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Abstract

We study a two-player zero-sum game (matrix game for short) with the objective

to find the saddle point and its value. We develop a novel convolutional neural

network (CNN for short) approach to achieve the goal. We propose a complete

training pipeline, including a specific CNN model structure to handle varying

game size, generating training dataset and model fitting. The experiment results

show that our proposed method outperforms the traditional linear programming

(LP for short) method in terms of computational efforts.

Keywords: Two-player Zero-sum Game, Saddle point, Convolutional neural

network, Machine learning

1. Introduction

A two-player zero-sum game or matrix game is a game, where there are

only two players and one player wins whatever the other player loses. It can

be reduced to a matrix form A = (ai,j)n×m, where the number of rows and

columns represent the size of the action set of the row player and column player,5

respectively. The row player and the column player choose a pure strategy (i, j)

will get a return (aij ,−aij), respectively. A is the payoff function of the row

player, and, −A is the payoff function of the column player.

The saddle point in a two-player zero-sum games describes a situation when

two players optimize their payoff functions simultaneously. The definitions of
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the saddle point and its value are

(x∗, y∗) = arg max
x

(
arg min

y
xTAy

)
, (1)

v∗ = max
x

(
min
y
xTAy

)
. (2)

The saddle point equilibrium in (1) can be solved by linear programs (3)

and (4). The minimax Theorem [1] states that the optimal objective values v10

in those two linear programs are equal.

(P1) max v

s.t. ATx ≥ vem

en
Tx = 1, x ≥ 0,

(3)

(P2) min v

s.t. Ay ≤ ven

em
T y = 1, y ≥ 0,

(4)

where ek is a k-dimensional vector with all elements equal to 1.

A neural network is a statistical model that can acquire predictive ability

after learning from data. CNN represents a class of deep neural networks widely

used in the computer vision area. A CNN model is a function (5) with the15

components: model parameters θ, input A, true value v and predicted value

v̂. The input A of a CNN model is usually a three-dimensional array with size

(c, h, w), where c, h, and w represent the number of channels, the height, and

the width, respectively. The output of a CNN model v̂ is a real value or a

vector representing the model’s prediction. The training for the CNN model20

aims at minimizing the expected risk (6) w.r.t parameters θ. However, due

to its inaccessibility, we usually minimize the empirical risk (7). Our paper’s

objective is to use the current popular and powerful model CNN to solve two-
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player zero-sum games, i.e., the problems (1) and (2).

fθ(A) = v̂ (5)

LD(θ) = ED` (fθ(A), v) (6)

L̂n(θ) =
1

n

n∑
i=1

` (fθ(Ai), vi) (7)

The rest of the paper is organized as follows. In Section 2, we give a literature25

review for two-player zero-sum games, CNN, the recent progressing connection

between these two areas, and two regret minimization learning algorithms. In

Section 3, we present our CNN method for solving two-player zero-sum games.

In Section 4, we provide the numerical results for using CNN in two aspects,

computation speed and accuracy, and compare it to linear programming, and30

two learning algorithms. In Section 5, we sum up the paper and give directions

for future works.

The notation used in the paper can be summarized as follows.

• A denotes the payoff matrix of the two-player zero-sum game.

• x and y denote a row player and column player strategies, respectively,35

either pure or mixed.

• n and m denote the sizes of the action set of row player and column player,

respectively.

• (x∗,y∗) denotes the strategy profile of the saddle point.

• v∗ denotes the value of the saddle point.40

• fθ(·) denotes a CNN model, where θ is the model parameter.

• ` denotes a loss function used in training.

• D denotes a matrix game generating distribution.
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2. Literature review

As a mathematical model of conflict and cooperation, game theory studies45

the situations where a set of self-motivated players act to maximize its own

profit. Since the pioneering results of John von Neumann and Oskar Morgen-

stern [1, 2], game theory has been widely developed both from theoretical and

practical points of view [3, 4, 5, 6, 7]. In a two-player zero-sum context, saddle

point [1] states a situation where the outcome is maximum for one player and is50

minimum for the other. Later, in a finite multiple players general-sum context,

Nash [8] proved that there is at least one mixed strategy profile where no player

can improve his/her payoff by changing his strategy unilaterally, namely Nash

equilibrium.

Two-player Zero-sum games or matrix games are a basic type of game, plays55

a central role in game theory development. A fundamental useful mathematical

theorem for zero-sum games is the Minimax Theorem [1, 9], which guarantees

that the interchange of the orders max-min and min-max in (2) would not af-

fect the result. Two-player Zero-sum games model many real-world situations

in order to help decision-makers to take the good decisions in a competitive60

environment, including business [10, 11], economics [12], and engineering [13].

Dantzig [14] shows that solving any matrix game is equivalent to a linear pro-

gram. Most commercial or academic softwares such as Gurobi, CPLEX, Matlab,

Scipy [15], provide tools for linear programming based on interior point method

and simplex method [16, 17]. Besides, there are also some studies on the situa-65

tion where the game contain randomness [18, 19].

CNN proposed by LeCun [20] is a kind of Deep neural networks [21]. As

a type of Feedforward neural networks, it uses the back propagation algorithm

for the training step [22]. The main characteristic of CNN is its use of shared

parameter filters to scan the previous feature maps, which can significantly re-70

duce the size of the parameter space. Since the CNN model Alexnet [23] won

the ImageNet challenge in 2012 [24], there a tremendous amount of research on

this topic [25, 26, 27], and more sophisticated CNN structures [28, 29, 30] have
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been proposed. CNN has applications in many fields, e.g., image classification

[31], medical image analysis [32], video recognition [33], natural language pro-75

cessing [34]. It is worth noting that the problem we are dealing with in this

paper has two characteristics different from most situations: regression rather

than classification and varying input size. For regression, it can be viewed as

a prediction of the rotation angle of the image [35, 36]. For varying input size,

there are three approaches for solving game problems: global pooling, variable80

sized pooling, and padding input images [37].

More recently, two-player zero-sum games built many connections with deep

learning, such as Generative adversarial networks(GAN) [38, 39, 40], with ap-

plications in Cybersecurity [41, 42]. In GAN [43], there are two neural network

models, generator and discriminator, which can be viewed as two players in a85

zero-sum game, and the objectives of the two players are opposite. In Adversar-

ial learning, another topic related to game theory besides GAN, the two players

are the model parameter and input data, and the objective of this training is

to push the neural network model to become more robust [44, 45]. Moreover,

some research work uses the zero-sum game theory framework to promote or un-90

derstand machine learning algorithms [46, 47]. On the contrary, some research

work uses machine learning methods to solve zero-sum games with incomplete

observations [48, 49].

A large number of learning algorithms belongs to regret minimization meth-

ods family amongst all Fictitious play (FP for short) and Exp3. These al-95

gorithms are generally used to solve stochastic games and are often used in

multi-armed bandits topic, see [50, 51, 52] and the references therein.

3. Methodology

In this section, we give a detailed presentation of our CNN model . Subsec-

tion 3.1 introduces the overall pipeline and the specific CNN model. Subsection100

3.2 introduces the concrete training algorithm. Subsection 3.3 describes how to

solve the corresponding saddle point strategy when the predicted saddle point
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value v is known. Subsection 3.4 states the advantages and disadvantages of the

CNN method compared to linear programming.

3.1. The CNN model105

A CNN model, viewed as a function (5), maps a matrix game A to the

predicted saddle point value v̂. As shown in figure 1, the input matrix game at

left-hand side goes through the CNN model to get the predicted value.

Figure 1: A CNN model

Given different sizes of matrix games, the convolutional layer will lead to

different sizes of the feature maps. This might lead to an issue as the afterward110

fully-connected layer requires a fixed input size. To overcome this issue, we insert

either a maximum or an average global pooling layer at the end of convolutional

layers. A global pooling layer down-samples an entire 2-d feature map to a single

value. For example, consider two different input matrix games with sizes 10∗10

and 50 ∗ 50, respectively. After going through a padding convolutional layer115

with 6 filters and kernel size 3 ∗ 3, the feature maps sizes are 6 ∗ 10 ∗ 10 and

6 ∗ 50 ∗ 50, respectively. After crossing a maximum pooling layer which follows

the previous convolutional layer, and has a kernel size 2 ∗ 2 and stride 2, the

feature maps sizes are 6 ∗ 5 ∗ 5 and 6 ∗ 25 ∗ 25, respectively. A global pooling

layer can compress these two different sizes of feature maps to vectors with the120

same size 6.
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3.2. The training algorithm

Figure 2 shows the training procedure for the CNN model. The game sizes

pool and the distributions pool represent several game sizes and distributions

as highlighted in red in Figure 2. A training data sample has the form (A, v),125

where the matrix A is sampled from a given probability distribution, and the

corresponding true value v is obtained by solving a linear program.

Figure 2: The training procedure for the CNN model

Algorithms 1 and 2 are the concrete training methods for the CNN model.

Algorithm 1 shows the procedures to generates one batch of data and trains the

CNN model for one iteration. Algorithm 2 presents the main procedure to train130

the CNN model. We provide two training options in Algorithm 2, namely the

separated training and the joint training. The separated training is the same

as most machine learning training procedures where the model weight training

occurs after the complete dataset is created. The joint training generates data
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and train the model parameters at the same time. At each iteration, joint135

training first generates a batch of data in order to train the model weight then

discards this data.

From the perspective of minimizing the objective function, the separated

training minimizes the following empirical risk at each iteration,

EN (θ) =
1

N

N∑
i=1

` (fθ(Ai), vi) , (8)

where N is the number of data samples. The joint training minimizes the fol-

lowing empirical risk at iteration i,

E(i)(θ) = ` (fθ(Ai), vi) . (9)

At each iteration, the separated training considers the same empirical risk, while

the joint training considers different empirical risks.

Algorithm 1: Generate one matrix game and train

Input: Game size (m,n); Probability distribution P; CNN model net
1 Function Generate(m, n, P):
2 A ∼ P: sample a matrix game A with shape (m,n) from

distribution P
3 v = LP (A): Find v by solving the LP
4 b = (A, v)
5 return b

6 end
7 Function Train(b, net):
8 net ← b: Train the CNN model by the sample b.
9 end

Different hyperparameters settings can affect the performance in different140

ways. The learning rate is set between 10−3 and 10−6 in our case. In practice,

we generate and use data in batches instead of just one sample. Additionally,

we introduce a dedicated hyperparameter for the joint training to reuse data,

namely training round, which indicates how many times a sample will be used

repeatedly.145
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Algorithm 2: Main procedure: Training for the CNN model

Hyperparameters: CNN structure Net; Learning rate α; Training
rounds K; Sample size N ; Iterations number T

Input : Game sizes pool; Probability distributions pool
Output : The CNN model
Initialize : net = Net(), B = [ ]

1 Function Separated(net):
2 for n in N do
3 randomly select a game size (m,n) from the game sizes pool
4 randomly select a distribution P from the probability

distributions pool
5 b = Generate(m,n,P)
6 B.append(b)

7 end
8 for t in T do
9 for b in B do

10 Train(b, net)
11 end

12 end
13 return net

14 end
15 Function Joint(net):
16 for t in T do
17 randomly select a game size (m,n) from the game sizes pool
18 randomly select a distribution P from the probability

distributions pool
19 b = Generate(m,n,P)
20 for k in K do
21 Train(b, net)
22 end

23 end
24 return net

25 end
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3.3. Saddle point strategy

Although the CNN model can predict the saddle point’s value after the

training step, it cannot estimate the corresponding mixed strategies. Since it

will be too complicated to modify the CNN model to be able to predict the mixed

strategies, we compute the related mixed strategies of the predicted value by

solving the following system of equations where A and v̂ are known.

xTAy = v̂, (10)

Getting only one feasible strategy profile (x, y) is sufficient, though several fea-

sible solutions might exist. For example, let

A =


1 0 0

0 1 0

0 0 1

 , v = 0.7. (11)

There are infinitely many feasible strategy profiles, such as x = [1, 0, 0]T , y =

[0.7, 0.1, 0.2]T and x = [1, 0, 0]T , y = [0.7, 0.2, 0.1]T .

Notice that the system (10) can be reduced to the linear systems (12) or

(13), which can be solved by any linear programming solver. If the predicted

value is larger than the true value, (12) will have a feasible solution. Otherwise,

(13) will have a feasible solution. For (12), the related y is a unit vector with

only one element of 1 and all other elements of 0, and the position of one is the

same as the position of the maximum value in the vector ATx. Similarly, for

(13), the position of one in the related unit vector x is the same as the position

of the maximum value in the vector Ay. We only need to solve one of the linear

systems in order to get the desired strategy profile. However, since the true

value is unknown, it is necessary to consider both of them to get the strategy

profile.

ATx ≥ v̂em

xTen = 1,x ≥ 0,
(12)
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Ay ≤ v̂en

yTem = 1,y ≥ 0,
(13)

3.4. Pros and cons of our CNN method

We give the advantages and disadvantages of the CNN method in comparison150

with linear programming. The most significant advantage of the CNN method is

the computational performances. That is because it directly solves the problems

without using any optimization solver. However, the disadvantage is that the

solution is approximate, and the model requires training time before use.

Theoretically, a predicting model should only be able to handle a given155

pool of game sizes and generating distributions known in advance. However,

our CNN model can also deal with out of the pool game sizes and generating

distributions.

Additionally, in order to compare the performances of our CNN model with

existing learning algorithms from the literature, we test two algorithms, namely160

FP and Exp3. FP is a strategic game learning algorithm which proceeds in

rounds manner. In each round, the players play a best response to mixed strat-

egy obtained by previous rounds empirical frequencies of actions. FP was orig-

inally introduced by Brown, see [50] and references therein. Exp3 is a popular

adversarial multiarmed bandits algorithm suggested and studied in this setting165

by [51]. Exp3 stands for Exponential-weight algorithm for Exploration and

Exploitation, it is based on a list of weights for each of the actions in order

to choose randomly the action to be taken next. Exp3 increases the relevant

weights in case of good payoff and decreases them otherwise.

4. Numerical Experiments170

In this section, we provide numerical results for solving zero-sum games in

order to investigate the performances of our algorithms. Our CNN algorithms

are implemented under the Google cloud platform for training and testing tasks.

We use an eight virtual N2D CPU, 64GB of memory, one P100 Nvidia Tesla
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GPU computer. We use Python 3.8 language for our codes, Gurobi for solving175

linear programs, Pytorch 1.7.1 as the neural network library to build up our

neural network model, and CUDA 10.2 as the GPU computation platform.

4.1. Games distribution

Definition 4.1 (Saddle point value distribution). Given a generating proce-

dure, generate a number n of instances from it, and solve them to get n saddle180

point values 1. A saddle point value distribution of the generating procedure is

the distribution of these n values.

Figure 3: Saddle point value distribution

A matrix game generating procedure in definition 4.1 usually contains one

or more probability distribution. It decides how each matrix components are

sampled. The generated matrix game will be solved by linear programming to185

get the saddle point value. Figure 3 shows the connection from the generating

procedure to the saddle point values distributions. The generating procedures

studied in this subsection will be used in the following subsection either for

training or testing purposes.

We consider three game sizes, namely 10 ∗ 10, 50 ∗ 50 and 100 ∗ 100. We190

generate 100 instances for each game size and for each one of the following

three distributions as generating procedures: Uniform distribution with interval

1The saddle point value v∗ instead of saddle point strategy x∗ and y∗
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[−10, 100], Normal distribution with mean 25 and standard deviation 3, Poisson

distribution with λ = 35, i.e., U(−10, 100), N (25, 3), P (35). Besides, we study

a more complex generating procedure with two uniform distributions denoted195

as UU. The UU generating procedure starts with sampling two points l1, l2

from U(0, 75) and U(75, 150) respectively, and a matrix game is generated by

U(l1, l2). Figure 4 shows the obtained saddle point value distributions. Table

1 gives the four first moments of the saddle point value distributions. The first

column shows the saddle point value distribution obtained from each generat-200

ing procedure, e.g., U − 10 ∗ 10 represents the saddle point value distribution

generated by the uniform distribution for the game size 10 ∗ 10.

(a) From Uniform distribution
U(−10, 100) (b) From Normal distribution N (25, 3)

(c) From Poisson distribution P (35) (d) From UU generating procedure

Figure 4: Saddle point value distribution

Figure 4a’s mean value is 45, which is the median number of the Uniform

distribution. Figure 4b’s mean value is 25, which is the µ of the Normal distri-

bution. Figure 4c’s mean value is 35, which is the parameter λ of the Poisson205

distribution. From table 1, we can see that the variances of the distributions

from these three generating procedures are getting smaller when the game size
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Generating procedure Mean Variance Skewness Kurtosis
U-10*10 45.32 22.32 -0.01 3.28
U-50*50 44.81 0.83 0.15 2.25
U-100*100 44.96 0.25 -0.23 2.67
N-10*10 23.96 17.19 -0.32 3.09
N-50*50 25.16 0.88 -0.35 3.36
N-100*100 25.03 0.25 -0.21 3.24
P-10*10 34.91 0.85 -0.11 4.33
P-50*50 34.99 0.03 0.17 2.66
P-100*100 34.99 0.01 -0.18 2.39
UU-10*10 74.23 239.38 0.18 2.50
UU-50*50 77.83 236.19 -0.14 2.31
UU-100*100 76.15 215.93 -0.20 2.46

Table 1: Moments of saddle point value distributions

increases, and the distributions are sharper in figure 4a, 4b, and 4c. The reduc-

ing variance will make the learning method trivial because simply setting the

predicted value to the average value can get satisfying accuracy. The UU gener-210

ating procedure would not occur in such a situation, and the variance remains

high in larger game sizes. The generated distribution are generally symmetric

and taildness as shown by the Skewness and Kurtosis values which are generally

close to zero and three.

4.2. Accuracy of CNN215

As for the CNN training, we use the joint one described in Algorithm 2. The

structure of the CNN model is given in Table 2. We use the following setting:

• The considered game sizes are: 10 ∗ 10, 30 ∗ 30, 50 ∗ 50, 70 ∗ 70, 100 ∗ 100,

and 200 ∗ 200. The considered probability distributions are: U(−10, 100),

N (25, 3), P (35).220

• For the CNN model, the loss function is mean square error, and the ac-

tivation function is rectified linear activation unit generally noted ”leaky

relu”.

• For the hyperparameters, the learning rate is 0.00001. The batch size is

90. The training rounds is 10.225
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layer Detail Output size

Conv2d

Filter size: 3*3
Filters number: 16
Padding: 1
Activation: leaky relu

(16, 100, 100)

Conv2d

Filter size: 3*3
Filters number: 32
Padding: 1
Activation: leaky relu
Pooling: 2*2 max pooling

(32, 50, 50)

Conv2d

Filter size: 3*3
Filters number: 64
Padding: 1
Activation: leaky relu

(64, 50, 50)

Conv2d

Filter size: 3*3
Filters number: 64
Padding: 1
Activation: leaky relu
Pooling: 2*2 max pooling
global pooling

(64, )

fc1
Neurons number: 32
Activation: leaky relu

(32, )

fc2
Neurons number: 16
Activation: leaky relu

(16, )

fc3
Neurons number: 10
Activation: leaky relu

(10, )

fc4
Neurons number: 10
Activation: leaky relu

(10, )

fc5
Neurons number: 1
Activation: leaky relu

(1, )

Table 2: the structure of the CNN model
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Figure 5: Training Loss of the CNN model

Figure 5 shows the training loss using the above mentioned setting and joint

training. The loss function value is around 1200 at the starting of the training.

Then, it drops off quickly in the first 500 iterations. The loss function gradually

converges to a single-digit value by our proposed method after 10000 iterations.

It means that the CNN model successfully acquires the ability to predict the230

matrix game problems under the given selected game sizes and the distributions.

Options\Iterations 0 1000 2000 3000 4000 5000
Separated training 1293.70 19.64 13.59 11.12 7.50 4.44
Joint training 1293.70 24.02 15.53 6.55 1.47 0.55

Table 3: Difference between the separated and the joint training

Table 3 compares the two training options provided in Algorithm 2. We can

see that the loss function of the separated training is smaller than the one in the

joint training during the first 2000 iterations whilst the loss function of the joint

training is smaller than the separated training counterpart when the number of235

iterations is beyond 2000. Notice that the loss function of the joint training is

less than one after 5000 iterations.

We use GAP as the evaluation metric for our model accuracy,

GAP =| True value− Predicted value

Predicted value
| ∗100%. (14)
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Tables 4 and 5 show the model accuracy results after training. Each entry

is averaged from 100 untrained test samples, which can be viewed as a test

set. Table 4 presents the results for game sizes and distributions in the training240

candidate pool. Table 5 show the results when game sizes and generating dis-

tributions are not in the training candidate pool. For example, the game size

10∗10 and the uniform distribution U(−10, 100) in table 4 are considered in the

training candidate pool, while the game size 25∗25 and the mixed distributions

in table 5 are not.245

Uniform Normal Poisson
Mean value Gap Mean value Gap Mean value Gap

10*10 45.77 5.88% 25.38 1.70% 35.59 2.30%
50*50 46.50 3.31% 25.75 2.74% 36.14 2.90%
100*100 45.37 0.90% 25.13 0.54% 35.20 0.63%

Table 4: CNN for trained game sizes and distributions

Mixed [0.3, 0.5, 0.2]* Mixed [1, 1, 1]** UU generating procedure***
Mean value Gap Mean value Gap Mean value Gap

10*10 34.03 3.14% 106.42 3.23% 77.32 3.74%
25*25 32.57 1.60% 102.83 2.32% 74.75 2.35%
75*75 34.25 3.65% 108.12 2.91% 76.61 2.92%
150*150 33.82 2.44% 106.80 1.66% 77.00 1.61%

*The mixed distribution P = 0.3 ∗ U(−10, 100) + 0.5 ∗ N (25, 3) + 0.2 ∗ Pois(35).
**The mixed distribution P = 1.0 ∗ U(−10, 100) + 1.0 ∗ N (25, 3) + 1.0 ∗ Pois(35).
***Described in section 4.1, a generating procedure with high variance.

Table 5: CNN for untrained game sizes and distributions

Tables 4 and 5 show that the CNN model receives an excellent predictive

ability with a satisfying gap error after training. Moreover, Table 5 shows that

the CNN model can even solve a matrix game from an untrained distribution

and untrained game size.

4.3. Computational performances of CNN250

Table 6 compares the computational performances of CNN and LP. Each

row entry representing a game size is averaged from 100 instances. It goes from

a small game size 10 ∗ 10 to a large game size 3000 ∗ 3000, and gives the mean

17



values of two approaches and gap error of the CNN method. We use GPU for

both training and predicting phrases for the CNN model. The computational255

speed increases by more than 100 times for our case by utilizing GPU.

Game sizes
LP CNN
CPU Time Value CPU Time Value Gap

10*10 0.0002 44.95 0.0011 45.70 6.79%
50*50 0.0016 45.02 0.0011 46.47 3.15%
100*100 0.0066 44.92 0.0011 45.32 1.06%
500*500 0.2537 45.00 0.0013 45.58 1.27%
1000*1000 1.3562 44.97 0.0090 45.63 1.45%
2000*2000 6.4688 45.04 0.0341 45.63 1.27%
3000*3000 19.2352 45.01 0.0789 45.63 1.36%

Table 6: Comparison between LP and CNN

The difference is not significant for small game sizes since LP is efficient

enough to solve small-size linear programs. When the game size is large, the

advantage of CNN becomes notable. It is much faster than LP, and the gap

error is relatively small. For example, for a 3000*3000 size matrix game, the260

CNN approach is 200 times faster than LP with a 1.36% gap loss.

Table 7 shows the simulation results of LP, CNN, FP and Exp3 for 1000*1000

game uniformly generated in interval [−10, 100]. We set the number of rounds

for FP and Exp3 to 10000. We can see that our CNN model outperforms LP,

FP and Exp3 in terms of CPU time. Notice that FP and Exp3 require a high265

number of rounds to provide a good approximation of the value of the game

which make them less competitive for large size games. Within 10000 rounds

Exp3 shows the lowest gap whilst FP requires the highest computing time.

Algorithms
1000*1000
CPU Time Value Gap (%)

LP 1.3035 45.0293 -
CNN 0.00086 45.6481 1.3553%
FP 259.3845 47.6020 5.4043%
Exp3 0.7100 45.0431 0.0304%

Table 7: Comparison between LP, CNN and two learning algorithms
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5. Conclusion

In this paper, we study a two-players zero-sum games with the aim to find270

the saddle point for any given matrix game. We use a novel machine learning

method CNN to achieve the goal and compare it with the traditional linear

programming method as well as with two learning algorithms, namely FP and

Exp3. We design a specific CNN structure containing a global pooling layer

capable of handling varying input game sizes. Hence, we develop a complete275

pipeline including data generation and model fitting. We study saddle point

value distributions for different matrix game generating procedures. Our nu-

merical experiment show that the CNN method outperforms the traditional

linear programming method and the two learning algorithms with a reasonable

loss. Furthermore, the CNN method can take advantage of parallel comput-280

ing, which provides high computing performance when solving multiple games

simultaneously. Our approach can be extended to other game theory problems,

namely n-player games.
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