Therefore, a high
switching frequency such as 100 Hz is sufficient to obtain
an averaged model close enough to the switched model
with a NRMSD that can be neglected: for a frequency of
100 Hz, this error is around 1% despite that the averaged
model uses three modes instead of seven modes as in the
switched model.

5 SLIDING MODE CONTROL OF THE PNEU-
MATIC ACTUATOR
In this section, we develop a position controller for

our pneumatic actuator. The control strategy aims to
make the piston position y tracks a desired sinusoidal tra-
jectory yd with a sliding mode control strategy as in [19].
Let us define the position tracking error ep as

ep = x1a − yd

10
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10
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10
3

PWM frequency (Hz)

0

5%

10%

15%

20%

25%

N
R

M
S

O
D

Fig. 5. Normalized root-mean-square-output difference (NRM-
SOD) vs the PWM frequency

To ensure that the control objective is respected and
in order to consider neglected or non-modeled dynamics
of the piston2, a dynamical uncertainty is introduced in
the translation dynamic i.e. the third dynamics in (15).
The new translation dynamic is given by

ẋ3a =
(
1 + ∆ϕ1(Xa)

)
ϕ1 (Xa) + . . .

· · ·+
(
1 + ∆g1(Xa)

)
g1 (Xa)u

(17)

where∣∣∆ϕ1(Xa)

∣∣ ≤ γ β−1 ≤
(
1 + ∆g1(Xa)

)
≤ β

with γ > 0 and β > 1.
The tracking error ep converges toward zero asymp-

totically for any ∆ϕ1(Xa) and for any ∆g1(Xa) respecting∣∣∆ϕ1(Xa)

∣∣ ≤ γ and β−1 ≤
(
1 + ∆g1(Xa)

)
≤ β, if the

control input u is chosen of the form

u =



ũ−Kcsign(sp)

krT

m

(
Q(PS , x4a

)

(l/2 + x1a)
+
Q(ψ(Xa), PE)

(l/2− x1a)

) if ũ ≥ 0

ũ−Kcsign(sp)

krT

m

(
Q(x4a , PE)

(l/2 + x1a
)

+
Q(PS , ψ(Xa))

(l/2− x1a
)

) if ũ < 0

(18)
where

• sp is the sliding surface given by

sp =

(
d

dt
+ λ

)3
τ∫

0

epdτ

2Such as fext which was neglected in the model of Eqn. (4).



with λ is a positive tuning parameter.
• ũ is the control input equivalent to ṡp = 0 and is

given by

ũ =
...
y d − ϕ1 (Xa)− 3λëp − 3λ2ėp − λ3ep (19)

• Kc is a time variant gain to ensure some robustness
properties and the convergence to the sliding surface,
it is given by

Kc = β (γ |ϕ1 (Xa)|+ η) + (β − 1) |ũ| (20)

with η a positive tunning parameter.

Proof 1. See Appendix A.

6 OBSERVABILITY AND OBSERVER DESIGN
6.1 Observability analysis of the averaged state

model
The observability of a system expresses the possibil-

ity to reconstruct its initial conditions with nothing else
than the measure of its inputs and outputs. More precisely
and as stated in [26–28], a dynamical system is observ-
able if for any two equal outputs z and z̄, for any finite
time interval [0, th], the corresponding initial conditions
x0 and x̄0 are also equal. As stated in [26], the previous
definition is equivalent to the existence of a state transfor-
mation with full rank Jacobian matrix, see [26, 27].

In this paper, the averaged state model of Eqn. (15) is
already in the canonical form presented in [27] and there
is no need for such a transformation. Therefore, the ob-
servability proof of the averaged state model of Eqn. (15)
will be elaborated as in [28]. For this purpose, two out-
puts are considered: the averaged position x1a

and the
averaged pressure x4a

.
Consider two equal output vectors Za =

(
x1a

x4a

)T
and Z̄a =

(
x̄1a

x̄4a

)T
, that is x1a

= x̄1a
and x4a

=
x̄4a

. If x1a
= x̄1a

on a finite time interval [0, th], we
deduce that x0

1a
= x̄0

1a
. Since x1a

= x̄1a
their first-time

derivatives x2a and x̄2a are also equal on [0, th] and we
conclude that x0

2a
= x̄0

2a
. Furthermore, their second-time

derivatives x3a
and x̄3a

are also equal on [0, th] which
means that x0

3a
= x̄0

3a
. The same argument applies for

x4a
and x̄4a

which leads to x0
4a

= x̄0
4a

.
Therefore, for any equal output vectors Za =(

x1a
x4a

)
and Z̄a =

(
x̄1a

x̄4a

)
the corresponding ini-

tial conditions X0
a and X̄0

a are equal and the averaged
state model of Eqn. (15) is observable using the measures
of x1a

and x4a
. Furthermore, the averaged state model of

Eqn. (15) is uniformly observable since the rank of the
Jacobian matrix does not depend on the input u.

In the sequel, by considering the output Za =(
x1a

x4a

)T
the averaged model is given by


Ẋa =

(
A1 0
0 A2

)
Xa +


0
0

ϕ1(Xa)
ϕ2(Xa)

+


0
0

g1(Xa)
g2(Xa)

u

Za =

(
C1 0

01×3 C2

)
Xa

(21)
with u ∈ [0, 1], C1 = (1 0 0) and C2 = 1.

6.2 High-gain observer design
Model of Eqn. (21) is in the canonical form of [27].

Hence, no state transformation is required. A standard
high-gain observer can be given by [26, 27]

˙̂
Xa =

(
A1 0
0 A2

)
X̂a +


0
0

ϕ1(X̂a)

ϕ2(X̂a)

+


0
0

g1(X̂a)

g2(X̂a)

 u− . . .

· · · − Θ−1G

((
C1 0

01×3 C2

)
X̂a − Za

)
(22)

where u ∈ [0, 1] and

Θ =

(
Θ1 03×1

01×3 Θ2

)
G =

(
G1 03×1

01×3 G2

)
with

Θ1 =

θ1 0 0
0 θ2

1 0
0 0 θ3

1

 Θ2 = θ2 G1 =

g11

g12

g13

 G2 = g2

and the parameters θ1 and θ2 are strictly positive scalars.
The gains in G1 and G2 are chosen such that A1 −G1C1

and A2 − G2C2 are Hurwitz while the parameters θ1

and θ2 are chosen sufficiently high to overcome the non-
linear dynamics of the system.

If the different gains are chosen as mentioned above,
the observation errors converge toward zero exponen-
tially.

Proof 2. The complete convergence proof can be found
in [27].

6.3 Sliding-mode observer design
Given the model of Eqn. (21), we consider the fol-

lowing standard sliding-mode observer [29]



˙̂
Xa=

(
A1 0
0 A2

)
X̂a+


0
0

ϕ1(X̂a)

ϕ2(X̂a)

+


0
0

g1(X̂a)

g2(X̂a)

u− . . .

· · · −K
((

C1 0
01×3 C2

)
X̂a − Za

)
− . . .

· · · − L sign
((

C1 0
01×3 C2

)
X̂a − Za

)
(23)

where u ∈ [0, 1] and

K =

(
K1 03×1

01×3 K2

)
L =

(
L1 03×1

01×3 L2

)
with

K1 =

k11

k12

k13

 K2 = k2 L1 =

`11

`12

`13

 L2 = `2.

The gains in K1 and K2 are chosen such that A1−K1C1

and A2 −K2C2 are Hurwitz.

System of Eqn. (23) is an observer for system of
Eqn. (21) where the observation errors converge toward
zero asymptotically if `11, `12, `13 and `2 satisfy the fol-
lowing conditions

`11 > max |e2|
`12 > 0

−
ϑ−

√
|ζ|

P3
`11 < `13 < −

ϑ+
√
|ζ|

P3
`11

`2 > max |δ2|

(24)

with

ζ = −4`12P2P3

`11

δ1
e2

2 + e2
3

e3, ϑ = −
(
P2 +

δ1
e2

2 + e2
3

e2P3

)
where P2 and P3 are strictly positive scalars.
e2 = x̂2a

− x2a
, e3 = x̂3a

− x3a
, δ1 and δ2 are given by

δ1 = ϕ1(X̂a)− ϕ1(Xa) + (g1(X̂a)− g1(Xa))u

δ2 = ϕ2(X̂a)− ϕ2(Xa) + (g2(X̂a)− g2(Xa))u

Proof 3. See Appendix B.

Note that constraints of Eqn. (24) give sufficient con-
ditions on L in order to ensure the observation error con-
vergence toward zero. Those conditions hold even with
the switching functions in g1(X̂a) and g2(X̂a). One has
to consider the worst-case scenario by considering the
worst estimation of δ1 and δ2 in both cases (u ≥ 0 and
u < 0). Hence, the proof holds for any input u ∈ [−1, 1]
of the averaged model of Eqn. (21).

Fig. 6. Pneumatic actuator benchmark

7 EXPERIMENTAL RESULTS
The objective of this section is to validate the perfor-

mance of the designed control input of Eqn. (18) and also
the two designed observers of Eqn. (22) and Eqn. (23).
These observers are used in closed loop to control the ac-
tuator position y using sliding-mode controller to track a
desired position yd given by 0.04 sin (πt).

Experimental benchmark characteristics
The solenoid valves3 used to control the airflow have

switching periods of approximately 1.3 ms (opening time)
and 0.2 ms (closing time). Therefore, as it was discussed
in Section 4.2, with such small-switching periods, the
on/off valves are appropriate for control and observation
as the resulting averaged model will be accurate enough
to represent the switched system.

The controller and the observer are implemented us-
ing a dSPACE board (DS1104), running at a sampling rate
of 500 Hz. This sampling rate has been chosen according
to the open/close bandwidth of the valves and to enable
an acceptable tracking response. The benchmark is pre-
sented in Fig. 6 and its parameters are summarized in Ap-
pendix C.

Control and observation strategy
The benchmark has three sensors: a position sen-

sor (y) and two pressure sensors (PP and PN ). The ob-
servers of Eqn. (22) and of Eqn. (23) are used in closed
loop with the controller of Eqn. (18) to determine the dif-
ferent inputs Ui, see Fig. 7. The observers use the out-
put measures of y and PP to estimate the averaged state
vector X̂a. This latter is injected into a sliding-mode con-
troller to compute the continuous input u, which deter-
mines the active modes i.e. dM1

, dM6
and dM7

. Finally,

3The solenoid valves are GNK821213C3K Matrix models



 

𝑑𝑀7
 

 

𝑑𝑀6
 

 

𝑦𝑑 
On/off Solenoid 

Valves Pneumatic 
Actuator    
(2)-(4) 

 
PWM  𝑈3 

𝑈4 

𝑈2 

𝑈1 

Nonlinear Observer  
(22) or (23) 

Sliding-mode  
position 

controller 
(18) with  

    𝑿𝒂 = 𝑿𝒂 

𝑢 

൬
𝑦

𝑃𝑃
൰ 

 

ۉ

ۈ
ۇ

𝑥ො1𝑎

𝑥ො2𝑎

𝑥ො3𝑎

𝑥ො4𝑎ی

ۋ
ۊ

 

 

Generation 
of duty 
cycles  

(13)-(14) 

𝑑𝑀1
 

Fig. 7. Observation and control strategy scheme

using a PWM technique for each valve i, the different
discrete inputs Ui are generated. Note that the measure-
ments of the pressure PN are not used in the observer or
in the control strategy. They are only used to validate the
estimation of the pressure PN given by the observers.

The method used to determine the different control
and observation gains can be summarized as follows.

• Step 1: The minimal values ensuring stability are
computed using the different theoretical conditions.

• Step 2: starting from the minimal values computed
in the first step, simulations are performed, and
the gains are adjusted4 to obtain the desired perfor-
mance: settling time, overshoot, minimal tracking er-
ror.

• Step 3: The computed gains in the second step are
used to implement the observer-based controller on
the experimental benchmark. Note that minor adjust-
ments may be required to obtain good experimental
performance.

Note that in the case of sliding-mode observer, the
conditions of Eqn. (24) do not offer a direct method to
calculate L. The constraints of Eqn. (24) include the ob-
servation errors e2 and e3 which are not available. How-
ever, in practice, one can use the experimental data to es-
timate the worst-case estimation of e2 and e3 to satisfy
the theoretical constraints.

7.1 High-gain observer experimental results
Using the tuning method presented above, the matri-

ces G and Θ of the observer of Eqn. (22) and the param-
eters of the sliding mode strategy are the following

4Note that the observer gains must ensure that the observation errors
converge to zero fast enough for the state estimation to become reliable
and to be used by the controller.
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Fig. 8. Actual and estimated position and velocity of the high-
gain observer
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Fig. 9. Actual and estimated pressures of the high-gain ob-
server

G =


150 0
1900 0
10000 0

0 30

 Θ =


102 0 0 0
0 104 0 0
0 0 106 0
0 0 0 200


λ = 60 β = 1.1 γ = 0.1 η = 20

The experimental results are shown in Fig. 8 and
Fig. 9.
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Fig. 10. Actual and estimated position and velocity of the sliding-
mode observer
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Fig. 11. Actual and estimated pressures of the sliding-mode ob-
server

7.2 Sliding-mode observer experimental results
Using the tuning method presented above, the matri-

ces K and L in the observer of Eqn. (23) and the param-
eters of the sliding mode strategy tuned in practice are as
follows

K =


100 0
1840 0
12000 0

0 10

 L =


5 0
2 0
15 0
0 20

 λ = 60 β = 1.1
γ = 0.1 η = 20

The experimental results are shown in Fig. 10 and
Fig. 11.

7.3 Discussion
To make a fair comparison of the performances of

the two previous observers in a closed loop, the normal-
ized root-mean-square tracking deviation (NRMSTE) is
considered as a performance criterion, that is

NRMSTE =
1

ēt

√
eTt et (25)

where et = yd−y with yd and y being the desired position
and the benchmark piston position respectively while ēt
being the maximal value of et.

In order to ease the comparison, Table. 2 summa-
rizes all the data used in experiments: controller pa-
rameters, observer parameters, desired position and the
normalized root-mean-square tracking deviation (NRM-
STE). For both observers, the NRMSTE of Eqn. (25) is
less than 3 % which proves that, despite all the nonlinear
phenomena and neglected forces such as fext in the model
of Eqn. (4), the data obtained from observers allows to
track the desired position as shown in Fig. 8 and Fig. 10.

Fig. 8 and Fig. 9 show the state estimation of the aver-
aged state variables corresponding to y, ẏ, PP and PN us-
ing the high-gain observer, while Fig. 10 and Fig. 11 show
the state estimation using the sliding-mode observer.

For both observers, the estimations of y and PP are
close to the experimental values. For the estimated veloc-
ity x̂2a

, it is close to the velocity calculated using a robust
differentiation algorithm [30]. For the pressure PN , there
is a slight error in the estimation.

Fig. 12 and Fig. 13 show the estimation errors of
the high-gain observer and the sliding-mode observer, re-
spectively.

The estimation errors of y do not exceed 0.2 mm
while the velocity estimation error does not ex-
ceed 0.03 m/s for both observers. For the pressures,
the estimation error of PP is less than 0.1 bar for val-
ues reaching 3 bar, which represents less than 3 %. The
estimation error of PN is relatively important and it can
reach 0.2 bar for both observers for values reaching 3 bar,
which represents less than 8 %.

Many reasons may be the origin of this relatively im-
portant estimation error.

• From an experimental point of view, physical non-
linear phenomena such as dry frictions are present
in the physical system. The viscous friction of the
cylinder is low, but the global friction of the system
is high because of misalignments between the guide
rail and the piston/cylinder system: the actuator used
in our experiments was attached to a joystick on a
rail guide. Another consequence of the dry frictions
is the continuous vibrations in the curves of velocity
which result in other vibrations in pressure curves.
These phenomena can be observed in position curves
in Fig. 8 and Fig. 10.

• From a theoretical point of view, the estimated pres-
sure PN is computed using

PN =
APPP −mÿ − bv ẏ

AN
.

This equation is used to compute the estimated pres-
sure PN presented in Fig. 9 and Fig. 11. This equa-
tion was obtained after neglecting the external force



Table 2. Summary of specified data used in experiments

high-gain observer sliding-mode observer

Observer parameters G =


150 0

1900 0

10000 0

0 30

 ,Θ =


102 0 0 0

0 104 0 0

0 0 106 0

0 0 0 200

 K =


100 0

1840 0

12000 0

0 10

 , L =


5 0

2 0

15 0

0 20


Control parameters

λ = 60 β = 1.1

γ = 0.1 η = 20

λ = 60 β = 1.1

γ = 0.1 η = 20

Desired trajectory yd 0.04 sin (πt) 0.04 sin (πt)

Normalized root-mean-square

tracking error ( NRMSTE)
2.6417% 2.7297%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

-0.03

0

0.03

V
el

o
ci

ty
 e

rr
o

r  (m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

-0.20

0

0.20

P
o

si
ti

o
n

 e
rr

o
r   (

m
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

-0.10

0

0.10

P
P
 e

rr
o

r 
(b

ar
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

-0.20

0

0.20

P
N

 e
rr

o
r 

(b
ar

)

Fig. 12. Estimation errors of the high-gain observer
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Fig. 13. Estimation errors of the sliding-mode observer

fext in the translation equation (first equation) of
Eqn. (4) and the equation of PN should be

PN =
APPP −mÿ − bv ẏ + fext

AN
.

Nevertheless, despite all these experimental and the-
oretical reasons, the estimation of the pressure PN is good
since the estimation error is at most 10 %. These re-
sults prove some robustness properties of the designed
observers despite that those frictions were not taken into
consideration when designing the observers.

8 CONCLUSIONS AND PERSPECTIVES
In this paper, we have proposed an averaged state

model for a pneumatic actuator equipped with four
on/off solenoid valves. The advantage of this approach
is to provide a model, which has one continuous input
instead of having four binary inputs. This model can
easily be used to design control strategies, observers
or fault detection strategies. Using this model, we
have presented the design of a sliding-mode controller
and two nonlinear observers: a high-gain observer and
a sliding-mode observer. These observers have been
validated experimentally in a closed loop to track the



desired position trajectory. The estimation errors are
small, and the trajectory tracking is acceptable.

For the perspectives of this work, various extensions
are to be considered. For instance dry frictions were not
considered when modeling the system and we have seen
that they may affect the experimental performance when
it comes to state variable estimation. The consideration
of these frictions with appropriate models is our first per-
spective.

The elaborated model in this paper was obtained us-
ing three modes. The elaboration of more complex mod-
els with five modes and seven modes to have better perfor-
mance and to improve the estimation quality is our second
perspective.
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A. Lelevé, “Dynamical model averaging and PWM
based control for pneumatic actuators,” IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pp. 4798–4804, 2014.

[20] R. Prabel, D. Schindele, H. Aschermann, and S. S.
Butt, “Model-based control of an electro-pneumatic
clutch using a sliding-mode approach,” IEEE Con-
ference on Industrial Electronics and Applications
(ICIEA), pp. 1195–1200, 2012.

[21] H. Langjord, G. O. Kassa, and T. A. Johansen,
“Nonlinear observer and parameter estimation for
electropneumatic clutch actuator,” IFAC Symposium
on Nonlinear Control Systems, vol. 8, pp. 789–794,
2010.

[22] H. Langjord, G. O. Kassa, and T. A. Johansen,
“Adaptive observer-based switched control for elec-
tropneumatic clutch actuator with position sensor,”
in IFAC World Congress, vol. 18, pp. 4791–4796,
2011.

[23] K. Laib, A. R. Meghnous, M. T. Pham, and X. Lin-
Shi, “Averaged state model and sliding mode ob-
server for on/off solenoid valve pneumatic actua-
tors,” 2016 American Control Conference (ACC),
pp. 4569–4574, 2016.

[24] T. Takagi and M. Sugeno, “Fuzzy identification of
systems and its applications to modeling and con-
trol,” IEEE Transactions on Systems, Man and Cy-
bernetics, vol. 15, no. 1, pp. 116–132, 1985.

[25] K. Tanaka and H. O. Wang, Fuzzy Control Systems
Design and Analysis. John Wiley & Sons, Inc.,
2001.

[26] J. P. Gauthier, H. Hammouri, and S. Othman, “A
simple observer for non linear systems applications
to bioreactors,” IEEE Transactions on Automatic
Control, vol. 37, no. 6, pp. 875–880, 1992.
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APPENDIX

A TRACKING ERROR ASYMPTOTIC CONVER-
GENCE PROOF
Consider the closed-loop stability analysis

with the following Lyapunov function V =
1

2
s2
p

which is positive definite. Its time deriva-
tive V̇ is V̇ = ṡpsp where ṡp is given by
ṡp = ϕ1 (Xa) + g1 (Xa)u−

...
y d+ 3λëp+ 3λ2ėp+λ3ep.

Using Eqn. (17), Eqn. (18) and Eqn. (19), we obtain ṡp =

−Kcsign(sp) + ∆ϕ1(Xa)ϕ1 (Xa) + +∆g1(Xa)g1 (Xa)u.

Substituting Eqn. (20) in the last expression gives
ṡp = −sign(sp)

(
β (γ |ϕ1 (Xa)|+ η) + (β − 1) |ũ| +

sign(sp)∆ϕ1(Xa)ϕ1 (Xa)− sign(sp)∆g1(Xa)g1 (Xa)u
)

.

As |ũ| > sign(sp)g1(Xa)u and β − 1 >

∆g1(Xa), it is possible to write (β − 1) |ũ| −
sign(sp)∆g1(Xa)g1 (Xa)u > 0 and ṡp can be up-

per bounded by −sign(sp)
(
β
(
γ |ϕ1 (Xa)|+ η

)
−

sign(sp)∆ϕ1(Xa)ϕ1 (Xa)
)

.
Furthermore, since β > 1 and γ > ∆ϕ1(Xa), we obtain
βγ |ϕ1 (Xa)| − sign(sp) ∆ϕ1(Xa) ϕ1 (Xa) > 0 and the
upper bound of ṡp becomes −β η sign(sp). With β > 1,
the previous upper bound becomes −η sign(sp) and
the time derivative of the Lyapunov function becomes
V̇ < −η |sp| Since γ > 0, V̇ is negative definite.
Thus, the tracking error will converge toward zero
asymptotically.

B SLIDING MODE OBSERVATION ERROR
ASYMPTOTIC CONVERGENCE PROOF
System Eqn. (21) is observable using two outputs

x1a and x2a which give two accessible observation errors
e1 = x̂1a

− x1a
and e4 = x̂4a

− x4a
. The other errors are

e2 = x̂2a
− x2a

and e3 = x̂3a
− x3a

. The error dynamics
are given by




ė1 = e2 −K1e1 − `11 sign(e1)
ė2 = e3 −K2e1 − `12 sign(e1)
ė3 = δ1 −K3e1 − `13 sign(e1)
ė4 = δ2 −K4e4 − `2 sign(e4)

(26)

In order to make e1 converges toward zero, one needs to
define a sliding surface s1 = e1 and a Lyapunov function

V1 =
1

2
e2

1 can be chosen. The convergence of the esti-

mation error to zero is obtained if V̇1 is definite negative.
Hence, `11 must satisfy{

`11 > e2 −K1e1 if e1 > 0
`11 > −e2 +K1e1 if e1 < 0

Both conditions can be satisfied by estimating the worst-
case scenario [28] i.e. considering the maximum value
of e2 that can occur. Hence, both conditions are satis-
fied if

`11 > max |e2|

Then, the sliding surface s1 is attractive and an ideal slid-
ing motion takes place on this surface i.e. e1 = 0 and
ė1 = 0. Using Eqn. (26), one can write: sign(e1) =

e2/`11. The error dynamics become{
ė1 = 0
ė2 = e3 − `12e2/`11

ė3 = δ1 − `13e2/`11

and the dynamics of e2 and e3 can be written as(
ė2

ė3

)
︸ ︷︷ ︸
ė23

=

(
−`12/`11 1
−`13/`11 0

)
︸ ︷︷ ︸

Λ

(
e2

e3

)
︸ ︷︷ ︸
e23

+

(
0
δ1

)
︸ ︷︷ ︸

Υ

The convergence of e23 toward zero is ensured if V̇2 < 0,

where V2 = eT23Pe23 and P =

(
P2 0
0 P3

)
. Recall that P2

and P3 are strictly positive scalars.

The time derivative of V2 is given by

V̇2 = −eT23

(
−PΛ− ΛTP − e23ΥTP

eT23e23
− PΥeT23

eT23e23

)
︸ ︷︷ ︸

M

e23

To make V̇2 < 0, one needs to guarantee thatM is strictly
positive definite where M is given by

M =

 2
`12P2

`11

`13

`11
P3 − P2 −

e2δ1P3

e2
2 + e2

3

P3
`13

`11
− P2 −

P3δ1e2

e2
2 + e2

3

−2
P3δ1e3

e2
2 + e2

3



Using Schur’s Lemma [31], M is positive definite if and
only if

2
`12P2

`11
> 0

−4
P3δ1e3

e2
2 + e2

3

`12P2

`11
−
(
`13

`11
P3 − P2 −

e2δ1P3

e2
2 + e2

3

)2

> 0

Hence, the conditions on `12 and `13 given in Eqn. (26)
are obtained and the errors e2 and e3 converge toward
zero. Finally, for the remaining error e4, similarly to e1,

a Lyapunov function V4 =
1

2
e2

4 can be defined. In order

to make its time derivative V̇4 definite negative, `2 must
satisfy {

`2 > δ2 −K4e4 if e4 > 0
`2 > −δ2 +K4e4 if e4 < 0

Both conditions can be satisfied if `2 > max |δ2|.

C BENCHMARK PARAMETERS
The values given in the following table come from

the different manufacturer data sheets or an a priori esti-
mation of the parameters.

Table 3. Benchmark parameters

Parameters Values

m 0.9 kg

bv 50 N.s.m−1

l 0.01 m

AP 1.81× 10−4 m 2

AN 1.81× 10−4 m 2

k 1.2

r 286.68 J.(kg.K)−1

T 296 K

PS 3.01 bar

PE 1.01 bar

bcrit 0.493

Cval 3.4× 10−9 kg.(s.Pa)−1


